Skip to main content

Advertisement

Log in

The effects of taurine supplementation on glycemic control and serum lipid profile in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled trial

  • Original Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

Previous studies have suggested that taurine has hypoglycemic and hypolipidemic effects on experimental diabetic models. Therefore, this clinical trial was designed to explore the impacts of taurine supplementation on glycemic control and lipid profile in the patients with T2DM. This study was conducted on 45 patients with T2DM in Tabriz Sheikhor-raees Polyclinic and Imam-Reza Hospital Endocrine Center. Subjects were randomly divided into taurine and placebo groups. Accordingly, the taurine group (n = 23) received taurine 3000 mg/daily and the placebo group (n = 22) took crystalline microcellulose/daily for the duration of 8 weeks. At baseline and after the trial completion, fasting blood samples were obtained from the patients to assess the glycemic indicators and lipid profile. Independent t test, paired t test, Pearson’s correlation, and analysis of covariance was used for analysis. At the end of the study, levels of FBS (p = 0.01), insulin (p = 0.01), HOMA-IR (p = 0.003), TC (p = 0.013), and LDL-C (p = 0.041) significantly decreased in the taurine group compared to the placebo group. In addition, there was no significant changes in HbA1c, triglyceride, HDL-C, anthropometric indicators or dietary intakes by passing 8 weeks from the intervention. In conclusion, the findings of the current study indicated that taurine supplementation (3000 mg/day) for 8 weeks could improve the glycemic indexes and lipid profiles including TC and LDL-C in the patients with T2DM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

Akt:

Protein kinase B

ALX:

Alloxan

AMPK:

5′ AMP-activated protein kinase

Apo A-I:

Apolipoprotein A I

Apo B:

Apolipoprotein B

BMI:

Body mass index

DM:

Diabetes mellitus

FBS:

Fasting blood sugar

HbA1c:

Hemoglobin A1C

HDL-C:

High-density lipoprotein cholesterol

HOMA-IR:

Homeostatic model assessment of insulin resistance

IPAQ:

International physical activity questionnaire

IRβ:

Insulin receptor Β-subunit

LDL-C:

Low-density lipoprotein cholesterol

Lp(a):

Lipoprotein (a)

OLETF:

Otsuka long evans tokushima fatty

STZ:

Streptozotocin

TC:

Total cholesterol

TG:

Triglyceride

UCP1:

Uncoupling protein 1

References

  • Association AD (2015) Standards of medical care in diabetes—2015 abridged for primary care providers. Clin Diabetes 33(2):97

    Google Scholar 

  • Atlas D (2015) International diabetes federation. IDF diabetes atlas, 7th edn. International Diabetes Federation, Brussels

    Google Scholar 

  • Borck PC, Vettorazzi JF, Branco RCS, Batista TM, Santos-Silva JC, Nakanishi VY, Boschero AC, Ribeiro RA, Carneiro EM (2018) Taurine supplementation induces long-term beneficial effects on glucose homeostasis in ob/ob mice. Amino Acids 50(6):765–774

    CAS  PubMed  Google Scholar 

  • Bouckenooghe T, Remacle C, Reusens B (2006) Is taurine a functional nutrient? Curr Opin Clin Nutr Metab Care 9(6):728–733

    CAS  PubMed  Google Scholar 

  • Brøns C, Spohr C, Storgaard H, Dyerberg J, Vaag A (2004) Effect of taurine treatment on insulin secretion and action, and on serum lipid levels in overweight men with a genetic predisposition for type II diabetes mellitus. Eur J Clin Nutr 58(9):1239

    PubMed  Google Scholar 

  • Buonani C, Rossi FE, Diniz TA, Fortaleza AC, Viezel J, Picolo MR, Fernandes RA, Freitas Júnior IF (2019) Concurrent training and taurine improve lipid profile in postmenopausal women. Rev Bras Med Esporte 25(2):121–126

    Google Scholar 

  • Camargo RL, Branco RCS, de Rezende LF, Vettorazzi JF, Borck PC, Boschero AC, Carneiro EM (2015) The effect of taurine supplementation on glucose homeostasis: the role of insulin-degrading enzyme. Adv Exp Med Biol 803:715–24

    CAS  PubMed  Google Scholar 

  • Cao P-j, Jin Y-j, Li M-e, Zhou R, Yang M-z (2016) PGC-1α may associated with the anti-obesity effect of taurine on rats induced by arcuate nucleus lesion. Nutr Neurosci 19(2):86–93

    CAS  PubMed  Google Scholar 

  • Carneiro EM, Latorraca MQ, Araujo E, Beltrá M, Oliveras MJ, Navarro M, Berná G, Bedoya FJ, Velloso LA, Soria B (2009) Taurine supplementation modulates glucose homeostasis and islet function. J Nutr Biochem 20(7):503–511

    CAS  PubMed  Google Scholar 

  • Chang KJ (1999) The effects of taurine and??-alanine on blood glucose and blood lipid concentrations in insulin-treated diabetic rats. Korean J Community Nutr 4(1):103

    CAS  Google Scholar 

  • Chauncey KB, Tenner TE, Lombardini JB, Jones BG, Brooks ML, Warner RD, Davis RL, Ragain RM (2003) The effect of taurine supplementation on patients with type 2 diabetes mellitus. Adv Exp Med Biol 526:91–6

    CAS  PubMed  Google Scholar 

  • Chen W, Guo J-X, Chang P (2012) The effect of taurine on cholesterol metabolism. Mol Nutr Food Res 56(5):681–690

    CAS  PubMed  Google Scholar 

  • Cho N, Shaw J, Karuranga S, Huang Y, da Rocha FJ, Ohlrogge A, Malanda B (2018) IDF diabetes atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract 138:271–281

    CAS  Google Scholar 

  • Contreras C, González-García I, Seoane-Collazo P, Martínez-Sánchez N, Liñares-Pose L, Rial-Pensado E, Fernø J, Tena-Sempere M, Casals N, Diéguez C (2017) Reduction of hypothalamic endoplasmic reticulum stress activates browning of white fat and ameliorates obesity. Diabetes 66(1):87–99

    CAS  PubMed  Google Scholar 

  • Das J, Vasan V, Sil PC (2012) Taurine exerts hypoglycemic effect in alloxan-induced diabetic rats, improves insulin-mediated glucose transport signaling pathway in heart and ameliorates cardiac oxidative stress and apoptosis. Toxicol Appl Pharmacol 258(2):296–308

    CAS  PubMed  Google Scholar 

  • Foda D, Farrag E, Metwally N, Maghraby A, Farrag A, Rawi S (2016) Protective and therapeutic impact of taurine on some biochemical, immunological and histological parameters in diabetic rats. J Appl Pharm Sci 6:45–54

    CAS  Google Scholar 

  • Franconi F, Bennardini F, Mattana A, Miceli M, Ciuti M, Mian M, Gironi A, Anichini R, Seghieri G (1995) Plasma and platelet taurine are reduced in subjects with insulin-dependent diabetes mellitus: effects of taurine supplementation. Am J Clin Nutr 61(5):1115–1119

    CAS  PubMed  Google Scholar 

  • Fukuyama N, Homma K, Wakana N, Kudo K, Suyama A, Ohazama H, Tsuji C, Ishiwata K, Eguchi Y, Nakazawa H (2007) Validation of the Friedewald equation for evaluation of plasma LDL-cholesterol. J Clin Biochem Nutr 43(1):1–5

    PubMed Central  Google Scholar 

  • Gomez R, Caletti G, Arbo BD, Hoefel AL, Schneider R Jr, Hansen AW, Pulcinelli RR, Freese L, Bandiera S, Kucharski LC (2018) Acute intraperitoneal administration of taurine decreases the glycemia and reduces food intake in type 1 diabetic rats. Biomed Pharmacother 103:1028–1034

    CAS  PubMed  Google Scholar 

  • Hy C, Wallis M, Tiralongo E (2007) Use of complementary and alternative medicine among people living with diabetes: literature review. J Adv Nurs 58(4):307–319

    Google Scholar 

  • Ito T, Schaffer SW, Azuma J (2012) The potential usefulness of taurine on diabetes mellitus and its complications. Amino Acids 42(5):1529–1539

    CAS  PubMed  Google Scholar 

  • Jong CJ, Azuma J, Schaffer S (2012) Mechanism underlying the antioxidant activity of taurine: prevention of mitochondrial oxidant production. Amino Acids 42(6):2223–2232

    CAS  PubMed  Google Scholar 

  • Kim KS, Kim JY, Lee BG, You JS, Chang KJ, Chung H, Yoo MC, Yang H-I, Kang J-H, Hwang YC (2012) Taurine ameliorates hyperglycemia and dyslipidemia by reducing insulin resistance and leptin level in Otsuka Long-Evans Tokushima fatty (OLETF) rats with long-term diabetes. Exp Mol Med 44(11):665

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lin S, Yang J, Wu G, Liu M, Luan X, Lv Q, Zhao H, Hu J (2010) Preventive effect of taurine on experimental type II diabetic nephropathy. J Biomed Sci 17(1):S46

    PubMed  PubMed Central  Google Scholar 

  • Maddison R, Mhurchu CN, Jiang Y, Vander Hoorn S, Rodgers A, Lawes CM, Rush E (2007) International physical activity questionnaire (IPAQ) and New Zealand physical activity questionnaire (NZPAQ): a doubly labelled water validation. Int J Behav Nutr Phys Act 4(1):62

    PubMed  PubMed Central  Google Scholar 

  • Marcinkiewicz J, Kontny E (2014) Taurine and inflammatory diseases. Amino Acids 46(1):7–20

    CAS  PubMed  Google Scholar 

  • Mirmiran P, Bahadoran Z, Azizi F (2014) Functional foods-based diet as a novel dietary approach for management of type 2 diabetes and its complications: a review. World J Diabetes 5(3):267

    PubMed  PubMed Central  Google Scholar 

  • Moloney MA, Casey RG, O'Donnell DH, Fitzgerald P, Thompson C, Bouchier-Hayes DJ (2010) Two weeks taurine supplementation reverses endothelial dysfunction in young male type 1 diabetics. Diabetes Vasc Disease Res 7(4):300–310

    Google Scholar 

  • Murakami S (2015) Role of taurine in the pathogenesis of obesity. Mol Nutr Food Res 59(7):1353–1363

    CAS  PubMed  Google Scholar 

  • Nakaya Y, Minami A, Harada N, Sakamoto S, Niwa Y, Ohnaka M (2000) Taurine improves insulin sensitivity in the Otsuka Long-Evans Tokushima fatty rat, a model of spontaneous type 2 diabetes. Am J Clin Nutr 71(1):54–58

    CAS  PubMed  Google Scholar 

  • Nardelli TR, Ribeiro RA, Balbo SL, Vanzela EC, Carneiro EM, Boschero AC, Bonfleur ML (2011) Taurine prevents fat deposition and ameliorates plasma lipid profile in monosodium glutamate-obese rats. Amino Acids 41(4):901–908

    CAS  PubMed  Google Scholar 

  • Nishimura N, Umeda C, Oda H, Yokogoshi H (2002) The effect of taurine on plasma cholesterol concentration in genetic type 2 diabetic GK rats. J Nutr Sci Vitaminol 48(6):483–490

    CAS  PubMed  Google Scholar 

  • Ozougwu J, Obimba K, Belonwu C, Unakalamba C (2013) The pathogenesis and pathophysiology of type 1 and type 2 diabetes mellitus. J Physiol Pathophysiol 4(4):46–57

    Google Scholar 

  • Papatheodorou K, Papanas N, Banach M, Papazoglou D, Edmonds M (2016) Complications of diabetes 2016. J Diabetes Res 2016:6989453

    PubMed  PubMed Central  Google Scholar 

  • Park E-J, Bae JH, Kim S-Y, Lim J-G, Baek W-K, Kwon TK, Suh S-i, Park J-W, Lee I-K, Ashcroft FM (2004) Inhibition of ATP-sensitive K+ channels by taurine through a benzamido-binding site on sulfonylurea receptor 1. Biochem Pharmacol 67(6):1089–1096

    CAS  PubMed  Google Scholar 

  • Ribeiro RA, Santos-Silva JC, Vettorazzi JF, Cotrim BB, Mobiolli DD, Boschero AC, Carneiro EM (2012) Taurine supplementation prevents morpho-physiological alterations in high-fat diet mice pancreatic β-cells. Amino Acids 43(4):1791–1801

    CAS  PubMed  Google Scholar 

  • Ribeiro RA, Bonfleur ML, Batista TM, Borck PC, Carneiro EM (2018) Regulation of glucose and lipid metabolism by the pancreatic and extra-pancreatic actions of taurine. Amino Acids 50(11):1511–1524

    CAS  PubMed  Google Scholar 

  • Ripps H, Shen W (2012) Taurine: a “very essential” amino acid. Mol Vis 18:2673

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rosa FT, Freitas EC, Deminice R, Jordao AA, Marchini JS (2014) Oxidative stress and inflammation in obesity after taurine supplementation: a double-blind, placebo-controlled study. Eur J Nutr 53(3):823–830

    CAS  PubMed  Google Scholar 

  • Sak D, Erdenen F, Müderrisoglu C, Altunoglu E, Sozer V, Gungel H, Guler PA, Sak T, Uzun H (2019) The relationship between plasma taurine levels and diabetic complications in patients with type 2 diabetes mellitus. Biomolecules 9(3):96

    PubMed Central  Google Scholar 

  • Saleh AAS (2012) Effects of taurine and/or ginseng and their mixture on lipid profile and some parameters indicative of myocardial status in streptozotocin-diabetic rats. J Basic Appl Zool 65(5):267–273

    CAS  Google Scholar 

  • Santos-Silva JC, Ribeiro RA, Vettorazzi JF, Irles E, Rickli S, Borck PC, Porciuncula PM, Quesada I, Nadal A, Boschero AC (2015) Taurine supplementation ameliorates glucose homeostasis, prevents insulin and glucagon hypersecretion, and controls β, α, and δ-cell masses in genetic obese mice. Amino Acids 47(8):1533–1548

    CAS  PubMed  Google Scholar 

  • Schaffer S, Azuma J, Takahashi K, Mozaffari M (2003) Why is taurine cytoprotective? Adv Exp Med Biol 526:307–21

    CAS  PubMed  Google Scholar 

  • Schuller-Levis GB, Park E (2003) Taurine: new implications for an old amino acid. FEMS Microbiol Lett 226(2):195–202

    CAS  PubMed  Google Scholar 

  • Shari FH, Dawood H, Hassan JK, ALJazeari QA, Najm MA, Salahuddin A, Al-Salman H (2019) To study the effect of taurine on the effects of vital bones and regulate the level of glucose in type II diabetes. Int J Res Pharm Sci 10(3):2545–2551

    CAS  Google Scholar 

  • Spohr C, Brøns C, Winther K, Dyerberg J, Vaag A (2005) No effect of taurine on platelet aggregation in men with a predisposition to type 2 diabetes mellitus. Platelets 16(5):301–305

    CAS  PubMed  Google Scholar 

  • Vettorazzi JF, Ribeiro RA, Santos-Silva JC, Borck PC, Batista TM, Nardelli TR, Boschero AC, Carneiro EM (2014) Taurine supplementation increases K ATP channel protein content, improving Ca 2+ handling and insulin secretion in islets from malnourished mice fed on a high-fat diet. Amino Acids 46(9):2123–2136

    CAS  PubMed  Google Scholar 

  • You JS, Chang KJ (1998) Effects of taurine supplementation on lipid peroxidation, blood glucose and blood lipid metabolism in streptozotocin-induced diabetic rats. Adv Exp Med Biol 442:163–168

    CAS  PubMed  Google Scholar 

  • Zheng Y, Ceglarek U, Huang T, Wang T, Heianza Y, Ma W, Bray GA, Thiery J, Sacks FM, Qi L (2016) Plasma taurine, diabetes genetic predisposition, and changes of insulin sensitivity in response to weight-loss diets. J Clin Endocrinol Metab 101(10):3820–3826

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng Y, Ley SH, Hu FB (2018) Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. Nat Rev Endocrinol 14(2):88

    PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank all members of the present study group for their ideas, suggestions, participation and support. This study is a part of a thesis proposal for Ph.D. degree. The thesis proposal was approved by Medical Ethics Committee of Tabriz University of Medical Sciences (IR.TBZMED.REC.1397.682). Moreover, the authors acknowledge TBZMED for their financial support.

Funding

This study was funded by Vice Chancellor for Research at Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.

Author information

Authors and Affiliations

Authors

Contributions

VM: Contributed to the study conception, design and data collection and drafting the manuscript. MA: Participated in study design, revising the paper and approving the version of the manuscript being submitted. FE: Contributed to the interpretation of data, revising the paper critically and giving final approval. RM: Participated in study design, revising the paper and approving the version of the manuscript being submitted.

Corresponding author

Correspondence to Reza Mahdavi.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Ethics approval

All the study procedures were in accordance with the ethical standards of the institutional research ethics committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Written informed consents were obtained from all participants.

Additional information

Handling Editor S. W. Schaffer.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maleki, V., Alizadeh, M., Esmaeili, F. et al. The effects of taurine supplementation on glycemic control and serum lipid profile in patients with type 2 diabetes: a randomized, double-blind, placebo-controlled trial. Amino Acids 52, 905–914 (2020). https://doi.org/10.1007/s00726-020-02859-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-020-02859-8

Keywords

Navigation