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Abstract Mass spectrometry-based proteomics has

evolved as a high-throughput research field over the past

decade. Significant advances in instrumentation, and the

ability to produce huge volumes of data, have emphasized

the need for adequate data analysis tools, which are now-

adays often considered the main bottleneck for proteomics

development. This review highlights important issues that

directly impact the effectiveness of proteomic quantitation

and educates software developers and end-users on

available computational solutions to correct for the

occurrence of these factors. Potential sources of errors

specific for stable isotope-based methods or label-free

approaches are explicitly outlined. The overall aim focuses

on a generic proteomic workflow.
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Introduction

Until the last decade, proteomics was essentially a

descriptive discipline, but the fast development of mass

spectrometry-based proteomic technologies, and the

accessibility of powerful data analysis tools, has increas-

ingly boosted the transition of proteomic analysis from

qualitative to quantitative (Ong and Mann 2005), with a

strong impact on biological interpretation of protein func-

tions (Cox and Mann 2011).

Several strategies for protein quantitation are possible,

including gel-based and mass spectrometry-based methods.

Gel-based quantitation methods rely on relative abun-

dance measurement of gel bands (in 1D SDS-PAGE gels)

or gel spots (in 2D gels) across the samples being com-

pared (Weiss and Görg 2009). This technology is able to

separate more than 10,000 spots on a single electrophoretic

run, but suffers from poor gel reproducibility and frequent

co-migration of multiple proteins under individual spots.

An important advance in gel-based quantitation occurred

when the DIGE technology (Unlü et al. 1997) allowed

the use of fluorescent dyes to label and separate differ-

ent protein samples on the same gel, thus effectively

solving the reproducibility issue. Furthermore, the protein
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co-migration issue is currently addressed by spot excision

and further quantitative analysis by mass spectrometry.

Mass spectrometry (MS)-based quantitation methods

rely on the linearity of MS ion signal versus molecular

concentration (Purves et al. 1998), initially confirmed for

protein abundances by Chelius and Bondarenko (2002).

Due to better sensitivity of current MS platforms for low

molecular weight molecules, these methods have actually

evolved in a somewhat counterintuitive peptide-centric

way, based on the assumption that proteins in the original

sample can be identified and quantified by means of MS-

mediated identification and quantification of their constit-

uent proteolytic peptides (Duncan et al. 2010). This reverse

engineering approach is often referred to as shotgun or

bottom-up proteomics, to distinguish it from the more

intuitive measurement of intact proteins, known as top-

down proteomics (Collier et al. 2008; Kellie et al. 2010;

Waanders et al. 2007).

The main methods devised in recent years for MS-based

protein quantitation have already been extensively

reviewed (Bantscheff et al. 2007; Becker and Bern 2011;

Ong and Mann 2005; Schulze and Usadel 2010; Yan and

Chen 2005) along with their advantages and disadvantages

(Elliott et al. 2009; Mann 2009) and within specific

applications and contexts (Cox and Mann 2011; Macek

et al. 2009; Simpson et al. 2009; Timms and Cutillas 2010).

Broadly speaking, they can be classified as stable-isotope-

labeling (Julka and Regnier 2004; Leitner and Lindner

2004), based on introducing a mass tag into proteins or

peptides, either metabolically, enzymatically or by chem-

ical means; and label-free approaches (America and

Cordewener 2008; Lundgren et al. 2010; Neilson et al.

2011; Podwojski et al. 2010; Zhu et al. 2010), which cor-

relate the ion current signal of intact proteolytic peptides or

the number of peptide spectral match counts directly with

the absolute protein quantity. Reproducibility (Kim et al.

2007) and comparison (Hendrickson et al. 2006) of the

various relative quantification strategies have also been

widely assessed.

A clear message emerging from recent proteomics lit-

erature is the necessity for robust software tools for data

processing, whose development is lagging behind the

substantial advances in instrumentation and methodologies.

Current software packages for performing quantitative

proteomics have been recently reviewed (Codrea et al.

2007; Jacob 2010; Matthiesen 2007; Mueller et al. 2008),

and effective metrics for software comparison have been

proposed for both labeled (Colaert et al. 2011) and label-

free (Sandin et al. 2011) approaches.

Building on this extensive literature, this review gives

an overview of the critical factors contributing to incorrect

measurements and further elaborates on available strategies

to detect quantification errors and possibly correct them.

The remainder of this section will summarize the main

aspects of labeled and label-free approaches. The following

section will then summarize a checklist of ten current

challenges to consider when evaluating software solutions

for quantitative proteomics. The description will follow a

typical quantitative proteomics workflow, starting from

pre-processing and feature detection, moving to peptide

identification and quantification, then continuing with

protein inference and quantification and concluding with a

section on post-analysis statistical methods. Although the

major part of the discussion focuses on stable isotope-based

quantification, distinctions and caveats for label-free

approaches will be explicitly raised when necessary.

Generic LC–MS quantitative proteomics workflow

In a typical proteomics experiment (Aebersold and Mann

2003), proteins are digested to peptides by a site-specific

enzymatic protease, such as trypsin. The resulting peptides

are then separated by liquid chromatography (LC), con-

verted to gas phase ions and analyzed by MS. The mass

spectrometer scans the whole mass range and produces

high-resolution MS spectra (a mass resolution of 60,000

full width at half maximum, FWHM, is routine on current

instruments).

The acquisition software then automatically selects a

preset number of peptides for fragmentation and for further

analysis by so-called tandem mass spectrometry (MS/MS).

Current instruments allow the acquisition of one MS survey

scan every few seconds, each followed by tens of data-

dependent MS/MS spectra after each MS spectrum. The

resulting MS/MS spectra are finally compared either to

theoretical fragmentation spectra generated from a protein

sequence database or to spectral libraries, in order to

retrieve the corresponding peptide sequences (Steen and

Mann 2004). Current computational tools allow the

unambiguous identification of more than half of all tandem

mass spectra (Cox and Mann 2008), typically verified by

stringent community requirements (Bradshaw et al. 2006)

and robust techniques for determining false positives (Elias

and Gygi 2007).

All signals produced by the mass spectrometer and

available for further processing are sketched in Fig. 1,

which will be used as a reference throughout this paper.

Consecutive protein identification is inferred from pep-

tide data. One or two protein-specific peptides are typically

enough to confirm the presence of a protein within the

sample, but higher sequence coverage is required to distin-

guish isoforms and post-translational modifications (PTMs).

Most biological studies increasingly require further

quantitative inputs. It is worth noting that in proteomics the

term ‘quantification’ is used quite loosely, as most
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biological questions actually imply only relative compari-

son of protein amounts in different samples or states, or in

response to experimental perturbations. Since mass spec-

trometry is not well suited for measuring absolute amounts,

absolute quantification, if needed, is usually determined by

comparison to an internal isotope-free (Steen et al. 2005) or

isotope-labeled (Gerber et al. 2003) standard.

The two main approaches to make MS-based proteomics

quantitative, stable-isotope-labeling and label-free will be

summarized in the next two sections.

Stable isotope-based quantitative proteomics

The most popular approaches for relative quantification are

based on labeling proteins or peptides in at least one of the

compared samples with compounds enriched in stable

heavy isotopes of hydrogen, carbon, nitrogen or oxygen

(Heck and Krijgsveld 2004). These approaches exploit the

fact that labeled molecules behave almost identically dur-

ing chromatographic separation, ionization and in the mass

analyzers; yet, they can be easily distinguished from their

unlabeled counterparts thanks to the mass shift endowed by

the heavy isotopes (Fig. 1f).

Many different methods for quantitative proteomics

based on isotope labeling have been described, often

classified by the way the labels are introduced into peptides

or proteins. In metabolic labeling, the label is introduced to

the whole cell or organism in vivo, through the growth

medium, while in chemical labeling the label is added to

proteins or tryptic peptides through chemical derivatization

or enzymatic modification in vitro, after sample collection.

An important advantage of metabolic incorporation is that

the labels are present in the living cells. This means that the

samples from the different quantification states can be

combined directly after cell lysis, thus reducing sample

processing variability and allowing higher quantitative

accuracy. Conversely, the main advantage of chemical

labeling is its applicability to virtually any type of sample.

A popular metabolic labeling method is stable isotope

labeling by amino acids in cell culture (SILAC) (Ong and

Mann 2005). In SILAC, essential amino acids such as

arginine and lysine are provided in ‘light’ or ‘heavy’ forms

to the two cell populations and are incorporated into each

protein after a few cell doublings, leading to a well-defined

mass difference. A drawback of SILAC is that its appli-

cation is limited to amino acids auxotrophs, in order to

make sure that only labeled amino acids are incorporated
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Fig. 1 LC–MS signals. a The ion intensity map gives a bird-eye view

of the whole LC–MS experiment. Highlighted in green is a peptide

feature magnified in panel d. b Extracted ion chromatogram (XIC) of

the monoisotopic peak of the selected peptide ion. The signal shows

the ion intensity as a function of the elution time. The area under the

curve (AUC) represents the total signal of the monoisotopic peak.

c Mass spectrum of the selected peptide ion at maximum chromato-

graphic intensity. The m/z difference of 0.5 Th between contiguous

isotopic peaks allows deriving a charge state of 2. The arrow indicates

the monoisotopic peak. d Ion intensity map of the peptide ion of

interest. The green cross indicates the precursor ion selected for

fragmentation. e Tandem mass spectrum of the monoisotopic peak of

the selected peptide ion, highlighted by a green cross in panel d. The

mass difference between selected peaks allows deriving the amino

acids sequence. f For stable isotope-based quantification peptides

from two different samples are detected in the same LC–MS run at a

characteristic mass difference. g For label-free quantification corre-

sponding peptides from two different samples are detected at the same

mass and similar retention time in two different LC–MS runs

Ten software challenges in quantitative proteomics 1089

123



into proteins. An established alternative technique, which

allows the complete labeling of virtually all amino acids in

expressed proteins of both prototrophs and auxotrophs, is
15N-labeling (Oda et al. 1999), through the metabolic

incorporation of inexpensive labeled ammonium salts. The

advantages of this technique come at the price of a more

difficult detection of the peptide pairs, because the mass

difference depends on the amino acid composition.

Chemical labeling makes use of externally introduced

isotopic or isobaric reagents. Examples of the first category

include dimethyl labeling (Boersema et al. 2009; Kovanich

et al. 2012) and isotope-coded affinity tag (ICAT) (Gygi

et al. 1999). Isobaric mass tagging, exemplified by isobaric

tag for relative and absolute quantitation (iTRAQ) (Ross

et al. 2004) and tandem mass tags (TMT), (Thompson et al.

2003), differs from the methods described above in that

labeled peptides have almost exactly the same mass and are

thus indistinguishable in the survey spectra. In this case, the

different mass tags separate only upon fragmentation and

quantitation relies on the intensity ratios of so-called

reporter ions in the fragment spectra. Note that tandem MS

identifications have been recently reported also in the

absence of detectable precursor signals (Panchaud et al.

2009), suggesting that isobaric methods may be more sen-

sitive than isotopic ones. The last approach for differential

quantification by chemical derivatization is enzymatic

labeling, exemplified by 16O/18O labeling (Mirgorodskaya

et al. 2000), where the mass tag is introduced in the peptide

chain by performing proteolytic digestion in the presence of

heavy water.

For a deeper assessment of the principles of isotope

labeling in proteomics the reader is referred to more com-

prehensive reviews (Heck and Krijgsveld 2004; Timms and

Cutillas 2010). For the purpose of this review we highlight

incomplete labeling, chromatographic shifts and isotopic

overlaps as the main issues related to stable-isotope labeling

that will be further discussed in this manuscript.

Label-free quantitative proteomics

Although protein relative quantification using labeling

strategies has been successfully used in many studies, these

techniques are strongly limited by the number of samples

that can be compared. Consequently, there is currently

considerable interest in the proteomics community for

quantitative MS methods that do not require isotope labels

and that rely on direct comparison of peptide signals across

different experiments (Fig. 1g). These so-called label-free

methods offer two main advantages that are particularly

suited for studies that require statistical analysis of tech-

nical and biological replicates, namely simpler sample

preparation and direct comparison of multiple samples.

In its simplest form, the number of peptide fragmenta-

tion events is taken as an estimate of the amount of protein

(Liu et al. 2004). This spectral counting technique has been

used to provide a semi-quantitative measure of protein

abundance (Ishihama et al. 2005; Lu et al. 2007; Old et al.

2005) but has been found to often give irreproducible data

(Griffin et al. 2010). Taking into account the intensities of

MS/MS spectra in addition to the number of such spectra

matched to proteins has been reported to increase the

accuracy of the measurement (Sardiu and Washburn 2010),

but this has not been confirmed by other groups. The

advent of high-resolution mass spectrometry has made it

easier to measure and compare the actual signals of peptide

ions in survey scans. In contrast to spectral counting tech-

niques, label-free methods based on the use of ion currents

were found to provide a level of accuracy comparable to

labeling approaches (Casado and Cutillas 2011; Chelius and

Bondarenko 2002; Cutillas and Vanhaesebroeck 2007).

Issues specific to label-free approaches based on ion cur-

rents will be explicitly highlighted below. The most com-

mon readouts are extracted ion chromatograms (XIC) of the

parent ion, although other readouts of peptide abundance

can be used, such as monitoring fragment ion intensities by

selected/multiple reaction monitoring (SRM/MRM, Lange

et al. 2008).

Software assessment checklist: 10 current challenges

The most important step of a proteomic workflow is

undoubtedly feature detection. Since it is difficult to find

agreement on the definition of LC–MS peaks and features,

in this article we will term a peptide feature as the whole

profile generated by the elution of a peptide in an LC–MS

map (Fig. 1d); and a peptide peak as each of the isotopic

components of a peptide feature, like the monoisotopic

peak pointed out in Fig. 1c.

The detection and quantification of a peptide feature

from a raw LC–MS map is a complex procedure that relies

on measurement of the mass, charge and abundance of its

peaks, detection of the monoisotopic peak, deisotoping and

deconvolution from contaminant peaks. For effective fea-

ture detection, it is good practice to first perform pre-pro-

cessing steps, such as data reduction, noise filtering,

background subtraction, mass calibration and retention

time alignment, in order to clean up the data. The potential

pre-processing requirements vary somewhat with the type

of instrument used and a full description is certainly

beyond the scope of this article. The most relevant steps for

our purposes will be covered in the next sections, while we

recommend recent reviews by Zhang et al. (2009) and

Matthiesen et al. (2011) for more details on this topic.
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Challenge 1: software usability

In order to become adopted by a large audience, software

tools need to be intuitive and easy to use. While writing

this manuscript, many of the available quantitation soft-

ware tools were evaluated to assess whether they tackled

the issues enumerated below. Strikingly, many putatively

good tools, including tools that addressed many issues

related to accurate quantification, were difficult to use.

Most of the time, this was due to lack of appropriate

documentation or to a poor graphical user interface.

From the end-user point of view, the most relevant issues

perceived when evaluating a new quantification tool are

mostly related to: (1) ease of installation. Is the tool at hand

easy to install, or does it require expert knowledge? For

example, can you use an installer, or does it require manual

compiling from the source code? (2) Presence of documen-

tation or tutorials, which help in perceiving the software as

‘easy to use’. (3) Presence of a graphical user interface. (4)

Presence of interactive feedback during data processing, to

allow for adjustments and ad hoc decision making. (5)

Presence of interactive feedback during the quantification

process to allow for manual validation of the quantification

results or visual assessment of what went wrong in case of no

results. (6) Presence of a mailing list, for update notifications,

discussion about problems and direct help from the software

developers. (7) Storage and sharing of user data and results.

From a bioinformatics developer perspective, relevant

caveats when designing a new software tool should include:

(1) flexibility, i.e., how well does the software follow current

standards and/or does it handle multiple vendor formats? (2)

Modularity, i.e., can the software be easily integrated into

existing pipelines or workflow management tools (e.g.,

Taverna.1) (3) Portability, i.e., can the software run on dif-

ferent hardware platforms? (4) Documentation. (5) Distribu-

tion terms: freeware, shareware or commercial? Open source

or closed source? Web based? (6) Scaling and parallel pro-

cessing, i.e., are multithreading, multiprocessing or grid-

based processing possible? (7) Batch processing, i.e., is it

possible to run large batches of files in a single instance and

without manual intervention? For a detailed review the reader

is referred to Codrea et al. (2007), where several LC–MS

processing tools are extensively evaluated based on their

software usability.

Challenge 2: data reduction

Several software packages allow storing and direct han-

dling of the acquired raw data files, intended as the

proprietary binary output provided by the instrument.

Protein Prospector (Chalkley et al. 2005), for instance, can

accommodate whole laboratory repositories (Lynn et al.

2005) and retrieves all relevant data required for quantifi-

cation directly from the original files. However, the raw

files are usually considered too big to be handled directly

by downstream analysis algorithms. Furthermore, con-

verting them to standard formats, like mzML (Deutsch

2008), only worsens the situation. For this reason, data

reduction is often one of the first steps in data processing,

so that only the necessary data are retained for further

analysis.

MS data reduction

Listgarten and Emili (2005) point out that a matrix repre-

senting the whole LC–MS map is all that is necessary for

further data processing. Each cell in the matrix represents the

ion abundance at a given combination of retention time (RT)

and mass-over-charge (m/z) ratios. Since digital signal pro-

cessing requires regular sampling, the matrix formation is

necessarily related to re-sampling or binning data in both

dimensions—in time, because MS spectra might not be taken

at regular intervals, and in mass, because most instruments

apply a nonlinear transformation to the acquired data to

determine the m/z values.

In general, data reduction is intended as reducing the raw

data to a more manageable set of peaks (Martens 2011). A

basic step toward size reduction can be obtained by cen-

troiding the MS spectra, a procedure by which a single peak

is retained to represent the center of the m/z ion distribution

measured by the instrument detector. A further reduction

can be obtained by reducing each peptide feature to a simple

triplet\m/z, RT, I[, representing the exact mass, retention

time and intensity of its monoisotopic peak. The set of all

triplets from an LC–MS map is all that is necessary to

perform data mining by established techniques drawn from

signal processing, statistics and machine learning. How-

ever, we strongly suggest postponing all data reduction

steps that go beyond mere signal processing until after

gathering more information from downstream analysis. In

fact, performing these advanced steps before disentangling

the peptide features from noise and contaminants, and

before aligning them and normalizing them, can negatively

affect quantification accuracy.

MS/MS data reduction

MS/MS spectra are usually acquired in centroid mode and

are thus much smaller in size than survey scans. MS/MS

data reduction methods, therefore, are not aimed at size

reduction, but rather at filtering spectra to increase the

efficiency and effectiveness of subsequent database or

1 http://www.taverna.org.uk/pages/wp-content/uploads/2011/06/Palm

blad_ASMS_2011_LUMC.pdf.
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library search algorithms. If the MS/MS spectra are going

to be used for isobaric quantification, it is also important

that any reduction method does not distort the reporter

ions. MS/MS data reduction strategies mainly focus on the

following areas: (1) Pre-processing to centroid peaks, filter

out noise, deconvolute multiply charged ions to the m/z of

the corresponding 1? charge state, and deal with isotope

clusters. (2) Detection and clustering of multiple redundant

spectra of the same peptide (Beer et al. 2004; Tabb et al.

2005). From the point of view of quantification, clustering

algorithms may be useful for the detection of weaker

peptides. (3) Detection of spectra of multiple co-eluting

peptides (Bern et al. 2010; Houel et al. 2010) which can

seriously harm identification and quantification. (4) Elim-

ination of low-quality spectra (Flikka et al. 2006; Junqueira

et al. 2008). (5) Reassignment of precursor charge and m/z

(Mayampurath et al. 2008; Shinkawa et al. 2009).

It should be noted that the increasing popularity of data-

dependent decision tree logics for regulated combination of

fragmentation techniques (Frese et al. 2011; Swaney et al.

2008) is triggering the development of customized pre-

processing algorithms. ETD spectra, for instance, require a

bespoke strategy because of hydrogen transfer and the

presence of neutral loss ions (Baker et al. 2010; Good et al.

2009). Similarly, HCD spectra require tailored steps for

deisotoping, deconvolution and even rescoring of the high

mass accuracy spectra (Savitski et al. 2010).

Challenge 3: feature detection

As shown in Fig. 1, a peptide feature is composed of

multiple peaks at different m/z locations, a phenomenon

known as isotope dispersion. Since proper quantification

relies on accurate feature detection, recognizing the isoto-

pic pattern and cleaning it up from all interferences are

paramount for abundance measurement and all subsequent

analyses.

Deisotoping (and abundance measurements)

Several methods have been proposed for measuring the

abundance of a peptide feature. The easiest quantity to be

measured is the summed area of all isotopic peaks in a

given scan (Fig. 1c), usually the survey scan or the scan

where the elution profile reaches its maximum intensity.

The single scan areas can also be averaged or summed over

the whole peptide elution time, the latter of which gives an

estimate of the feature volume (Cox and Mann 2008;

MacCoss et al. 2003). As using the whole isotope profile

makes the precursor peak more vulnerable to contamina-

tion from co-eluting isobaric compounds, many software

tools, such as XPRESS (Han et al. 2001) and MSQuant

(Mortensen et al. 2010), only calculate the abundance of

the monoisotopic peak, although this is known to reduce

the sensitivity at higher masses (e.g., the monoisotopic

peak is 5 % of the total abundance at 5,000 Da).

When measuring the areas of the peaks for quantifica-

tion, most tools only consider features in precursor mass

spectra near a fragmentation event. In this case the com-

position of the peptide will generally have been determined

by a database search and it is thus possible to calculate the

theoretical isotope distribution and compare it with the

experimentally measured one. A goodness of fit metric,

such as Pearson’s Chi-squared error between the theoretical

and experimental distributions could then be used to flag

potentially suspect measurements (Valkenborg et al. 2007).

Recent tools, such as MaxQuant (Cox and Mann 2008)

and PVIEW (Khan et al. 2009) adopt the opposite approach

and anticipate feature detection in parent mass spectra, to

use all available constraints for driving a database search.

In these cases, where the peptide sequence is unknown, the

averagine model can be used to estimate peptide isotopic

distributions, based on the assumption that the dependence

of mass is a good approximation to the dependence on

sequence (Senko et al. 1995). We are not aware of any

current tools that double-check the isotopic pattern after the

peptide assignment.

Isobaric interference from isotopic clusters

For the labeled pair shown in Fig. 1f, the two isotope

profiles are distinct. In this case the quantification ratio can

be easily calculated as the abundance ratio of the two

features over their total elution time. Although potentially

straightforward, this quantitative strategy can be hampered

by the overlap of isotopic clusters of light and heavy peaks,

which occurs whenever the mass shift between the peptide

pairs is smaller than their isotopic envelope. The phe-

nomenon is significantly apparent for heavier peptides,

which have a larger number of isotopic peaks and thus

usually show a trend toward an overestimation of the

heavier isotopologues (Fig. 2).

The general mathematical strategy to correct for the

overlap of isotopic clusters consists of subtracting the

contribution of the interfering isotopes of the light form of

a labeled pair from the peaks of the heavy form. Meija and

Caruso (2004) discuss three different methods for decon-

voluting isobaric interferences: one in the intensity domain

and two in the mass domain. Deconvolution in the intensity

domain reconstructs the observed isotope pattern by

superimposition of the isotope profiles of the overlapping

species and adjusts the quantitative information by a least

square optimization of the pattern intensities. This method

necessitates solving a series of simultaneous equations

using, for example, Cramer’s rule to obtain the component
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intensities from the measured ones. Because of the differ-

ent mass defects of the elements, the masses of the isotope

peaks of the lower mass component may not be exactly the

same as those of the higher mass component they overlap

with, resulting in a broadening of the signal in the mass

domain, especially evident at low resolutions (Fig. 3). If

the presence of isobaric interference is recognized, signal

deconvolution of the isotopic components in the mass

domain can be more appropriate. Signal peak shape anal-

ysis assumes that the measured signal is made up of the

sum of two or more peaks of known shape, often Gaussian

or Lorentzian. The parameters of the peak functions have a

direct relationship to the physical properties of the mea-

sured signal, such as resolution (peak width), mass (peak

position) and relative amount of the interfering species

(peak area). Curve fitting can be performed by nonlinear

least squares and minimized by the Levenberg–Marquardt

algorithm (Press et al. 1988). Mass shift analysis relies on

the fact that peak centroid masses are affected in the

presence of isobaric interferences. For instance, when the

peak width is larger than the mass difference of the unre-

solved isobars, the observed peak centroid mass will be

approximately the weighted average of the isobar masses.

Although isobaric inference affects most isotopic

labeling techniques, common quantification software still

largely disregards the issue. At this moment, only a few

correction tools have been proposed for isotopic decon-

volution and typically they address only one specific

isotopic labeling. IEMM (Dasari et al. 2009), for instance,

proposes a method to overcome overlapping in 18O label-

ing, where the isotopic peaks are shifted by 2 and 4 Da. Q3

(Faca et al. 2006) predicts the isotopic distribution for

acrylamide labeling, where the shift is a multiple of 3 Da,

depending on the number of cysteines present in the pep-

tides. More recently, we proposed a post-processing script

to resolve overlapping peaks occurring with a 4 Da shift

when dimethyl labeling is used (Cappadona et al. 2011).

The overlap of isotopic clusters also affects tandem MS-

based quantification, because the isotope distributions of

the lower mass reporter ions can overlap with those of the

higher mass ones. Shadforth et al. (2005) have described

i-Tracker, an effective implementation of intensity domain

deconvolution for 4-plex iTRAQ labeling.

Isobaric interference from co-eluting peptides

For survey scan-based quantitative methods, feature

detection can be affected by the presence of co-eluting

and nearly isobaric peptides, originating either from

sample proteins or from protein contaminants. In the first

case, the previously mentioned mass domain deconvolu-

tion may be used to obtain the intensities of the individual

components, assuming that all the co-eluting peptides can

be identified. However, it should be taken into account

that such processed results will be inherently inaccurate,

because of potential ion suppression from the co-eluting
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Fig. 2 Overlapping isotopic clusters. Isotopic distribution of the

dimethyl labeled peptide GLTEGLHGFHVHEFGDNTAGCT-

SAGPHFNPLSR. The mass shift of the two isotopologues is smaller

than their isotopic envelope, resulting in the overlap of the fifth and

consecutive peaks of the light peptide on the monoisotopic and

consecutive peaks of the heavy one. In this example, the two peptides

are equally abundant, but a quantification strategy that evaluates

peptide ratios based on their monoisotopic peaks would largely

overestimate the heavy peptide
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compound (Annesley 2003). This type of processing

is becoming less necessary for high-resolution mass

spectrometers, which are more likely to be able to resolve

co-eluting components.

The best way to deal with peptides originating from

protein contaminants is to identify them and exclude them

from further analysis. Walther and Mann (2011) recently

proposed a supplementary contaminant database with 255

entries. A comprehensive, but not exhaustive, list was also

made available as a supplementary spreadsheet to Keller

et al. (2008). Another useful resource is provided by the

cRAP project, which is maintained by the Global Proteome

Machine Organization. This is a list of proteins, down-

loadable as a FASTA database,2 that are often found in

proteomics experiments by accident or by contamination.

The database contains laboratory proteins, such as serum

albumin, contact proteins, such as keratins, molecular

weight standards, such as horse heart cytochrome, standard

mixtures, such as the ISB Standard Protein Mix Database

(Klimek et al. 2008) and common viral contaminants.

For tandem MS-based quantification, the contribution of

co-eluting peptides depends on the size of the isolation

window of the peptides chosen for fragmentation. All ions

present in this window, which is typically 1–2 Th

(depending on the instrument), can contribute to the signal

of the reporter ions. As a result, it is not always clear to

what extent quantification is contributed to by the peptide

of interest or by co-eluting peptides. This can sometimes

lead to a large underestimation of true changes, especially

for very weak peptide signals (Ow et al. 2009). Bantscheff

et al. (2008) have thoroughly investigated this problem for

iTRAQ labeling and concluded that the measured fold

change is increasingly deviating from the expected ratio at

broader isolation widths, thus indicating that the presence

of co-eluting peptides significantly affects the reporter

intensities. Unfortunately, shrinking the isolation width is

not always a viable solution, as it results in a significant

loss of sensitivity.

Although tandem MS quantification techniques are

designed to use fragmentation ‘quiet zones’ (Pappin 2004),

peaks from peptide fragmentation can occasionally occur

in these regions of the spectra. Table 1 lists some of the

known contaminants for iTRAQ reagents. A well-known

one for 8-plex iTRAQ is the first isotope peak of the

phenylalanine immonium ion at 121.0839 Da (Ow et al.

2009). Another contaminant has been observed at

116.07 Da by Wolf-Yadlin et al. (2007) and, although

described in other publications (e.g., Kuzyk et al. 2009), it

has not yet been identified. These contaminants may be

resolvable from the iTRAQ peaks with high-resolution

mass spectrometers, or subtracted by one of the isobaric

deconvolution methods discussed earlier.

m/z
115.10 115.12

m/z
115.10 115.12

m/z
115.10 115.12

10,000 50,000 100,000

Fig. 3 Theoretical iTRAQ data in the region around the 115 reporter

ion at different resolutions. The model assumes 95 % purity for 13C

and 15N and a 1:1:1:1 mixing ratio. The three peaks seen at a

resolution of 100,000 FWHM are (from left to right) the monoisotopic

115 peak, the peak from the partial enrichment in the 116 reporter ion

and the first isotope peak from the 114 reporter ion. Analysis

performed using Protein Prospector (Chalkley et al. 2005)

Table 1 Contaminating peaks in the iTRAQ region of a tandem MS

spectrum

Amino acids in peptide Ion type Mass (Da)

N-terminal AA a2 115.0866

C-terminal P y1 116.0706

C-terminal I or L z1 116.0832

C-terminal N z1 117.0420

N-terminal GS a2 117.0659

Amidated C-terminal with

C-terminal V

y1 117.1022

C-terminal D z1 118.0261

F Immonium

(1st isotope peak)

121.0839

2 http://www.thegpm.org/cRAP/index.html.
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Satellite peaks from partial isotope enrichment

‘Enrichment’ can be defined as the total percentage of

stable isotopes in a protein. Two separate phenomena can

contribute to the total degree of protein enrichment: the

purity of the stable isotope obtained from the supplier and

the degree of incorporation of the isotopes into proteins.

The first factor is a very common and almost inevitable

cause of partial isotope enrichment, because commercial

sources only guarantee the purity of isotope enrichment to

between 95 and 98 % (although in practice 99 % is fairly

common). A purity of less than 100 % will result in one or

more satellite peaks to the left of the monoisotopic peak of

any labeled peptide (Fig. 4) or tandem MS reporter ion. For

this reason, tandem MS reagents always come with a data

sheet indicating the percentage of each reporter ion that

differs by -2, -1, ?1 and ?2 Da from its reporter mass,

the positive offsets corresponding to the isotope peaks and

the negative offsets corresponding to the satellite peaks.

The second factor that can contribute to satellite peaks

originates from peptides where not all available residues in

the heavily labeled sample have been labeled. In metabolic

labeling, this can occur if the cells have not been grown for

a sufficient number of cell doublings (Ong et al. 2002;

Waanders et al. 2007), but the issue is also present with

chemical labeling strategies.

In both cases, the presence of satellite peaks potentially

affects both peptide identification and quantification.

Identification is clearly affected because such a peak can be

mistakenly considered as the monoisotopic one, resulting

in incorrect mass assignment. Quantification is affected if

the abundances of the satellite peaks are not added to the

total peptide abundance, resulting in an artificial underes-

timation of the heavy peptides.

The principle of correcting for satellite peaks is the same

as that for correcting for overlapping isotope profiles, if the

theoretical isotope distribution is adjusted to account for

partial enrichment. When modeling the isotope distribution

of an enriched elemental formula, say C48, H90, N15, O25,
13C6, the 13C can be considered as a separate element with

100 % abundance at mass 13.003354838 (Audi and Wap-

stra 1995). If the enrichment is 95 % this needs to be

adjusted to reflect the fact that we now have 95 % 13C and

5 % standard 12C (Boone et al. 1970).

Gouw et al. (2008) investigated the influence of 15N partial

enrichment on the number of identifications and errors in

quantification. They also described a simple correction strat-

egy applicable to any type of labeling experiment.

Satellite peaks from proline conversion

The use of heavy arginine as a SILAC label has been found

to result in the partial labeling of proline in certain cell

lines. The consequence of this is the occurrence of one or

more satellite peaks depending on the number of proline

residues in the peptide. For example, (13C6, 15N4)-arginine

will become (13C5, 15N1)-proline, giving a mass shift of

6 Da. A peptide with two prolines will thus potentially

have satellite peaks at 6 and 12 Da from the heavy peak.

To correct for this, the intensities of any additional peaks

need to be added to those of the heavy isotope peak before

calculating the quantification ratio. Van Hoof et al. (2007)

have discussed this problem in detail.

Detector saturation

Another factor impacting the accuracy and dynamic range

of quantification is saturation of the mass spectrometric

detection system. Detector saturation is more often

observed for Q-ToF and MALDI instruments than ion

traps, as for ion traps the number of ions before detection

can be controlled (Belov et al. 2003). Saturation effects are

generally only a problem for survey scan-based quantifi-

cation and are rarely encountered for tandem MS-based

100% 98% 95%

775.0 776.0 777.0

m/z
774.0 776.0

m/z
774.0 776.0

m/z

Fig. 4 The effect of partial isotope enrichment on a labeled peptide.

The three plots show the theoretical isotope profiles of the peptide

acetyl-AAGVEAAAEVAATEIK [Label 13C(6)] at purities of 100, 98

and 95 %. The monoisotopic peak is the largest peak in the isotope

profile and any peaks to its left are caused by partial enrichment.

Analysis performed using Protein Prospector (Chalkley et al. 2005)
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methods. If saturation occurs, the natural isotope intensity

distribution is distorted, resulting in false quantitative

readings. Processing software can detect the problem by

comparing the measured distribution with the theoretical

one for the most intense data in the data set. To correct for

this, the ratios could be calculated either from the unsatu-

rated parts of the isotope profile or using data from an

unsaturated time interval in the LC–MS run.

Challenge 4: noise rejection

We can define noise as any perturbation that hampers the

detection of the peptide signal. In a typical MS experiment,

there are three main sources of perturbations: random

noise, chemical noise and contaminants.

Random noise is generally represented by small spikes,

uniformly distributed in both mass and chromatographic

domains. It is mainly of electrical origin and occupies the

higher-end of the frequency spectrum. This kind of noise

can be effectively removed by simple smoothing approa-

ches, applied either in the LC or in the MS domain. The

rational that motivates this choice is that a smooth behavior

is essential for peak detection, in order to avoid picking of

local maxima that are just the results of random fluctua-

tions. Various techniques have been developed for

smoothing MS spectra, including moving average,

smoothing splines, wavelet smoothing and kernel methods,

such as the Gaussian and the Savitzky-Golay smoothers

(Hastie et al. 2009). Smoothing along the LC time axis has

been performed by Savitzky-Golay, median filters and

matched filtration (Andreev et al. 2003).

Chemical noise is mostly related to the detection of the

LC mobile phase and buffers by the mass analyzer. It is

more difficult to describe, as it behaves differently in the

mass and time domains. In the mass domain, it has a

periodic pattern very similar to that of the peptide signal,

with which it often overlaps. In the chromatographic

domain it appears as a slowly varying baseline, whose

trend fluctuates over contiguous chromatograms according

to the oscillation in mass. Figure 5 shows an example of

incorrect feature detection in a Q-ToF dataset, caused by

strong chemical noise mimicking the isotopic distribution

of a peptide feature. In a previous work (Cappadona et al.

2008), we presented a novel signal model to disentangle all

correlations between signal and noise and we proposed a

method to access and remove both chemical and random

noise through wavelet decomposition.

Contaminants can enter an MS experiment from a

number of sources. Typical protein sources are the

enzymes used in the sample preparation and contact pro-

teins, such as keratins from skin cells. Although these

proteins are usually defined as noise, their peptides actually

elute and ionize exactly like the peptides under investiga-

tion. For this reason, their interference on feature detection

has already been discussed in the previous section on iso-

baric co-eluting peptides.

Nonprotein contaminants include plasticizers, surface

contaminants and all kinds of chemicals normally present

in the surrounding environment, such as perfumes and

cleaning products. These long-term contaminants typically

give singly charged signals and can be removed in a similar

way to the chemical noise. In fact, their peaks are contin-

uously dragged into the analyzer and therefore are not

chromatographically resolved. Figure 6 shows some typi-

cal contaminant peaks in a shotgun proteomics experiment.

The spectrum, which is an averaged MS survey scan of the

first 10 min of an LCMS data set, before peptide elution,

shows a very prominent set of polydimethylcyclosiloxane

peaks, interfering with the real peptide signals.

Although advanced algorithms for feature detection

have been presented in the literature, most quantification

software tools still underestimate the importance of noise

rejection. In some cases (e.g., Cox and Mann 2008), this

step is neglected with the motivation that it is no longer

necessary with high resolution mass spectrometers; in other

cases (e.g., Khan et al. 2009), empirical thresholds are used

to estimate detection and quantification limits, based on

local signal to noise ratios (MacDougall and Crummett

1980). Figures 5 and 6 show that contaminant peaks and

chemical noise, if not adequately removed, can cause either

false positive or false-negative identifications by mimick-

ing or masking the peptide signal. Software tools could still

potentially investigate such cases by looking for unex-

plained peaks in MS/MS spectra or unexpected quantifi-

cation ratios.

RT

m/z

Fig. 5 Incorrect feature detection. Chemical noise can mimic the

isotopic distribution of a peptide signal and disturb peak detection

algorithms
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Challenge 5: retention time alignment

Many of the issues pertinent to the quantification of labeled

peptides also apply when analyzing label-free data; how-

ever, there exist additional challenges related to comparing

peptide abundances across different LC–MS data files. The

most important of these is that, although the m/z of a

peptide can be determined with great precision by modern

mass spectrometers, there can still be considerable varia-

tion in retention times, even between consecutive runs.

This is still a significant problem despite the recent intro-

duction of nano-LC systems without flow splitting and with

computer controlled flow rates.

The issue of retention time shifts has been addressed

using alignment procedures (Finney et al. 2008; Van-

denbogaert et al. 2008), which correct elution times by

aligning them either to internal standards or to selected

peaks in the total ion chromatogram (TIC) or the base peak

chromatogram (BPC) of a reference run. The success of

these procedures is strictly dependent on their ability to

identify the same MS features across different runs. Mat-

ched features should then be aligned within pre-defined

time and mass accuracy windows, which can be shifted by

relative retention time approaches. Methods used for this

purpose include dynamic time warping (DTW) and para-

metric time warping (PTW), along with their derivate

algorithms (Christin et al. 2010; Finney et al. 2008). Nar-

row windows are usually chosen to decrease the probability

of co-eluting isobaric compounds (Cutillas and Van-

haesebroeck 2007). Despite this expedient, the issue of co-

eluting peptides cannot be totally avoided when dealing

with complex mixtures and peak matching algorithms

should be able to select the right peak for quantification.

Figure 7 shows a case where different peptides co-eluted

within a narrow time window. In this case, peak detection

specificity can be improved by considering the charge and

the theoretical isotope distribution of the peptide being

quantified (Fig. 7b), in addition to the m/z and the retention

time (Park et al. 2008). A further enhancement can be

obtained by narrowing the mass window (Fig. 7c).

More recently, an algorithm has been published that

performs the alignment based on MS/MS data (Tsou et al.

2010). This approach compares the retention times at

which a peptide was fragmented and identified and uses

linear regression to extrapolate information for runs lack-

ing MS/MS data. Unfortunately, this strategy can only

predict retention times to a certain degree, because MS/MS

data are often triggered at peak tails, rather than at peak

height, especially for very abundant peptides.

A shared feature of these peak alignment methods is that

they rely on the occurrence of abundant peaks common to

all samples. However, when comparing peptides from

samples that are not closely related, the low number of

common features might not allow confident peak align-

ment, as has been shown for primary tissues like cancer

cells (Casado and Cutillas 2011). With these kinds of

samples, in fact, the alignment algorithms can be disturbed

by the presence of distinct peptides which have similar

mass, but different retention times. In these cases, the

introduction of internal standards that can be used as

landmarks for alignment is highly recommended.

Deuterium effect

Stable isotope labeling quantification is generally not

affected by retention time shifts. The current consensus

seems to be that deuterium is the only commonly used stable

isotope that can be chromatographically resolved (Baldwin

2004; Zhang et al. 2001). For example, Hansen et al. (2003)

demonstrated that, using reversed phase, heavy deuterium-

containing peptides might elute several seconds prior to the

corresponding light peptides. This so-called ‘isotope effect’

obviously complicates peptide matching, but has been

shown to have little effect on the quantification accuracy, as

long as the abundances of the deuterated peptides are mea-

sured along their whole elution profiles, rather than in one

particular scan (Boersema et al. 2009; Ji and Li 2005). To

overcome this issue, for instance, MSQuant allows for

manual inspection of differentially expressed peptides and

for proper integration over the entire XICs.
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Fig. 6 Typical contaminant peaks. An average of the first 10 min of the standard protein mix data set (Klimek et al. 2008), before the elution of

any peptides. The accurate masses of the ions at m/z 429.1 and 445.1 are often used as lock mass calibrants (Olsen et al. 2005)
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Challenge 6: peptide identification

One of the main challenges in shotgun proteomics arises

from incomplete data, because even the most advanced

mass spectrometers cannot fragment all peptide ions pres-

ent in the sample. In a recent paper, Michalski et al. (2011)

showed that less than 20 % of the MS putative peptide

features are targeted for fragmentation in data-dependent

acquisition; and out of those, typically less than 60 % lead

to identification. Therefore, despite being not directly

related to the quantification process, peptide identification

has a strong impact on the quantification rate. In principle,

there are two ways to tackle this problem: trying to solve

the poor fragmentation rate, or trying to increase the

identification rate.

In data-dependent acquisition, the fragmentation rate is

strictly instrument dependent and even the fastest instru-

ments allow duty cycle rates of no more than 50 tandem

spectra per second. In label-free quantification, this issue

can be alleviated by means of exclusion lists, which

instruct the instrument not to fragment peaks already

identified in former runs. On a similar note, Smith et al.

(2002) have proposed an accurate mass and time (AMT)

tag approach, which relies on first establishing an AMT tag

database for an organism, tissue or cell line, by performing

high-resolution shotgun proteomic analysis, and then

retrieving information from this database to obviate the

need for subsequent MS/MS analyses.

The identification rate is also instrument dependent, in

that high-resolution instrumentation has contributed to

increase the rate from a few percent reported only few

years ago (Mallick et al. 2007). Nevertheless, it is also

dependent on the strategy used to infer peptide sequences

from fragment mass spectra. These strategies can be

broadly divided into three main categories (Nesvizhskii

2010): database searching, spectral library searching and de

novo sequencing. Database searching is the most common

approach and it is based on matching the observed spec-

trum to theoretical spectra generated from a protein

sequence database. Library search methods generally out-

perform database search methods in terms of speed, error

rates and sensitivity, but their applicability is contingent on

the appropriate spectra being in the library (Lam and

Aebersold 2011). Finally, de novo sequencing methods can

be used for directly interpreting the acquired spectra, but

they are computationally intensive and thus generally only

used for unidentified high-quality spectra (Seidler et al.

2010). Given their complementary nature, some of these

methods can be combined to increase the identification

rate, as proposed for instance by the commercial package

Peaks (Ma et al. 2003), which merges database search and

de novo sequencing results. As quantification experiments

often involve repeatedly running similar samples, then also

using a package that can expand a spectral library based on

database search identification could be beneficial.

False discovery rates

Regardless of the identification method that is used, a very

important aspect for protein quantification is the ability to

estimate the number of incorrect identifications. In fact,

retaining false-positive identifications in subsequent pro-

tein grouping can lead to incorrect protein ratios. The

preferred method for calculating the false discovery rate is

the target-decoy approach, originally proposed by Moore

et al. (2002) and then extensively described by Elias and

Gygi (2007) for database searches and by Lam et al. (2010)

for library searches. This strategy is based on appending

reversed, randomized or shuffled sequences to the original

(‘target’) database before performing the search and then
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Fig. 7 Improving peak detection in the presence of co-eluting

peptides. XIC of the monoisotopic peak of the triply charged

phosphopeptide IADPEHDHTGFLTEY(Phospho)VATR from the

mouse mitogen-derived protein kinase Erk. a At 751.3394

Th ± 25 ppm at least 4 peaks co-eluted within a 5 min window,

thus hampering peak detection. b XICs of the second and third

isotopes allow identification of the only peak, marked with an arrow,

for which the three isotopes perfectly co-eluted. c Specificity can also

be increased by narrowing the mass window to 751.3394

Th ± 7 ppm. Analysis performed using Pescal (Cutillas and Van-

haesebroeck 2007)
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using these artificial (‘decoy’) sequences to evaluate the

portion of false positive among all positive identifications.

A false discovery rate (FDR) cutoff can then be set to limit

the maximum number of accepted false-positive matches.

Typical cutoff values range between 1 and 5 %, which

means that a small portion of any identified peptides will be

incorrect. If a large database is searched, these will typi-

cally be proteins with a single peptide hit, or ‘one-hit

wonders’. However, if the database searched is small and

the data set has a large number of spectra, it is also likely

that they will come from the proteins with correct hits.

Peptide modifications

Peptide modifications can seriously hamper protein iden-

tification and quantification and represent a major chal-

lenge in proteomic analysis. In fact, protein identification

suffers from the combinatorial explosion of possible

modification states, which increase exponentially with the

number of modification sites (for example, a protein with

three potential phosphorylation sites can be present in the

sample in eight different states). At the same time, differ-

ential levels of amino acid modification between the

samples can also seriously affect protein quantification, as

each differently modified peptide should be quantified

independently. In the case of post-translational modifica-

tions, these differential levels could be the purpose of the

experiment, such as in phosphorylation monitoring

(Gruhler et al. 2005; Iwai et al. 2010) but, in general, they

can also be artifacts, reflecting unanticipated modifications

related to sample preparation, rather than real changes in

the relative abundance of the parent proteins.

Database search engines can be instructed to identify

peptides with a set of specified modifications, including

those introduced by sample handling and those present in

vivo. In principle, any amino acid modification could be

monitored and quantified by applying a range of mass

shifts to all the residues in a peptide. It should be noted,

though, that selecting a large number of variable modifi-

cations, by open or blind strategies (Chalkley et al. 2008;

Tsur et al. 2005), could have a dramatic effect on the

search speed and the false discovery rate. An effective

strategy to overcome this problem may consist of running a

first search, allowing few variable modifications against the

full sequence database, followed by a second search, with a

more complete set of modifications, but restricted to the

proteins identified in the first round.

The assignment of PTMs, particularly phosphorylation,

is never straightforward. Under collision-induced dissoci-

ation (CID) conditions the peptide is subjected to enough

energy to cause loss of the phosphate moiety, observed as a

neutral loss or even rearrangements of the phosphate

groups. In turn, this neutral loss has the tendency to

suppress sequence-diagnostic ion peaks, which makes

assignment of the correct phosphorylation site very hard,

particularly in case of multiple S, T or Y residues. Database

search methods with site localization scoring have been

designed specifically to extract additional information from

the fragmentation spectra and to assign the correct position

of the PTMs. These algorithms can be directly integrated

into search engines, like the Mascot Delta Score (Savitski

et al. 2011), embedded in Mascot, and the site localization

in peptide (SLIP) scoring (Baker et al. 2011), embedded in

the Batch-Tag search engine (Chalkley et al. 2008) of

Protein Prospector. More often they require a particular

search engine output for a second step of processing, as is

the case for the H-Score (Savitski et al. 2010), the Ascore

(Beausoleil et al. 2006) and the PTM score in MSQuant.

Alternatively, electron transfer dissociation (ETD) of a

phosphorylated peptide has been proposed as a more reli-

able technique to obtain phosphosite localization, as it does

not cause the neutral loss or rearrangement of the phos-

phate groups (Mischerikow et al. 2010).

Isotope labels are a particular case of peptide modifi-

cation. Two different strategies are commonly adopted to

identify labeled peptides. If the labeling state of peptide

pairs is unknown, a single database search must be run,

with the different tags set as variable modifications. If the

labeling state is known beforehand, for instance because it

has been determined by early feature detection, then sep-

arate database searches can be run, with each tag set as a

fixed modification. This approach to customized database

searches is often preferred, because it allows for smaller

search spaces and better false discovery rates. It is also

particularly necessary when the quantification method

employed involves the labeling of multiple different resi-

dues, as in 15N quantification, where all peptides are

labeled regardless of their amino acid composition, thus

producing a variable mass shift between labeled pairs

(Khan et al. 2011).

Library search methods can also be problematic for

peptides with multiple modification sites, because it is

unlikely that all the relevant permutations are present in the

library.

Challenge 7: normalization of peptide abundances

The result of feature detection and peptide identification is

usually a table where each peptide is reported along with its

own attributes, including mass, charge, retention time,

modification state, proteins it might belong to and many

more, depending on the software tool that performed the

analysis. In the case of isotope labeling, the table will

report the abundances of all isotopologues of a peptide,

while in the case of a label-free experiment it will report
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the abundances in all the aligned runs in which a peptide

was found. At this point, normalization of peptide abun-

dances is essential for improvement of the quantitative

accuracy of the experiment. In fact, changes in relative

peptide abundances may reflect not just true biological

differences but also systematic bias and random noise,

resulting from sample preparation and instrumentation.

Isotope labeling techniques are often preferred to label-free

approaches because they reduce the perturbations related to

sample handling. Nevertheless, data normalization is still

required to account for variations in sample loading and for

whenever multiple LC–MS runs are evaluated, for instance

for comparison of multiple conditions. Normalization is

therefore essential to reduce extraneous variability and to

make abundances comparable both within and across

samples. Many software tools automatically populate the

table with normalized abundances and peptide ratios. Yet,

these values might result from a correction strategy that

does not fit the experimental setup, and a post-processing

strategy based on the raw abundances could be a better

option.

Ideally, extraneous variability can be addressed by

normalizing to internal standards introduced early in the

experimental workflow, as initially described for gel sep-

arated proteins and phosphorylated peptides (Cutillas et al.

2005) and later applied to bacterial proteins (Silva et al.

2006) and mouse tissues (Cutillas and Vanhaesebroeck

2007). However, normalization to internal standards may

still not remove systematic bias arising as a consequence of

differences in sample loadings. Thus, as an alternative, or

in addition, peptide signals can be normalized by means of

in silico procedures.

The most common approach for data normalization is

based on the underlying assumption that only a small

fraction of peptides is differentially expressed, while the

majority should remain unchanged, and thus can be used

for normalization. If peptide ratios deviate from unity, for

instance due to errors in sample loading, a single normal-

ization factor, based on the sum, average or median of all

peptide abundances, can be used to minimize this offset.

This technique is generally referred to as global normali-

zation. Often, normalization values can also be obtained

from a specific subset of features, for instance from spiked-

in peptides used as internal standards, or a set of ‘house-

keeping’ proteins assumed to be similarly abundant

between samples. In these cases, the technique is referred

to as central tendency normalization. This approach is

particularly useful for datasets violating the basic hypoth-

esis of equal expressions, for instance because sub-prote-

omes are differentially represented in the samples, or

because samples are affected by nonsystematic contami-

nation. In all cases, the set of features used for normali-

zation should be carefully selected. Usually only peptides

with abundances larger than a signal-to-noise threshold and

common to all runs (or to a minimum percentage of runs)

are retained. Modified peptides should also be filtered out,

because their abundances might combine changes both in

protein expression and in differential modifications (Wu

et al. 2011). Scaling of abundances is also a common step,

by which the distribution of peptide ratios is converted into

a more symmetric, almost normal distribution. This is

especially important if parametric tests, like the Student’s

t test, will be used for differential analysis. When a loga-

rithmic transformation is used to restore normality, data are

usually plotted in MA (minus versus average) plots,

showing the average log abundance on the x axis and the

log fold change on the y axis. Such plots show the

dependency of peptide ratios on the abundances from both

samples, rather than just one, and allow for an easy

observation of linear and nonlinear trends resulting from

biases, which, in turn, can help choosing the best normal-

ization strategy. The mentioned bias due to errors in

sample loading, for example, usually results in the mea-

sured abundances of peptides from each sample being

separated by a constant factor. In an MA plot this bias

would show up as a constant deviation of peptide ratios

from the x axis, which should be subtracted to center the

plot and restore the hypothesis that most peptides are

equally expressed. As already mentioned, in a simple case

like this, the normalized abundance ratios can be calculated

by subtracting the mean of the population of peptide ratios

from the abundance ratio of each peptide. In the presence

of outlier values, the median rather than the mean is often

chosen as a more robust central value. Furthermore, when

some ratio measurements are more reliable than others, it

may be appropriate to weight the values in the calculation.

For example, the program MaxQuant places the ratios into

intensity bins, so that peptides with greater intensities are

given more weight.

Other potentially more powerful normalization methods

have been extensively benchmarked by Callister et al.

(2006). If the systematic bias is not constant, but linearly

dependent on the magnitude of the peptide abundances,

linear regression normalization can be performed, by

applying least square regression to the MA plot and by

subtracting a proportionally larger amount of bias, esti-

mated by the regression equation. Similarly, if the sys-

tematic bias is nonlinearly dependent on the magnitude of

the peptide abundances, local regression normalization can

be performed, by applying Lowess smoothing to the MA

plot and by shifting the intensity-dependent Lowess line to

0. Finally, quantile normalization employs a nonparametric

approach to restore similar peptide abundance distributions

across samples. The conclusion of Callister’s study was

that global normalization and linear regression ranked best

in most cases. Similar conclusions were drawn by Kultima
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et al. (2009), who also found indications that the analysis

order of the LC–MS experiments contributes to bias and

developed a novel procedure, named RegRun, to improve

linear regression by analysis order normalization. On a

similar note, the recent Study 8 by the CPTAC network

examined an extended pool of alternative sources for sys-

tematic bias, and regressed peptide ratios not only based on

average abundance but also based on retention time, pre-

cursor m/z, peptide length, peptide length/z and mobile

protons. The conclusion of the study was that intensity bias

is the strongest when comparing samples analyzed by

different labs, but RT bias is the strongest within labs

(Rudnick et al. 2011).

Challenge 8: protein inference

Except for peptidomics studies, peptide identification and

quantification are just intermediate steps, an artifact of the

bottom-up approach to proteomics. The meaningful anal-

ysis is at the protein level and the strategy chosen to rollup

peptide identifications into protein identification is crucial

for accurate quantification (Podwojski et al. 2010). The

‘protein inference problem’ has been described in several

papers (e.g., Qeli and Ahrens 2010; Rappsilber and Mann

2002; Yang et al. 2004) and in a detailed tutorial by Nes-

vizhskii and Aebersold (2005). The main issue with protein

inference is that it is an ill-posed problem, in that the

mapping of peptides to precursor proteins is not always

univocal. Shared peptides are peptide sequences that can be

matched to more than one protein entry in a protein data-

base and are more frequent than unique peptides, which

can unequivocally be matched to a specific protein. Protein

inference can thus be hampered by the presence of many

causes of ambiguity. First of all, a single gene can result in

hundreds of database entries, because of splicing variants,

PTMs, protein isoforms and homologous proteins from

other species. Furthermore, nonunique identifications may

derive from truncated proteins, from similar domains in

very different proteins, or from peptides that are short

enough to occur randomly. Finally, multiple entries for the

same protein can also occur in protein sequence databases

due to sequencing or typographical errors. Discussions on

how often this occurs can be found in Alexandridou et al.

(2009) and Kohl et al. (2008).

Several software tools, including DTAselect (Tabb et al.

2002), ProteinProphet (Nesvizhskii et al. 2003) and ID-

Picker (Ma et al. 2009), automatically address the protein

inference problem, by reporting all proteins with unique

peptides and arranging the indistinguishable proteins into

protein groups. The additional application of Occam’s

razor results in a minimal list of proteins, accounting for all

identified peptides. Early attempts to consider only unique

peptides and to ignore the shared ones have been shown to

under-represent the true amount of proteins and should be

therefore avoided (Usaite et al. 2008).

MaxQuant creates protein groups if the set of identified

peptides in one protein is equal to or completely contained

in the set of identified proteins of another protein. For

peptides that are shared between protein groups the number

of peptides in each group is used as the assignment crite-

rion. In the Matrix Science Mascot package (Perkins et al.

1999), protein groups with multiple members are subjected

to hierarchical clustering, with the scores of nonshared

peptide matches used as the distance metric (Koskinen

et al. 2011). Dendrograms are then used to illustrate the

relationship between family members and can be interac-

tively cut to discard members judged to have insufficient

evidence. Nesvizhskii and Aebersold (2005) have sug-

gested that the quantitative information could be used to

resolve some of the peptide grouping ambiguities.

Similar to peptides, proteins can also be incorrectly

identified and FDR methods can be used to specify a

proportion of false-positive identification matches. A

minimum number of identified peptides per protein can be

used as a criterion for reducing false-positive identifica-

tions (Carr et al. 2004), but this approach does not apply to

small or low abundance proteins, which usually have less

identifiable peptides. Manual identification of single-hits

with information-rich peptides might thus help to reduce

protein FDRs, while retaining valid single hits (Grobei

et al. 2009).

Challenge 9: protein quantification

Protein quantification is the final goal of many proteomics

experiments. This task strictly relies on the correctness of

all previously discussed steps, and especially on the out-

come from peptide quantification and protein inference.

Given a certain protein, two complementary methods have

been proposed to rollup peptide quantification to protein

quantification. The first consists of calculating different

ratios from the protein’s peptides, followed by summariz-

ing these ratios to obtain a single fold change. This method

is commonly applied in stable isotopic labeling, but its use

has been extended to label-free approaches (Old et al.

2005). Its main advantage is that a standard deviation of

the protein ratio can be derived from the peptide ratios. The

second method consists of deriving an estimate of the

protein abundance from its peptides, followed by deter-

mining a single fold change at the protein level. In both

cases, different metrics have been used to cluster peptides

values around a central protein value. These metrics

include sum, average, weighted average, median or any

measure of central tendency. The sum is often used
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because it implicitly accounts for the decrease in mea-

surement errors with larger intensities (Carrillo et al. 2010).

Weighted average and median are usually preferred,

because they are more robust, respectively, to the presence

of low-quality measures and to outliers. In most cases, only

a subset of peptides assigned to a given protein is used for

quantification, because the main goal is to accurately

determine the protein fold change, regardless of protein

coverage, which has been already taken into account for

protein inference. A common approach is to take the three

most abundant peptides, based on the premise that the MS

signals of the most efficiently ionized peptides directly

correlate with the corresponding protein amount. This so-

called Top 3 algorithm was originally proposed by Silva

et al. (2006) for Q-ToF instruments running in LCMSE

mode, but has been validated recently also for ion trap-

based mass spectrometers running in data-dependent

acquisition (DDA) mode and compared to similar Top N

approaches, which consider the N most abundant peptides

(Grossmann et al. 2010).

The combination of two complementary methods, mul-

tiple summarization metrics and a further degree of free-

dom in selecting the appropriate high-quality peptides,

gives rise to a whole plethora of possible quantification

strategies. Comparing all strategies or suggesting a best one

is beyond the scope of this article. For the purpose of this

section we would rather point out that software developers

should allow the user to explore various possibilities, while

end-users should be aware of the influence of their choice

on their final quantitative results.

Protein quantification through spectral counting

An alternative approach for protein quantification makes

direct use of ‘spectral counts’, the number of MS/MS

identifications assigned to a protein. The rationale behind

this method is that fragmentation events are proportional to

protein abundance, although the linear range is strongly

influenced by the settings for dynamic exclusion in data-

dependent acquisition (Wang and Li 2008). Early analyses

have used spectral counts as a semi-quantitative measure,

to simply test differences in protein counts between dif-

ferent samples, until linearity has been confirmed over two

orders of magnitude by comparison to spiked-in proteins in

known concentrations (Liu et al. 2004).

Absolute protein quantification

Since the empirical relationship with protein abundance

has been proved, spectral counts have been used to cal-

culate the absolute quantification of each protein within a

mixture. Absolute concentration values are usually

obtained by means of normalization procedures that correct

for differing propensities of proteins to produce identifiable

fragmentation spectra. These correction procedures range

over a wide variety of techniques: NSAF, the normalized

spectral abundance factor (Zybailov et al. 2006), simply

divides counts by the protein length, analogously to the

Fabb index (Aye et al. 2010), that normalizes by the protein

molecular weight; emPAI, the exponentially modified

protein abundance index (Ishihama et al. 2005), normalizes

by the number of theoretically observable peptides; APEX,

the absolute protein expression index (Lu et al. 2007), uses

a machine-learning approach to derive prior expectation of

observing each peptide.

Absolute protein copy numbers have recently been

reported based on precursor ion currents (Schwanhäusser

et al. 2011), rather than spectral counts. The technique,

called intensity-based absolute quantification (iBAQ),

proposes the sum of peak intensities of all peptides

matching to a specific protein, normalized by the number

of theoretically observable peptides, as an accurate proxy

for protein levels.

Challenge 10: statistical significance analysis

and data mining

The ultimate goal of a quantitative proteomic experiment is

often to compare protein expression levels between dif-

ferent groups. The data mining and functional interpreta-

tion of datasets to access biologically interpretable results

pose many analytical challenges, which have been recently

reviewed by Kumar and Mann (2009). Many quantitative

software tools automatically output protein abundance

ratios that can be used to discriminate regulated proteins,

whose fold change exceeds a pre-defined, often arbitrary,

threshold. However, they often lack proper algorithms for

further statistical analysis, data mining and visualization,

which are then usually ascertained by means of common

statistical platforms, like the MATLAB Statistics Toolbox

(The Mathworks Inc., Natick, MA) or the open source R

statistical environment (R Development Core Team 2008);

or by dedicated software packages, such as StatQuant (van

Breukelen et al. 2009), DAnTE (Polpitiya et al. 2008) or

the Perseus tool available with MaxQuant.

A statistical test is used to estimate a p value and a spec-

ified cut-off is chosen, such that below it protein changes are

deemed significant. The testing procedure can then be

evaluated by two common statistical measures, sensitivity

and specificity, often conjunctly visualized by a receiver

operating characteristic (ROC) curve. The most common

statistical test used to evaluate differences between two

groups is the two-sample t test. This test requires the

assumptions of normally distributed data, easily checked by

techniques such as the Shapiro–Wilk test. It also requires
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multiple samples to be present in each group, in order to

estimate standard deviations. If the first hypothesis does not

hold, as is generally the case for LC–MS abundances, which

are restricted to positive values, log-transformation can be

used to convert the observed abundance distribution into a

more symmetric, almost normal distribution. Alternatively,

nonparametric tests should be used, like permutation tests for

the comparison of means, or the two-sample Kolmogorov–

Smirnov test for the comparison of distributions. Nonpara-

metric tests are especially useful when the sample size is low,

since the data in this case often do not meet the normality

assumption of the t test. If the second hypothesis does not

hold, for instance because peptide ratios have already been

combined to a single protein value, the one-sample t test

should be used.

In many cases a proteomics experiment consists of many

groups being compared. In this case, the analysis of vari-

ance (ANOVA) model can be chosen as a generalization of

the t test, while the Kruskal–Wallis test can be used as a

nonparametric alternative.

When multiple proteins are tested, the number of false-

positive test results should be limited by a multiple testing

correction. The Bonferroni correction, for instance, main-

tains the family-wise error rate under a desired significance

level a by testing each of the n individual hypotheses at a

significance level a/n. An alternative and less conservative

approach is to adjust the p value to control the FDR. For

this purpose, the q value has been introduced as a modified

version of the p value that maximizes the number of true-

positive statistical results, while controlling the proportion

of false positives.

FDR procedures devised for the analysis of microarray

data have also been tailored for the analysis of proteomics

studies. For instance, Roxas and Li (2008) have demon-

strated that the SAM method for significance analysis of

microarrays (Tusher et al. 2001) can be effectively adapted to

proteomics data for which, when compared to conventional

t test, it provides richer information about protein differential

expression profiles and better estimation of false discovery

rates and miss rates. Similarly, Ting et al. (2009) have

recently adopted LIMMA, linear models for microarray data

(Smyth 2005), for normalization and statistical analysis of

quantitative proteomics data, and they anticipate that more

flexible frameworks for data analysis will become increas-

ingly important for sophisticated experimental designs.

The major challenge for classification purposes is the

high-dimensionality small-sample problem (Clarke et al.

2008), sometimes referred to as ‘large p, small n’, caused

by the small number of samples available to mine a huge

number of identified proteins. Also in this case, multivar-

iate techniques devised in different contexts, like clustering

and discriminant analysis, have been effectively adapted

for proteomics purposes.

Conclusions

A large number of technologies have emerged in the last

decade for harvesting the quantitative information inherent

in the mass spectrometry data from large-scale proteomics

experiments. These frequently produce very large data sets,

often consisting of thousands of MS and MS/MS spectra

from hundreds of LC–MS runs. Software engineers, who

write programs to process these data, as well as end-users,

who wish to use these programs, need to be aware of the

issues outlined in this paper, if they do not want to draw

incorrect conclusions based on misleading results.
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Schwanhäusser B, Busse D, Li N et al (2011) Global quantification of

mammalian gene expression control. Nature 473:337–342. doi:

10.1038/nature10098

Seidler J, Zinn N, Boehm ME, Lehmann WD (2010) De novo

sequencing of peptides by MS/MS. Proteomics 10:634–649. doi:

10.1002/pmic.200900459

Senko M, Beu S, McLafferty F (1995) Determination of monoisotopic

masses and ion populations for large biomolecules from resolved

isotopic distributions. J Am Soc Mass Spectrom 6:229–233

Shadforth IP, Dunkley TPJ, Lilley KS, Bessant C (2005) i-Tracker:

for quantitative proteomics using iTRAQ. BMC Genomics

6:145. doi:10.1186/1471-2164-6-145

Shinkawa T, Nagano K, Inomata N, Haramura M (2009) A software

program for more reliable precursor ion assignation from LC–

MS analysis using LTQ ultra zoom scan. J Proteomics 73:357–

360. doi:10.1016/j.jprot.2009.08.009

Silva JC, Gorenstein MV, Li G-Z et al (2006) Absolute quantification

of proteins by LCMSE: a virtue of parallel MS acquisition. Mol

Cell Proteomics 5:144–156. doi:10.1074/mcp.M500230-MCP

200

Simpson KL, Whetton AD, Dive C (2009) Quantitative mass

spectrometry-based techniques for clinical use: biomarker iden-

tification and quantification. J Chromatogr B Analyt Technol

Biomed Life Sci 877:1240–1249. doi:10.1016/j.jchromb.2008.

11.023

Smith RD, Anderson GA, Lipton MS et al (2002) An accurate mass

tag strategy for quantitative and high-throughput proteome

measurements. Proteomics 2:513–523. doi:10.1002/1615-9861

(200205)2:5\513:AID-PROT513[3.0.CO;2-W

Smyth G (2005) Limma: linear models for microarray data. In:

Gentleman R, Carey VJ, Huber W et al (eds) Statistics for

biology and health. Springer New York, pp 397–420

Steen H, Mann M (2004) The ABC’s (and XYZ’s) of peptide

sequencing. Nat Rev Mol Cell Biol 5:699–711

Steen H, Jebanathirajah JA, Springer M, Kirschner MW (2005) Stable

isotope-free relative and absolute quantitation of protein phos-

phorylation stoichiometry by MS. Proc Natl Acad Sci USA

102:3948–3953. doi:10.1073/pnas.0409536102

Swaney DL, McAlister GC, Coon JJ (2008) Decision tree-driven

tandem mass spectrometry for shotgun proteomics. Nat Methods

5:959–964. doi:10.1038/nmeth.1260

Tabb DL, McDonald WH, Yates JR (2002) DTA select and contrast:

tools for assembling and comparing protein identifications from

shotgun proteomics. J Proteome Res 1:21–26

Tabb DL, Thompson MR, Khalsa-Moyers G et al (2005) MS2Grou-

per: group assessment and synthetic replacement of duplicate

proteomic tandem mass spectra. J Am Soc Mass Spectrom

16:1250–1261. doi:10.1016/j.jasms.2005.04.010
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