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Abstract
The synthesis of α/β-chimeras comprises peptide bond formation from α- to β-, from β- to β-, and from β- to α-amino acid 
residues. The fine-tuned solid phase synthesis of –GXXG– chimera peptides containing the simplest achiral α-amino acid 
glycine and two cyclic SAAs of different ring size [X denoting cyclic β-Sugar Amino Acids (β-SAA)] is reported, variants 
containing Fmoc–RibAFU(ip)–OH a furanoid-, and Fmoc–GlcAPU(Me)–OH a pyranoid-type structural “Lego-element”. 
Systematic search for the best coupling strategy with both H–β-SAA–OHs is described, including the comparison of the 
different coupling reagents and conditions. Selecting the optimal reagent (from commonly used PyBOP, HATU and HOBt) 
was assisted by time-resolved 1H-NMR: formation and stability of the Fmoc protected active esters were compared. We found 
that PyBOP is the best choice for successfully coupling both H–β-SAA–OH prototypes. The present comparative results 
open a reasonable route for building efficiently various –β-SAA– containing homo- and heterooligomers.
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Abbreviations
H–RibAFU(ip)–OH	� 1,2-O-isopropylidene-3-amino-3-

deoxy-α-d-ribofuranuronic acid
H–XylAFU(ip)–OH	� 1,2-O-isopropylidene-3-amino-3-

deoxy-α-d-xylofuranuronic acid
H–GlcAPU(Me)–OH	� Methyl 2,3-di-O-benzyl-

4-amino-4-deoxy-α-d-
glucopyranoside uronic acid

Fmoc–β-SAA–OH	� Fmoc protected β-Sugar Amino 
Acid

H–β-SAA–OH	� β-Sugar Amino Acid
–β-SAA–	� β-Sugar Amino Acid in peptide 

bond

Fmoc–β-SAA–OBt	� Fmoc protected β-amino acid 
HOBt ester

Fmoc–β-SAA–OAt	� Fmoc protected β-amino acid 
HATU ester

Introduction

Chimeric synthetic polypeptides containing β-amino acids 
have achieved increasing attention in foldamer chemistry 
and drug design, due to their prolonged resistance against 
proteases and their ability of forming designed nanostruc-
tures of reduced internal dynamics (Horne and Gellman 
2008; Pilsl and Reiser 2011; Guichard and Huc 2011; Kiss 
and Fülöp 2014; Cabrele et al. 2014; Mándity and Fülöp 
2015; Pohl et al. 2013). Cyclic β-amino acid residues—as 
conformationally restricted building blocks—are of special 
interest, as they have the same number of backbone torsional 
angles (ϕ and ψ) as α-peptides. These oligo- and polypep-
tides composed of cyclic β-amino acids have backbone fold-
ing properties primarily determined by local configuration. 
Configuration driven, fine-tuned conformational properties 
enhance their receptor-binding ability and macromolecule 
formation potential (Beke et al. 2004).

The cis- and trans-stereoisomers of 2-aminocyclobutane-
carboxylic acid (ACBC), 2-aminocyclopentanecarboxylic 
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acid (ACPC) and 2-aminocyclohexanecarboxylic acid 
(ACHC) derivatives are now widely applied to construct chi-
meras (Giuliano et al. 2013; Torres et al. 2009, 2010; Gor-
rea et al. 2012; Herradón and Seebach 1989; Kessler et al. 
1995; Kiss et al. 2017). However, all three of the above com-
pounds are highly hydrophobic and their hydrophilic cyclic 
analogues are barely known and thus used. During the last 
20 years, both five- and six-membered cyclic Sugar Amino 
Acids (H–SAA–OHs) appeared sporadically as building 
blocks (Risseeuw et al. 2013; Pandey et al. 2011; Giri et al. 
2012; Long et al. 1999; Simone et al. 2005; Sharma et al. 
2008, 2011; Andreini et al. 2009, Chakraborty et al. 1998, 
von Roedern and Kessler 1994, Feher-Voelger et al. 2014) 
(Fig. 1). H–SAA–OHs were considered hard to synthe-
size and costly to manufacture on the gram scale required. 
Recently, we have accomplished several consecutive steps, 
starting from d-glucose. The syntheses are fine-tuned, opti-
mized and ready for large-scale and cost-efficient total syn-
thesis; the Fmoc-derivatives are now available on the gram 
scale (Nagy et al. 2017; Goldschmidt Gőz et al. 2018).

Homo- and heterooligomers containing H–β-SAA–OHs 
were synthesized by us and others using different coupling 
reagents (BOP, HATU and HOBt) and amino protection 
(Fmoc or Boc groups) either in solution or on solid phase 
(Gruner et al. 2002; Csordás et al. 2016; Chandrasekhar 
et al. 2004; Suhara et al. 2002). For example, the pento- 
furanoid Fmoc–RibAFU(ip)–OH (1) was combined with 
β-homoglycine to form β-chimera peptides using HATU/
collidine reagents on solid phase (Gruner et al. 2002). The 
coupling of the same H–β-SAA–OH with α-glycine was 
similarly tested with HATU/DIEA (Csordás et al. 2016), 
but the coupling efficacy of the sugar moiety needs to be 
proved. Homooligomers of different lengths were prepared 
from the derivatives of the C-3 epimer H–XylAFU(ip)–OH 
with EDCI/HOBt in solution (Chandrasekhar et al. 2004). 
The hexopyranoid N-tert-butyloxycarbonyl-3,4,6-tri-O-
acetyl-β-d-glucosamine-1-carboxylic acid was also used to 

form related types of homooligomers (Suhara et al. 2002). 
The syntheses were performed using BOP/DIEA reagents 
and Boc/Bn protection in solution. Although several co- 
upling reactions and conditions were probed, no systematic 
comparison of the different coupling reagents, strategies 
and techniques were performed yet. The comprehensive 
analysis presented here with respect to the coupling con-
ditions and efficacy of two different H–β-SAA–OH proto-
types representing different ring sizes: 5-membered ring, 
3,4-trans Fmoc–RibAFU(ip)–OH (1) (Nagy et al. 2017) 
and 6-membered ring, 4,5-trans Fmoc–GlcAPU(Me)–OH 
(2) (Goldschmidt Gőz et al. 2018) residues were introduced 
into appropriate –Gly–β-SAA–β-SAA–Gly– heterooligo- 
mers. Our aims were to probe the key steps of peptide bond 
formation between α- and β-, β- and β-, and β- and α-amino 
acids using various active ester formation methods. Both 
the active ester types and the right coupling conditions (T, 
p, solvent type, reaction time, etc.) were optimized. Here, 
we present a systematic study on the formation and stability 
fine-tuned by 1H-NMR of the active esters from the furanoid 
and pyranoid carbohydrate moieties.

Results and discussion

Our comprehensive study was carried out using four dif-
ferent, though commonly used peptide coupling reagents, 
namely: (i) the HOBt/EDCI used by Chandrasekhar et al. for 
H–β-SAA–OH in solution (Chandrasekhar et al. 2004); (ii) 
the HOBt/DIC system, the most prevalent choice of the field 
(Valeur and Bradley 2009); (iii) the PyBOP/DIEA reagent 
pair developed for coupling “difficult sequences” without 
the considerable risk of racemization (Albericio and Car-
pino 1997); (iv) the HATU/DIEA also applied for “difficult 
sequences” with the risk of racemization (Valeur and Brad-
ley 2009; Montalbetti and Falque 2005), and thus, limiting 
the overall coupling times to less than 3 h (Scheme 1).

Fig. 1   Molecular structure of the two H–β-SAA–OH prototypes 1 
and 2, with their carbocyclic analogues ACPC and ACHC

Scheme 1   Active ester formation from a furanoid-type N-Fmoc pro-
tected β-sugar amino acid such as Fmoc–RibAFU(ip)–OH (1). Rea-
gents and conditions: a HATU/DIEA, b HOBt/EDCI/DIEA, c HOBt/
DIC, and d PyBOP/DIEA
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Formation and stability of β‑sugar amino acid active 
esters

During SPPS, the active ester is in situ made to enhance 
the efficacy of the amide bond formation. It is presumed 
that the active ester formation occurs fast and quantitatively 
(conversion > 99%) (Albericio and Carpino 1997). For 
α-l-amino acid residues, conditions for active ester forma-
tion were optimized to complete it within a few minutes 
(Coste et al. 1990). As cyclic β-sugar amino acids are more 
compact with a –COOH group sterically hindered, co- 
upling conditions (Fig. 1) were probed and described here 
for selected H–β-SAA–OHs, using alternative coupling 
reagents. For a quantitative characterization, time-resolved 
1H-NMR spectra were recorded, selected resonance fre-
quencies were assigned, and the time needed of the active 
ester formation (tf) and hydrolysis (th) was established 
from the integral-time diagrams (see Supporting Informa-
tion). The solution of the furanoid (1) or pyranoid (2) pro-
totypes was mixed with the appropriate coupling reagent 
(PyBOP, HATU or HOBt in an equimolar ratio) in [D7]
DMF at T = 25 °C. At t = 0 min either DIEA (2 eqv.), DIC 
(1 eqv.), or EDCI (1 eqv.) was added to initiate the active 
ester formation and 1H-NMR spectra were recorded after 10, 
20, 30, 60 min, and so on for hours (and day) (Fig. 2). For 
the Fmoc–RibAFU(ip)–OH (1) and PyBOP/DIEA system, 
resonance frequencies of the free PyBOP (HB: 8.10 ppm 
and HD: 8.27 ppm) and that of the Fmoc–RibAFU(ip)–OH 
(H1: 6.00 ppm) were used in conjunction with those of the 
active ester 5 (HB′: 7.78 ppm, H1′: 5.93 ppm, Fig. 2a). For 
Fmoc–GlcAPU(Me)–OH (2) with HOBt/DIC, resonance fre-
quencies of the free HOBt (HA: 7.73 ppm and HD: 7.98 ppm) 
and that of Fmoc–GlcAPU(Me)–OH (H1: 5.03 ppm) was 
monitored with those of the active ester 4 (HA′: 8.22 ppm, 
HD′: 8.36 ppm, and H1′: 5.25 ppm, Fig. 2b).

When the active ester formation with HOBt/EDCI/DIEA 
is very slow (tf = 960 min), the reaction is complete; how-
ever, when it is fast (tf = 20 min), conversion is poor (20%, 
Fmoc–GlcAPU(Me)–OH, 2), and in addition, the product 
decomposes upon formation, the degree of the decompo-
sition was monitored by the formation of HOBt side-pro- 
duct, the 1H-NMR signals of which appeared in the spectra: 
HA: 7.78 ppm, HB: 7.60 ppm, HD: 7.93 ppm. The active 
ester formation is slow (tf = ~ 60–120 min) when HOBt/
DIC is used and the conversion also remains low (50%, 
Fmoc–RibAFU(ip)–OH, 1); moreover, the starting uronic 
acid (1) is fully regained. Additional experiments revealed 
that a stable active ester cannot be formed with HOBt 
directly as it contains equimolar H2O, which, in principle, is 
enough for the complete hydrolysis of the nascent ester. Fur-
thermore, HOBt decomposes if crystal water is removed by 
drying with molecular sieves etc. Thus, stabilized forms of 
HOBt had to be used. Reaction of Fmoc–GlcAPU(Me)–OH 

(2) with HATU/DIEA is slow (tf = 240 min) presenting an 
additional problem as racemization can occur after 3 h. We 
found the active ester formation of Fmoc–RibAFU(ip)–OH 
(1) with HATU/DIEA or PyBOP/DIEA is fast (tf = 20 min) 
and the product remains stable for more than 24 h. Simi-
larly, Fmoc–GlcAPU(Me)–OH (2) reacts with PyBOP/DIEA 
quickly (tf = 10 min) forming an active ester intact and stable 
for over 6 h. Thus, PyBOP/DIEA seems to be the only solu-
tion good enough to use and to match conditions required 
for standard SPPS coupling.

Comparing the four coupling reagent pairs and the time 
needed for the active ester formation, significant differences 
were found (Table 1). The mechanisms of active ester forma-
tion can explain these differences. We found that the rate-
determining steps of the ester formation are different using 
the HATU/DIEA or PyBOP/DIEA pairs and the HOBt/
EDCI/DIEA or HOBt/DIC pairs. When PyBOP/DIEA (or 
HATU/DIEA) (Scheme 2a) was used, the deprotonation of 
the carboxylic acid (2) by DIEA occurred quickly. The rate-
determining step is the next when the carboxylate anion as 
a nucleophile attacks on the electrophilic center, namely on 
the P atom of the phosphonium moiety of PyBOP (or at the 
C atom of the amidinium moiety of HATU).

However, using HOBt/DIC (or HOBt/EDCI), a weaker 
base (DIC or EDCI) deprotonates the carboxylic acid (1). 
This ion-pair formation is likely slow enough to become the 
rate-determining reaction step (Scheme 2b).

Thus, the active ester formation was found to be faster 
with PyBOP/DIEA and HATU/DIEA (Table  1) com-
pared to HOBt/EDCI/DIEA and HOBt/DIC, in line with 
their mechanism explained above. Both for the furanoid 
Fmoc–RibAFU(ip)–OH (1) and for the pyranoid prototype, 
Fmoc–GlcAPU(Me)–OH (2), active ester formation with 
PyBOP is fast: tf = ~ 20 min and tf = ~ 10 min, respectively. 
On the contrary, the reaction with HATU is considerably 
slower (tf = ~ 240 min); therefore, in that case, pre-activation 
is necessary to avoid racemization during the coupling (3 h).

Due to their differing electronic structure, nucleophile 
attacks may occur differently at P and C centers: the P atom 
can form a trigonal bipyramid structure, clearly more favora-
ble for a nucleophile attack (Fig. 3), than that of C atom.

In conclusion, the use of PyBOP/DIEA pair provides 
the most promising conditions—the active esters are (i) 
formed quickly, (ii) products are stable for hours—to reli-
ably form amide bonds between α- and β-, β- and β-, and 
β- and α-amino acid residues both in solution and on a solid 
support.

Synthesis of model peptides on solid phase

We probed partners of different complexity to form amide 
bonds. On one hand, using the highly mobile Gly as the re- 
presentative of α-amino acids, for which no steric hindrance 
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Fig. 2   Characteristic 1H-NMR resonance frequency changes (T = 25 °C) during the active ester formation used to monitor and decipher kinetics: 
a Fmoc–RibAFU(ip)–OH (1) with PyBOP/DIEA, b Fmoc–GlcAPU(Me)–OH (2) with HOBt/DIC
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has to be taken into account as Gly has none and no race-
mization of the α-amino acid partner has to be considered 
as it is achiral. On the other hand, the bulky and cyclic 
H–β-SAA–OH residues which have several chiral C atoms, 
with –OHs differently protected by large protecting groups, 
indicating considerable steric hindrance. Using SPPS and 
Fmoc chemistry, the synthesis of two –GXXG– tetrapep-
tides was completed, and thus, all three amide bond types 
probed, namely, the α–β, β–β, and β–α. Coupling conditions 
for both 1 and 2 (–RibAFU(ip)– and –GlcAPU(Me)–) were 

probed, and –GX–, –XX–, and –XG– amide bond forma-
tions were carefully monitored and competed (Tables 2, 3). 
Fmoc–β-SAA–OH 1 and 2 were synthesized according to 
our recently improved, multigram scale, environmentally 
friendly protocol (Scheme 3), starting from d-glucose and 
methyl α-d-glucopyranoside (Nagy et al. 2017; Goldschmidt 
Gőz et al. 2018).  

For difficult sequences, a low capacity resin 
(< 0.5  mmol/g) is recommended to be used. There-
fore, RAM-Tentagel® resin (0.24  mmol/g) for the 

Table 1   Time needed and conversion of the active ester formation and hydrolysis based on 1H-NMR data recorded in [D7]DMF (T = 25 °C)

Recorded at 250 or 700 MHz, equimolar reagents were used (Fmoc–β-SAA–OH:reagent1:reagent2 or base) = 1:1:1 or 1:1:2 reaction conducted 
in an 5 mm NMR tube, and it was “shaken but not stirred”

Cyclic β-sugar amino acids

Coupling reagents Furanoid ring: Fmoc–RibAFU(ip)–OH (1) Pyranoid ring: Fmoc–GlcAPU(Me)–OH (2)

Ester formation Ester hydrolysis Ester formation Ester hydrolysis

tf (min) Conversion (%) th (min) Conversion (%) tf (min) Conversion (%) th (min) Conversion (%)

HATU/DIEA 20 100 ∞ 0 240 > 99 ∞ 0
HOBt/EDCI/DIEA 960 100 ∞ 0 20 20 180 100
PyBOP/DIEA 20 100 ∞ 0 10 100 360 100
HOBt/DIC 60 50 1440 100 120 100 ∞ 0

Scheme 2   Differences between the rate-determining steps, highlighted by green frames, for the two types of coupling agents: a PyBOP/DIEA; b 
HOBt/DIC

Fig. 3   Possibility of nucleo-
philic attacks at P- and 
C-reaction centers: unlike the 
C atom, the P atom can form 
a trigonal bipyramid structure, 
which favors the nucleophilic 
attack
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Fmoc–GlcAPU(Me)–OH (2) and 2-chlorotrityl chloride 
(2-Cl–Trt–Cl) resin (an 1.6 mmol/g original capacity resin 
was tuned down to 0.25–0.36 mmol/g with the first amino 
acid coupled to it) for the Fmoc–RibAFU(ip)–OH (1) was 
used. Coupling efficacy of the resin was completed by 
measuring its Fmoc capacity. The first glycine moiety was 
linked to the resin in the usual manner via Fmoc–Gly–OH 
(Scheme 4), followed by the subsequent removal of Fmoc-
protecting group (see “Experimental section”). Coupling 
time need of our Fmoc–β-SAA–OHs (1 and 2) was opti-
mized by 1H-NMR as described above (Table 1). Coupling 
of both 1 and 2 was achieved to the free N-terminus of the 
first Gly by using all four different coupling reagent pairs, 
namely: HATU/DIEA, PyBOP/DIEA, HOBt/DIC and HOBt/
EDCI/DIEA in DMF. Both the XX and the closing XG cou-
plings were executed with the above four reagent types fol-
lowed by the removal of the Fmoc protection (Tables 2, 3). 
Identification of both –GXXG– tetrapeptides, 6 and 7, was 
done by ESI–MS ([M+H]+ = 503 and [M+H]+ = 870 (see in 
Supporting Information) once cleaved from the resins. Pep-
tide 6 was cleaved with the mild AcOH:MeOH:DCM 1:1:8 
cocktail to preserve the otherwise acid-labile isopropylidene 
O-protecting group of 1, while 7 with the milder 50% TFA 
(instead of the standard 95% TFA) to avoid the removal of 
O-benzyl protecting groups.

The efficacy of all four probed coupling reagent pairs was 
jointly evaluated (Tables 2, 3), and we found that coupling 
with HOBt/EDCI/DIEA is insufficiently moderate: 32% and 
58% for the two SAAs, respectively. Despite of the longer 
reaction time needed (18 h coupling time) due to the slow 
active ester formation, we concluded that HOBt/EDCI/DIEA 
is unsuitable for producing chimera peptides with cyclic 
H–β-SAA–OHs on a solid support, in spite of the fact that it 
was successfully used for coupling of H–XylAFU(ip)–OH in 
solution (Chandrasekhar et al. 2004). Similarly to our previ-
ous results (Csordás et al. 2016) for HATU/DIEA reagent 
pair, we also achieved low efficacy: 34% and 46%, respec-
tively. In addition, the use of HATU is problematic from yet 
another aspect: its coupling times might be too long to avoid 
racemization (< 3 h).

We found HOBt/DIC for  coupl ing Fmoc– 
GlcAPU(Me)–OH (2) effective (92%), especially to form the 
GX amide bond (Table 3). However, the detailed compre-
hensive analysis revealed that, for both Fmoc–β-SAA–OHs, 
PyBOP/DIEA is the method of choice! We found that if 
conditions are optimized, each amide coupling can be as 
high as 80–100% and that the overall coupling efficacy for 
the –GXXG– tetrapeptides reaches 78% and 76% (Tables 2 
and 3). In general, using PyBOP/DIEA, (i) high coupling 
efficacy is achieved for all the types of couplings (–GX–, 

Table 2   Coupling conditions 
and efficacy when using 
Fmoc–RibAFU(ip)–OH (1) for 
the synthesis of the model –
GXXG– tetrapeptide

a The capacity was determined based on Fmoc capacity measurements
b This efficacy was determined after double coupling

SPPS with Fmoc–RibAFU(ip)–OH HOBt/EDCI/
DIEA

HATU/DIEA PyBOP/DIEA HOBt/DIC

Cl–Trt resin
 Coupling with Fmoc–Gly–OH
 Resin capacity (mmol/g)a 0.25 0.35 0.35 0.36
 Coupling time (h) 1 1 1 1

H–G–Trt resin
 Coupling with Fmoc–RibAFU(ip)–OH
 Residual capacity (mmol/g) 0.088 0.20 0.28 0.24
 Efficacy of coupling (%) 35 57b 80 67
 Coupling time (h) 18 2 × 3 3 3

H–XG–Trt resin
 Coupling with Fmoc–RibAFU(ip)–OH
 Residual capacity (mmol/g) 0.079 0.12 0.27 0.22
 Efficacy of coupling (%) 90 60 98 90
 Coupling time (h) 18 3 3 3

H–XXG–Trt resin
 Coupling with Fmoc–Gly–OH
 Residual capacity (mmol/g) 0.079 0.12 0.27 0.22
 Efficacy of coupling (%) > 99 > 99 > 99 > 99
 Coupling time (h) 3 3 3 3

Fmoc–GXXG–Trt resin
 Overall efficacy (%) 32 34 78 60
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–XX–, and –XG–), (ii) reaction can be terminated within 3 h 
or less so racemization does not have to be feared (Alberi-
cio and Carpino 1997; Frérot et al. 1991). In conclusion, 
both for the furanoid (1) and pyranoid (2) Fmoc–β-SSA–OH 
prototypes, the application of PyBOP/DIEA is strongly sup-
ported. Moreover, with the PyBOP/DIEA-mediated effective 
coupling, it was possible to reduce the excess of the costly 
Fmoc–β-SSA–OHs from the previously proposed 3 to 1.5 
molar equivalent (Mándity et  al. 2014) making peptide 

synthesis even more cost-effective, nevertheless robust and 
efficient.

Conclusions

Solid phase peptide synthesis conditions were optimized 
to effectively couple Fmoc–β-SAA–OHs (X = 1 and 2), 
prototypes of different ring size sugar amino acids, to 

Table 3   Coupling conditions 
and efficacy when using 
Fmoc–GlcAPU(Me)–OH (2) 
for the synthesis of the model 
–GXXG– tetrapeptide

a The capacity was determined based on Fmoc capacity measurements
b This efficacy was determined after double coupling
c Coupling pre-activated for 5 h

SPPS with Fmoc–GlcAPU(Me)–OH HOBt/EDCI/
DIEA

HATU/DIEA PyBOP/DIEA HOBt/DIC

RAM–Tentagel resin
 Coupling with Fmoc–Gly–OH
 Resin capacity (mmol/g)a 0.19 0.19 0.24 0.24
 Coupling time (h) 1 1 1 1

H–G–resin
 Coupling with Fmoc–GlcAPU(Me)–OH
 Residual capacity (mmol/g) 0.15 0.10 0.21 0.23
 Efficacy of coupling (%) 79 55b 84 92
 Coupling time (h) 18 2 × 3c 3 3

H–XG–resin
 Coupling with Fmoc–GlcAPU(Me)–OH
 Residual capacity (mmol/g) 0.11 0.08 0.21 0.19
 Efficacy of coupling (%) 73b 83 > 99 83
 Coupling time (h) 2 × 18 3c 3 3

H–XXG–resin
 Coupling with Fmoc–Gly–OH
 Residual capacity (mmol/g) 0.11 0.08 0.19 0.17
 Efficacy of coupling (%) > 99 > 99 91 92
 Coupling time (h) 3 3 3 3

Fmoc–GXXG–resin
 Overall efficacy (%) 58 46 76 70

Scheme 3   “Bird’s eye view” 
of the total synthesis of the 
furanoid (Fmoc–RibAFU(ip)–
OH (1)) and pyranoid (Fmoc–
GlcAPU(Me)–OH (2)) β-Sugar 
Amino Acid derivatives, the 
total synthesis of which fine-
tuned recently
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produce chimera peptides. We found that the key step of 
success is the active ester formation. Therefore, we have 
focused both on reactivity and active ester stability by prob-
ing a furanoid (Fmoc–RibAFU(ip)–OH, 1) and a pyranoid 
(Fmoc–GlcAPU(Me)–OH, 2) β-amino acid derivative using 
the most common reagents, namely, HOBt/EDCI/DIEA, 
HATU/DIEA, PyBOP/DIEA and HOBt/DIC. Using time-
resolved 1H-NMR measurements for deciphering the opti-
mum conditions for –GX–, –XX–, and –XG– amide bond 
formations, and the difficult couplings of the –GXXG– α/β-
model peptides were successfully achieved with SPPS. We 

found the PyBOP/DIEA reagent pair to be the best among 
the probed coupling reagents, providing 80 to 100% co- 
upling efficacy and an overall > 76% yield for both β-SAA 
containing tetrapeptides. Efficacy of the most hindered and 
thus most problematic –XX– bond formation with PyBOP/
DIEA can be as high as 91 or even 99%.

The present comprehensive analysis has revealed that 
PyBOP may be the best choice to successful coupling H–β-
SAA–OHs, providing now the possibility of making various 
β/β-homo- and α/β-heterooligomers for spectroscopic and 
pharmaceutical purposes.

Experimental section

Analytical data for all compounds (HPLC chromatograms, 
1H NMR and MS spectra); 1H NMR spectra and figures of 
active ester formation of all coupling agents can be found in 
Supporting Information, in the online version.

Reagents and instrumentations

Reagents, materials and solvents were obtained from Alfa 
Aesar, Sigma-Aldrich, Merck, Reanal, or VWR. For mois-
ture-sensitive reactions, the solvents were distilled with the 
standard procedures or dried on molecular sieves (3 Ǻ). 
Products were analyzed by reverse-phase HPLC on a Phe-
nomenex Jupiter C-18 column using the water/acetonitrile 
mixtures of 0.1% TFA in water (A) and 0.08% TFA, and 95% 
acetonitrile in water (B), and UV detection completed at 220 
and 280 nm. Products were identified with Bruker Esquire 
3000+ tandem quadrupole mass spectrometer equipped with 
an electrospray ion source.

NMR measurements

1H-NMR experiments were performed at 298–300 K on 
Bruker Avance DRX 250  MHz spectrometer equipped 
with 5-mm SB dual probe with z-gradient, operating at 
250.13 MHz for 1H and/or Bruker Avance III 700 MHz 
spectrometer operating at 700.17 MHz for 1H equipped with 
5-mm z-gradient probe head. Spectra were recorded in [D7]
DMF using the solvent residual peaks as the 1H internal re- 
ference: 2.75, 2.93, and 8.03 ppm. The sample concentra-
tions ranged from 10 to 20 mM. Spectra evaluation was com-
pleted within the TopSpin 3.5 software.

Peptide synthesis

For the SPPS using Fmoc–RibAFU(ip)–OH (1) 2-Cl–Trt–Cl 
resin, while for that with Fmoc–GlcAPU(Me)–OH (2) 
RAM-Tentagel® resin was used. Resins were swollen in 
DCM. For the RAM-Tentagel® resin, the first step was 

Scheme  4   Solid-phase synthesis of the –GXXG– α/β-chimera pep-
tides probed with four different coupling conditions. Reagents and 
conditions: a 1. HATU/DIEA, 2. piperidine (2%), DBU (2%), DMF; 
b 1. EDCI/HOBt/DIEA, 2. piperidine (2%), DBU (2%), DMF; c 1. 
DIC/HOBt, 2. piperidine (2%), DBU (2%), DMF; d 1. PyBOP/DIEA, 
2. piperidine (2%), DBU (2%), DMF; e DCM:MeOH:AcOH (8:1:1); f 
TFA (50%), DCM (45%), H2O (2.5%), and TIS (2.5%)
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the removal of the Fmoc group with common method (2% 
piperidine and 2% DBU in DMF, 3 + 17 min). The success-
ful cleavage was analyzed by the Kaiser test. Coupling of 
the Fmoc–Gly–OH to the 2-Cl–Trt–Cl resin was accom-
plished using Fmoc–Gly–OH (1.5 eqv. to the nominal 
capacity of the resin ~ 1.6 mmol/g) dissolved in DMF and 
DIEA (3.75 eqv.) was added to the solution, reaction lasted 
for 1 h. Coupling of the Fmoc–Gly–OH to RAM-Tentagel® 
resin was made using Fmoc–Gly–OH (3 eqv. to the nomi-
nal capacity of the resin ~ 0.24 mmol/g) dissolved in DMF, 
HOBt (3 eqv.) and DIC (3 eqv.) was added to the solution, 
reaction lasted for 1 h. After coupling, the resins were 
washed with 3× DMF, 3× DCM, 3× MeOH and 1× diethyl 
ether and dried in vacuo. The capacity of the resin was 
determined by spectrometric measurement of the amount 
of Fmoc chromophore (Fmoc-piperidine adduct) released 
upon treatment of the resin with 20% piperidine in DMF 
(Chan and White 2000). The Fmoc group was removed 
by 2% piperidine and 2% DBU in DMF. The successful 
cleavage was analyzed by the Kaiser test.

The model peptides were synthesized by Fmoc che- 
mistry using HOBt/DIC, HATU/DIEA, PyBOP/DIEA, or 
HOBt/EDCI/DIEA reagent pairs with repeated coupling if 
specified (Tables 2, 3). Capacity of the resins was deter-
mined by the above described method. The Fmoc group 
was removed by 2% piperidine and 2% DBU in DMF, 
but, in the case of Fmoc–GlcAPU(Me)–OH (2) instead of 
3 + 17 min, cleavage time 10 + 40 min was used.

The final cleavage from 2-Cl–Trt–Cl resin was car-
ried out with the AcOH–MeOH–DCM 1:1:8 mixture 
(5–10 mL/g resin) for 3 h. Resin was washed with 3× 
DCM, 3× iPrOH and 1× diethyl ether. The solvent was 
removed in vacuo. The final cleavage from RAM-Ten- 
tagel® resin was carried out with 50% TFA, 45% DCM, 
2.5% TIS, and 2.5% H2O mixture (5–10 mL/g resin) for 
3 h. Resin was washed with 2× DMF, 3× DCM and 2× 
MeOH and solvent was removed in vacuo. The crude pro- 
ducts were precipitated with diethyl ether.

Compound 6: HPLC: 4.5 min, ESI–MS: m/z calculated 
for C20H30N4O11 [M+H]+ 503.2, found: 503.1.

Compound 7: HPLC: 19.4 min, ESI–MS: m/z calculated 
for C46H55N5O12 [M+H]+ 870.3, found: 870.6.

Acknowledgements  Open access funding provided by Eötvös Loránd 
University (ELTE). The authors wish to thank Dóra K. Menyhárd and 
Ernő Keszei for consulting, Anita Kapros for the MS measurements, 
and András Láng and Dániel Horváth for helping 700 MHz NMR 
measurements. These research projects were supported by the Euro-
pean Union and the State of Hungary and co-financed by the European 
Regional Development Fund (VEKOP-2.3.2-16-2017-00014). This 
paper was supported by the János Bolyai Research Scholarship of the 
Hungarian Academy of Sciences (V. Farkas) and MedInProt Grant 
Facilitating Access to Instruments from the Hungarian Academy of 
Sciences.

Compliance with ethical standards 

Conflict of interest  The authors declare that they have no conflict of 
interest.

Research involving human participants and/or animals  This article 
does not contain any studies with human participants or animals per-
formed by any of the authors.

OpenAccess  This article is distributed under the terms of the Crea-
tive Commons Attribution 4.0 International License (http://creat​iveco​
mmons​.org/licen​ses/by/4.0/), which permits unrestricted use, distribu-
tion, and reproduction in any medium, provided you give appropriate 
credit to the original author(s) and the source, provide a link to the 
Creative Commons license, and indicate if changes were made.

References

Albericio F, Carpino LA (1997) Coupling reagents and activation. 
Methods Enzymol 289:104–126

Andreini M, Taillefumier C, Chretien F, Thery V, Chapleur Y (2009) 
Synthesis and solution conformation of homo-β-peptides con-
sisting of N-mannofuranosyl-3-ulosonic acids. J Org Chem 
74:7651–7659

Beke T, Csizmadia IG, Perczel A (2004) On the flexibility of 
β-peptides. J Comput Chem 25:285–307

Cabrele C, Martinek TA, Reiser O, Berlicki L (2014) Peptides contain-
ing β-amino acid patterns: challenges and successes in medicinal 
chemistry. J Med Chem 57:9718–9739

Chakraborty TK, Jayaprakash S, Diwan PV, Nagaraj R, Jampani SRB, 
Kunwar AC (1998) Folded conformation in peptides containing 
furanoid sugar amino acids. J Am Chem Soc 120:12962–12963

Chan WC, White PD (2000) Fmoc solid phase peptide synthesis—a 
practical approach. Oxford University Press, Oxford

Chandrasekhar S, Reddy SM, Jagadeesh B, Prabhakar A, Ramana Rao 
MHV, Jagannadh B (2004) Formation of a stable 14-helix in short 
oligomers of furanoid cis-β-sugar-amino acid. J Am Chem Soc 
126:13586–13587

Coste J, Le-Nguyen D, Castro B (1990) PyBOP®: a new peptide 
coupling reagent devoid of toxic by-product. Tetrahedron Lett 
31:205–208

Csordás B, Nagy A, Harmat V, Zsoldos-Mády V, Leveles I, Pintér 
I, Farkas V, Perczel A (2016) Origin of problems related to 
Staudinger reduction in carbopeptoid syntheses. Amino Acids 
48:2619–2633

Feher-Voelger A, Borges-González J, Carillo R, Morales EQ, 
González-Platas J, Martín T (2014) Synthesis and conformational 
analysis of cyclic homooligomersfrom pyranoid e-sugar amino 
acids. Chem Eur J 20:4007–4022

Frérot E, Coste J, Pantaloni A, Dufour MN, Jouin P (1991) PyBOP® 
and PyBroP: two reagents for the difficult coupling of the α,α-
dialkyl amino acid. Aib. Tetrahedron 47(2):259–270

Giri AG, Jogdand GF, Rajamohanan PR, Pandey SK, Ramana CV 
(2012) Synthesis and structural characterization of homochi-
ral homo-oligomers of cis-γ-methoxy-substituted cis- and trans 
Furanoid-β-Amino acids. Eur J Org Chem 13:2656–2663

Giuliano MW, Maynard SJ, Almeida AM, Reidenbach AG, Guo L, 
Ulrich EC, Guzei IA, Gellman SH (2013) Evaluation of a cyclo-
pentane-based γ-amino acid for the ability to promote α/γ peptide 
secondary structure. J Org Chem 78:12351–12361

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


678	 A. Nagy et al.

1 3

Goldschmidt Gőz V, Pintér I, Harmat V, Perczel A (2018) Approaches 
to pyranuronic β-sugar amino acid building blocks of peptidosac-
charide foldamer. Eur J Org Chem 3:355–361

Gorrea E, Pohl G, Nolis P, Celis S, Burusco KK, Branchadell V, Perc-
zel A, Ortuno RM (2012) Secondary structure of short β-peptides 
as the chiral expression of monomeric building units: a rational 
and predictive model. J Org Chem 77(21):9795–9806

Gruner SAW, Truffault V, Voll G, Locardi E, Stöckle M, Kessler H 
(2002) Design, synthesis, and NMR structure of linear and cyclic 
oligomers containing novel furanoid sugar amino acids. Chem 
Eur J 8:4365–4376

Guichard G, Huc I (2011) Synthetic foldamers. Chem Commun 
47:5933–5941

Herradón B, Seebach D (1989) Mono- and dialkylation of derivatives 
of (1R,2S)-2-hydroxycyclopentanecarboxylic acid and -cyclohex-
anecarboxylic acid via bicyclic dioxanones: selective generation 
of three contiguous stereogenic centers on a cyclohexane ring. 
Helv Chim Acta 72:690–714

Horne WS, Gellman SH (2008) Foldamers with heterogeneous back-
bones. Acc Chem Res 41:1399–1408

Kessler H, Diefenbach B, Finsinger D, Geyer A, Gurrath M, Goodman 
SL, Hölzemann G, Haubner R, Jonczyk A, Müller G, Graf von 
Roedern E, Wermuth J (1995) Design of superactive and selective 
integrin receptor antagonists containing the RGD sequence. Lett 
Pept Sci 2:155–160

Kiss L, Fülöp F (2014) Synthesis of carbocyclic and heterocyclic 
β-aminocarboxylic acids. Chem Rev 114:1116–1169

Kiss L, Mándity IM, Fülöp F (2017) Highly functionalized cyclic 
β-amino acid moieties as promising scaffolds in peptide research 
and drug design. Amino Acids 49:1441–1455

Long DD, Hungerford NL, Smith MD, Brittain DEA, Marquess DG, 
Claridge TDW, Fleet GWJ (1999) From sequencamers to fol-
damers? Tetrameric furanose carbopeptoids from cis- and trans 
5-aminomethyl-tetrahydrofuran-2-carboxylates. Tetrahedron Lett 
40:2195–2198

Mándity IM, Fülöp F (2015) An overview of peptide and peptoid 
foldamers in medicinal chemistry. Expert Opin Drug Discov 
10(11):1163–1177

Mándity IM, Olasz B, Ötvös SB, Fülöp F (2014) Continuous-flow 
solid-phase peptide synthesis: a revolutionary reduction of the 
amino acid excess. Chem Sus Chem 7(11):3172–3176

Montalbetti CAGN, Falque V (2005) Amide bond formation and pep-
tide coupling. Tetrahedron 61:10827–10852

Nagy A, Csordás B, Zsoldos-Mády V, Pintér I, Farkas V, Perczel A 
(2017) C-3 epimers of sugar amino acids as foldameric building 
blocks: improved synthesis, useful derivatives, coupling strate-
gies. Amino Acids 49:223–240

Pandey SK, Jogdand GF, Oliveira JCA, Mata RA, Rajamohanan PR, 
Ramana CV (2011) Synthesis and structural characterization of 
homochiral homo-oligomers of parent cis- and trans-Furanoid-
βamino acids. Chem Eur J 17:12946–12954

Pilsl LKA, Reiser O (2011) α/β-Peptide foldamers: state of the art. 
Amino Acids 41:709–718

Pohl G, Gorrea E, Branchadell V, Ortuńo RM, Perczel A, Tarczay 
Gy (2013) Foldamers of β-peptides: conformational preference 
of peptides formed by rigid building blocks the first MI-IR spectra 
of a triamide nanosystem. Amino Acids 45(4):957–973

Risseeuw MDP, Overhand M, Fleet GWJ, Simone MI (2013) A com-
pendium of cyclic sugar amino acids and their carbocyclic and 
heterocyclic nitrogen analogues. Amino Acids 45:613–689

Sharma GVM, Nagendar P, Ramakrishna KVS, Chandramouli N, 
Choudhary M, Kunwar AC (2008) Three-residue turns in α/β-
peptides and their application in the design of tertiary structures. 
Chem Asian J 3:969–983

Sharma GVM, Reddy PS, Chatterjee D, Kunwar AC (2011) Synthesis 
and structural studies of homooligomers of geminally disubsti-
tuted β2,2-amino acids with carbohydrate side chain. J Org Chem 
76:1562–1571

Simone MI, Soengas R, Newton CR, Watkin DJ, Fleet GWJ (2005) 
Branched tetrahydrofuran α,α-disubstituted-δ-sugar amino acid 
scaffolds from branched sugar lactones: a new family of foldam-
ers? Tetrahedron Lett 46:5761–5765

Suhara Y, Yamaguchi Y, Collins B, Schnaar RL, Yanagishita M, Hil-
dreth JEK, Shimada I, Ichikawa Y (2002) Oligomers of glycamino 
acid. Bioorg Med Chem 10:1999–2013

Torres E, Gorrea E, Da Silva E, Nolis P, Branchadell V, Ortuño RM 
(2009) Prevalence of eight-membered hydrogen-bonded rings in 
some bis(cyclobutane) beta-dipeptides including residues with 
trans stereochemistry. Org Lett 11(11):2301–2304

Torres E, Gorrea E, Burusco KK, Da Silva E, Nolis P, Rúa F, Boussert 
S, Díez-Pérez I, Dannenberg S, Izquierdo S, Giralt E, Jaime C, 
Branchadell V, Ortuño RM (2010) Folding and self-assembling 
with beta-oligomers based on (1R,2S)-2-aminocyclobutane-1-car-
boxylic acid. Org Biomol Chem 8(3):564–575

Valeur E, Bradley M (2009) Amide bond formation: beyond the myth 
of coupling reagents. Chem Soc Rev 38:606–631

von Roedern EG, Kessler H (1994) A sugar amino acids as a novel 
peptidomimetic. Angew Chem Int Ed 33:687–689

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.


	αβ-Chimera peptide synthesis with cyclic β-sugar amino acids: the efficient coupling protocol
	Abstract
	Introduction
	Results and discussion
	Formation and stability of β-sugar amino acid active esters
	Synthesis of model peptides on solid phase

	Conclusions
	Experimental section
	Reagents and instrumentations
	NMR measurements
	Peptide synthesis

	Acknowledgements 
	References




