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Summary. Evolutionary conservation derived from a multiple sequence

alignment is a powerful indicator of the functional significance of a res-

idue, and it can help to predict active sites, ligand-binding sites, and

protein interaction interfaces. The results of the existing algorithms in

identifying the residue’s conservation strongly depend on the sequence

alignment, making the results highly variable. Here, by introducing the

amino acid similarity matrix, we propose a novel gap-treating approach by

combining the evolutionary information and von Neumann entropies to

compute the residue conservation scores. It is indicated through a series of

tested results that the new approach is quite encouraging and promising

and may become a useful tool in complementing the existing methods.
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1. Introduction

Determining which amino acid residues in a protein are

responsible for its function is very important in order to

understand the molecular mechanism of protein and for

drug discovery as well (Chou, 2004e; Kesel, 2005; Lubec

et al., 2005; Clercq, 2006). The experimental characteri-

zation of the constituent residues in their function and role

is very expensive, time-consuming, and difficult to auto-

mate. This kind of difficulties has challenged us to devel-

op computational approaches.

It is assumed in all the existing alignment methods or

the evolutionary residue-scoring methods that the impor-

tance of a residue is reflected by its evolutionary conser-

vation, meaning that the more important the residue, the

sooner it becomes fixed in different evolutionary branches

and the more divergent are the branches between which it

does vary (Mihalek et al., 2004). The evolutionary con-

servation varies among amino acid sites due to differing

degrees of functional constraints on them (Holmquist et al.,

1983; Troy et al., 1993; Zhou and Troy, 2005a). Sites that

are important for the protein’s tertiary structure and fold-

ing, enzymatic activity, ligand binding, or interaction with

other proteins are generally more conserved (Zhou and

Troy, 1995, 2003, 2005b; Brocchieri et al., 2002; Ran

et al., 2004; Zhou et al., 2004; Schnell et al., 2005). Actu-

ally, knowledge of the conserved and functionally impor-

tant residues, such as those involved in forming the bind-

ing pocket of a protein to its ligand, has been widely used

to help the structure-based drug design and to guide the

mutagenesis studies (see, e.g., Kang and Liang, 1997;

Chou et al., 1999, 2000, 2003, 2006; Hu et al., 2003;

Yu, 2003; Chou, 2004a–d; Du et al., 2004, 2005a, b;

Zhang and Yap, 2004; Fan et al., 2005; Gan et al.,

2006; Wu et al., 2006; Zhang et al., 2006; Liang and

Li, 2007; Wang et al., 2007a, b; Wei et al., 2005, 2006a,

2006b, 2007), indicating the importance of finding con-

servative residues.

One of the representative methods in identifying the

conservative residues is ConSurf (Armon et al., 2001),

which used a maximum parsimony tree to calculate a site

conservation score as the number of substitutions weight-

ed by their physicochemical distance. Another algorithm

was named evolutionary trace (ET) (Lichtarge and Sowa,

2002), which utilizes a phylogenetic tree to identify resi-

dues that are identically conserved in a subtree. The max-

imum tree depth at which a residue remains unchanged is

used to rank the degree of conservation. This analysis was



later modified to incorporate a quantitative model of resi-

due substitutions. The ET method had been shown to be

capable of detecting protein interaction sites and direct-

ing protein mutation studies. In order to make the ET

method more robust against deviations from the ideal

family tree picture occurring in the actual protein evolu-

tion, Lichtarge et al. (Lichtarge and Sowa, 2002) devel-

oped a class of hybrid methods (real-valued evolutionary

trace method and zoom method) that combine evolution-

ary and Shannon entropies from multiple sequence align-

ments (Mihalek et al., 2006a, b). However, the hybrid

methods do not account for the physicochemical similari-

ties found between the different amino acids, and the gaps

in the multi-sequences alignment are treated as the 21st

amino acid.

In the present study, we are to combine evolutionary

and von Neumann entropies and propose a different gap-

treating approach for estimating the residue’s evolutionary

conservation. It is demonstrated by using the insulin re-

ceptor kinase domains as an example to show that the

current hybrid approach can enhance the prediction qual-

ity in comparison with the existing methods.

2. Materials and methods

2.1 Key residues

It is difficult to give a comprehensive and accurate definition for ‘‘func-

tionally important residue’’, although everyone seems to have an intuitive

concept of what these residues mean. A widely accepted definition is that

the functionally important residues are those indispensable for the protein

to perform its molecular function or to play its biological role in the sense

that these residues cannot be freely changed (except for change to some

compatible amino acids) without directly affecting its native function. In

this study we call these ‘‘functionally important residues’’ the key resi-

dues, which are in a broad sense directly related to the active=catalytic

sites, protein binding sites, small ligand binding sites, nucleic acids bind-

ing sites, and so on. For example, the key residues taken from the insulin

receptor (1irk.pdb) are listed in Table 1.

2.2 Proteins in the testing dataset

Half of proteins in the testing dataset were taken from (Mihalek et al.,

2004). Some proteins whose computational results could not be ob-

tained from Lichtarge Computational Biology Lab web service at

http:==mammoth.bcm.tmc.edu=report_maker=index.html or Ben-Tal’s

ConSurf web service at http:==consurf-hssp.tau.ac.il=cgi-bin=consurf-

hsspNew.cgi were deleted. Other five proteins were from (Zhu et al.,

2006). To construct a reasonable independent testing dataset, the key res-

idues were defined according to the PDBsum database (http:==www.ebi.

ac.uk=thornton-srv=databases=pdbsum=). In general, the key residues

are the constituents of the following: active sites, catalytic residues,

interaction with ligand, interaction with metal, and PROSITE pattern

residues (mainly refer to red, red orange, and orange residues). The

protein PDB code and the number of key residues in the testing dataset

are given in Table 2.

2.3 Initial selections of sequences

Three sets of sequences from three different sources are considered. The

raw sequence sets were created by using three iterations of PsiBlast

(Altschul et al., 1997), with the 0.001 E-value cutoffs on the UniProt data-

base of proteins. The PsiBlast resulting sets were aligned by a standard

alignment method such as ClustalW 1.8 (Thompson et al., 1994). The

pruned sequence sets were Lichtarge_HSSP and Consurf_HSSP. HSSP is a

standard database of sequence selections=alignments obtained by carefully

rethinking the similarity cutoffs for sequences of different lengths. The

Lichtarge_HSSP alignments have the sequences that are selected ac-

cording to Litcharge’s criterion (Mihalek et al., 2004, 2006b). The

Consurf_HSSP alignments have the sequences that are selected according

to Ben-Tal’s criterion (Glaser et al., 2003).

2.4 Residue ranking score

The residue ranking function assigns a score to each of the residues con-

cerned, and according to the scores they can be sorted in the order of the

presumably decreasing evolutionary pressure they experience. By combin-

ing the evolutionary and von Neumann entropies to estimate the residue

evolutionary conservation, we propose a new approach to calculate the

Table 1. The 38 key residues of the insulin receptor (1irk.pdb)a

SER1006 VAL1010 LYS1030 LEU1038 ILE1042 LEU1045 GLU1047

PHE1054 ARG1061 GLU1077 MET1079 GLY1082 ASP1083 LYS1085

ARG1089 ARG1092 ARG1131 ARG1136 ASN1137 MET1139 ASP1150

PHE1151 GLY1152 ARG1155 TYR1158 TYR1162 TYR1163 ASP1132

ARG1164 GLY1166 LEU1171 PRO1172 VAL1173 MET1176 LEU1181

ASN1215 GLU1216 LEU1219

a For a full discussion about these residues, see Hubbard (1997) and Mihalek et al. (2004)

Table 2. The proteins used for the testing dataset

PDB code 1au1A 1aulA 1bkx 1cqiA 1ctq 1exqA 1fha 1hzxA 1mxrA 3tmkA

Number of residues 166 243 339 286 166 147 172 340 339 216

Number of key residues 19 18 21 37 22 17 23 96 28 29
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residue ranking score as formulated below. The first step is to calculate the

Shannon entropy and von Neumann entropy of each alignment column.

The Shannon entropy for a residue belonging to column i in an MSA

(multiple sequence alignment) is given by

SShanon
i ¼ �

X20

a¼1

fi;a log20 fi;a þ fi;gap ð1Þ

where fi;a is the relative occurrence frequency of amino acid a at the

alignment position i. The base of 20 ensures that all values are bounded

between zero and one. The symbol fi;gap represents the number of non-

standard amino acids (such as ‘‘–’’, ‘‘X’’, ‘‘Z’’, ‘‘B’’) at the alignment

position i divided by the number of alignment sequences. The von

Neumann entropy is given by

Svon
i ¼ �Trð!i log20 !iÞ ð2Þ

where !i is a density matrix with trace¼ 1. Apart from normalization by

the trace, the density matrix is given by the product of the relative

frequencies of the amino acids in each alignment position fi;a and an

appropriate similarity matrix, that is, !i ¼ diag½fi;A; fi;C ; . . . fi;a; . . . ; fi;Y ��
similarity matrix. The calculation of Eq. (2) is facilitated by first calculat-

ing the eigenvalues �i;m of !i, and hence it follows that

Svon
i ¼ �

X
m

�i;m log20 �i;m þ fi;gap ð3Þ

When the similarity matrix is the identity matrix, the von Neumann

entropy (Eq. (3)) becomes identical to the Shannon entropy of Eq. (1).

The second step is to divide an MSA into sub-alignments (that is n

groups) that correspond to nodes in the tree. This subdivision of an

MSA into smaller alignments reflects the tree topology, and hence the

evolutionary variation information within it. The evolutionary score for

a residue belong to column i in an MSA is given by the following series

of equations

Ri ¼ 1 þ
XN�1

n¼1

wnodeðnÞ
Xn
g¼1

wgroupðgÞ
�
�
X20

a¼1

f
g
i;a log20 f

g
i;a þ f

g
i;gap

�
ð4Þ

where wnodeðnÞ, wgroupðgÞ are weights assigned to a node n and a group g,

respectively.

wnodeðnÞ ¼
1; if n on the path to the query protein

0; otherwise

�
ð5Þ

wgroupðgÞ ¼
1; if g on the path to the query protein

0; otherwise

�
ð6Þ

f
g
i;a is the frequency of amino acid of type a within a sub-alignment

corresponding to group g at the level in which the sequence similarity

tree is divided into n groups. Namely, the nodes (labeled by n) are

assumed to be numbered in the order of increasing distance from the

root, and each one of them is associated with a division of the tree into

n groups (subtrees). N is the number of alignment sequences, f
g
i;gap the

number of non-standard amino acids of g group in the alignment

position i divided by the number of g group alignment sequences.

Further details about division of tree nodes and groups can be found

in literature (Mihalek et al., 2004). We call the scoring function by

Eq. (4) the improved zoom (IZ) method. Considering the physicochem-

ical similarities between the different amino acids, Eq. (4) can be fur-

ther formulated as follows:

Ri ¼ 1 þ
XN�1

n¼1

wnodeðnÞ
Xn
g¼1

wgroupðgÞ
�
�
X
m

�g
i;m log20 �

g
i;m þ f

g
i;gap

�
ð7Þ

where �g
i;m is the eigenvalues of the density matrix !g

i of g group in the

alignment position i. Equation (7) is called the physicochemical similarity

zoom (PSZ) method. If we take wnodeðnÞ ¼ 1=n, wgroupðgÞ ¼ 1, Eqs. (4)

and (7) can be, respectively, expressed by

�i ¼ 1 þ
XN�1

n¼1

1

n

Xn
g¼1

�
�
X20

a¼1

f
g
i;a log20 f

g
i;a þ f ggap

�
ð8Þ

�i ¼ 1 þ
XN�1

n¼1

1

n

Xn
g¼1

�
�
X
m

�g
i;m log20 �

g
i;m þ f

g
i;gap

�
ð9Þ

Equations (8) and (9) are called the improved real-valued (IRV) meth-

od and the physicochemical similarity real-valued (PSRV) method,

respectively.

Through Eqs. (1), (3)–(4) and (7)–(9), each residue of the protein

concerned can be assigned a score. The smaller the score is, the more

conservation the residue is.

2.5 Sensitivity and specificity

To compare the performance of different methods, the parameters of

sensitivity (Sn) and specificity (Sp) are introduced to estimate the quality

of different approaches.

Sn ¼
TP

TPþ FN
ð10Þ

Sp ¼
TN

TN þ FP
ð11Þ

where TP is the number of important residues found correctly, TN is the

number of unimportant residues predicted correctly, and FN and FP are

numbers of unimportant and important residues predicted incorrectly,

respectively. In fact, the sensitivity is the ratio of the number of important

residues found correctly to the known total number of important residues

(true identified positive=actual positive), while specificity is the number

of unimportant residues predicted by the method divided by the number

of residues known not to be important (true identified negative=actual

negative).

3. Results and discussion

The insulin receptor is a transmembrane protein that binds

to the insulin hormone. The binding leads to autopho-

sphorylation of tyrosine residues in the activation loop

of the protein, resulting in an enhancement of the catalytic

activity and creation of binding sites for downstream sig-

naling proteins. Its structure and residue enumeration can

be found in the Protein Data Bank (http:==www.rcsb.

org=pdb) under the code 1irk. The four key parts of

the 1irk machinery are (i) the residues involved in ATP

binding, (ii) active site (peptide-binding site), (iii) rota-

tional pivot points and other residues involved in lobe

closure, which are important in conformational change

between inactive and phosphorylated state, and (iv) acti-

vation loop, which occupies the ATP-binding site in the

inactive form with the three key tyrosine residues in-

volved in autophosphorylation highlighted. Sensitivity

is the percentage of key residues that is found among

the top n residues on the list (the score was aligned from

Estimating residue evolutionary conservation by introducing von Neumann entropy and a novel gap-treating approach 497



small to large, i.e., the top n residues have small scores),

and specificity is the percentage of residues that are

not singled out as important and can be found below

the nth position. Each point on the graph is the speci-

ficity-sensitivity pair for one particular choice of n. The

sensitivities and specificities of six methods (Shannon,

von Neumann, IZ, PSZ, IRV, and PSRV) with raw and

Lichtarge_HSSP alignment sequence sets are shown as

Figs. 1 and 2, from which we can see that IZ and PSZ top

the other four methods in both sensitivity and specificity

for almost any choice of n (the exception being of mar-

ginal size) indicating that the performances of IZ and

PSZ are better than those of the other four methods. Fur-

thermore, it can also be seen from Figs. 3 to 4, as well as

Table 3, that the performance of our gap-treating ap-

proach is better than that of Mihalek gap handling ap-

proach (Mihalek et al., 2004).

In addition to the insulin receptor 1irk, the comparison

has been extended to cover more proteins. Shown in Table 3

are the predicted results by the four different methods on

the 10 proteins listed in Table 2. As shown in Table 4,

Fig. 1. The sensitivity versus the specificity of the prediction for the six

methods using the raw sequence selection (for a color reproduction of

this figure, the reader is referred to the online version of this paper under

www.springerlink.com)

Fig. 2. The sensitivity versus the specificity of the prediction for the six

methods using the Lichtarge-HSSP (for a color reproduction of this

figure, the reader is referred to the online version of this paper under

www.springerlink.com)

Fig. 3. The sensitivity versus the specificity of the prediction for ours

and Mihalek gap treating approache with Lichtarge-HSSP using IZ (for

a color reproduction of this figure, the reader is referred to the online

version of this paper under www.springerlink.com)

Fig. 4. The sensitivity versus the specificity of the prediction for ours

and Mihalek gap treating approache with Lichtarge-HSSP using PSZ

(for a color reproduction of this figure, the reader is referred to the online

version of this paper under www.springerlink.com)
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performances of IZ and PSZ are better than that of

Lichtarge’ s hybrid method and Ben-Tal’s ConSurf method.

4. Conclusion

Introducing von Neumann entropy and a novel gap-treat-

ing approach in the sequence alignment is quite promising

for estimating residue evolutionary conservation. The

novel approach can at least play a complementary role

in the existing methods in this area.
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Table 3. The top 25% (76 residues) of all residues in the ranking sequence according to the conservation

score from small to big for the insulin receptor (lirk.pdb) by different methodsa

PSZ (including

23 key residues)

IZ (including

22 key residues)

Lichtarge (including

18 key residues)

Ben-Tal (including

17 key residues)

1003, 1005, 1007,

1008, 1010, 1013,

1028, 1030, 1044,

1047, 1051, 1054,

1062, 1064, 1076,

1077, 1079, 1082,

1083, 1084, 1088,

1112, 1116, 1119,

1120, 1122, 1123,

1130, 1131, 1132,

1133, 1134, 1135,

1136, 1137, 1138,

1139, 1147, 1148,

1149, 1150, 1151,

1152, 1153, 1155,

1162, 1163, 1172,

1173, 1174, 1175,

1176, 1179, 1181,

1184, 1186, 1190,

1191, 1193, 1194,

1196, 1197, 1198,

1199, 1200, 1201,

1209, 1210, 1212,

1218, 1234, 1242,

1245, 1246, 1253,

1256

1003, 1007, 1008,

1010, 1013, 1028,

1030, 1047, 1051,

1060, 1062, 1064,

1065, 1071, 1077,

1079, 1082, 1083,

1084, 1088, 1116,

1119, 1120, 1122,

1123, 1129, 1130,

1131, 1132, 1133,

1134, 1135, 1136,

1137, 1138, 1139,

1140, 1146, 1147,

1148, 1150, 1151,

1152, 1153, 1155,

1162, 1163, 1172,

1173, 1174, 1175,

1176, 1178, 1179,

1180, 1181, 1190,

1191, 1193, 1194,

1196, 1197, 1198,

1199, 1200, 1201,

1203, 1210, 1218,

1234, 1242, 1245,

1246, 1253, 1254,

1256

1003, 1005, 1007,

1008, 1010, 1027,

1028, 1030, 1044,

1047, 1048, 1051,

1054, 1056, 1060,

1062, 1064, 1074,

1077, 1082, 1083,

1084, 1088, 1115,

1119, 1120, 1122,

1123, 1130, 1131,

1132, 1133, 1134,

1135, 1136, 1137,

1138, 1139, 1140,

1146, 1147, 1148,

1149, 1150, 1151,

1152, 1153, 1154,

1155, 1172, 1174,

1175, 1176, 1177,

1178, 1179, 1186,

1190, 1191, 1192,

1193, 1194, 1196,

1198, 1200, 1201,

1206, 1209, 1210,

1228, 1231, 1242,

1245, 1246, 1253,

1256

1003, 1005, 1007,

1008, 1010, 1027,

1028, 1029, 1030,

1047, 1048, 1051,

1056, 1058, 1060,

1062, 1064, 1074,

1076, 1077, 1082,

1083, 1084, 1088,

1115, 1117, 1119,

1120, 1122, 1123,

1129, 1130, 1131,

1132, 1133, 1134,

1135, 1136, 1137,

1139, 1147, 1148,

1149, 1150, 1151,

1152, 1153, 1154,

1155, 1172, 1174,

1175, 1176, 1177,

1178, 1179, 1180,

1187, 1190, 1191,

1192, 1193, 1194,

1196, 1197, 1201,

1204, 1209, 1228,

1231, 1242, 1245,

1246, 1253, 1254,

1256

a The key residues identified by the corresponding method are highlighted in bold-face type

Table 4. The key residue number found in the top 25% of all residues for the multi-proteins with different methods

PDB code PSZ IZ Lichtarge Ben-Tal

NKR S25
n NKR S25

n NKR S25
n NKR S25

n

1au1A 7 7=19¼ 0.37 9 9=19¼ 0.47 9 9=19¼ 0.47 8 8=19¼ 0.42

1auLA 10 10=18¼ 0.56 10 10=18¼ 0.56 10 10=18¼ 0.56 9 9=18¼ 0.50

1bkx 16 16=21¼ 0.76 15 15=21¼ 0.71 16 16=21¼ 0.76 17 17=21¼ 0.81

1cqiA 25 25=37¼ 0.68 30 30=37¼ 0.81 28 28=37¼ 0.76 29 29=37¼ 0.78

1ctq 15 15=22¼ 0.68 15 15=22¼ 0.68 13 13=22¼ 0.59 13 13=22¼ 0.59

1exqA 6 6=17¼ 0.35 6 6=17¼ 0.35 6 6=17¼ 0.35 5 5=17¼ 0.29

1fha 12 12=23¼ 0.52 13 13=23¼ 0.57 12 12=23¼ 0.52 8 8=23¼ 0.35

1hzxA 27 27=96¼ 0.28 27 27=96¼ 0.28 22 22=96¼ 0.23 25 25=96¼ 0.26

1mxrA 14 14=28¼ 0.50 13 13=28¼ 0.46 13 13=28¼ 0.46 8 8=28¼ 0.29

3tmkA 19 19=29¼ 0.66 18 18=29¼ 0.62 18 18=29¼ 0.62 18 18=29¼ 0.62

a NKR represents the number of key residues found
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