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Summary. In this proof-of-concept study, we attempt to determine wheth-

er the cause-mutation relationship defined by randomness is protein de-

pendent by predicting mutations in H5N1 neuraminidases from influenza

A virus, because we have recently conducted several concept-initiated

studies on the prediction of mutations in hemagglutinins from influenza

A virus. In our concept-initiated studies, we defined the randomness as

a cause for mutation, upon which we built a cause-mutation relationship,

which is then switched into the classification problem because the occur-

rence and non-occurrence of mutations can be classified as unity and zero.

Thereafter, we used the logistic regression and neural network to solve this

classification problem to predict the mutation positions in hemagglutinins,

and then used the amino acid mutating probability to predict the would-be-

mutated amino acids. As the previous results were promising, we extend

this approach to other proteins, such as H5N1 neuraminidase in this study,

and further address various issues raised during the development of this

approach. The result of this study confirms that we can use this cause-

mutation relationship to predict the mutations in H5N1 neuraminidases.

Keywords: Influenza – Logistic regression – Mutation – Neuraminidase –
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Introduction

In preparation for the possible epidemics and pandemics

of influenza, an important issue is the prediction of mu-

tated proteins of influenza A virus, because the unpredict-

able mutations lead humans to have little immunity

against this deadly disease. Among various subtypes of

influenza viruses, the H5N1 viruses are highly pathogenic

(Lee et al., 2005; Chen et al., 2006), of which the muta-

tions mainly occur in the RNA genes coding for ten virus

proteins (Hilleman, 2002).

Neuraminidase is a sialidase (Gottschalk, 1957) that

prevents virion aggregation by removing cell and virion

surface sialic acid (Paulson, 1985), is the major antigen

for neutralizing antibodies and is involved in the binding

of virus particles to receptors on host cells (Zambon,

1999). Still, neuraminidase is the target of several anti-

influenza drugs (Hochg€uurtel et al., 2002; Garman and

Laver, 2004; Oxford et al., 2004). Of subtypes, H5N1

neuraminidase is important as H5N1 virus is currently

threatening humans and the mutations in neuraminidase

may lead to the dysfunction of anti-influenza drugs.

The preparedness is currently conduced along various

approaches, of which the modeling is playing its role in

this battle against influenza A virus. A prominent approach

in developing inhibitors is conducted at several levels. At

receptor protein level, the modeling helps to determine

the ‘‘binding pocket’’ of the receptor protein with its li-

gands (Chou, 2004a–e, 2005; Chou et al., 1997, 1999,

2000, 2003, 2006; Li et al., 2007; Wang et al., 2007a,

c). At ‘‘cleavage-site’’ level, the modeling is trying to find

the target residue for mutagenesis (Poorman et al., 1991;

Elhammer et al., 1993; Chou, 1993a, b, 1996; Thompson

et al., 1995). Upon two levels above, it is generally pos-

sible to find the target residues, the next level study is

directed to the mutagenesis and the designing of effective

inhibitors (Althaus et al., 1993a–c; Chou et al., 1994; Du

et al., 2005, 2007; Gan et al., 2006; Gao et al., 2007; Wei

et al., 2007). The fourth level of modeling is the determi-

nation of 3D structure of binding interaction in proteins of

interests (Wei et al., 2006; Wang et al., 2007b).

Recently we have tried to use the modeling approach

to predict mutations in proteins from influenza A virus,

which is related to several levels too, say, the prediction

of mutation positions, the prediction of would-be-mutated

amino acids at predicted positions, the timing of muta-

tions, and the prediction of new functions resulting from



the mutations. The first three types of predictions are rel-

evant to the primary structure of proteins, while the last

one is relevant to 3D structure of proteins.

It is no doubt that the best way for the prediction of

mutation is to find the cause for mutations, and then we

can build a cause-mutation relationship, and predict the

occurrence of mutation when its cause appears. This ap-

proach is quite straightforward, however it is challenged

by three facts. First, many causes, which led mutations

in the past, might nerve leave any trace due to the huge

changes in environments, so we would have a relatively

detailed record of mutations, but a poor record of their

causes. Thus, we could not establish the one-to-one rela-

tionship between causes and mutations. Consequently, we

even could not define the scale of causes for monitoring.

Second, the current version of proteins might not be sub-

ject to the causes, which led the historic mutations, be-

cause of evolution, the multi-drug resistance could be

an example for the evolution of bacteria. Third, it is diffi-

cult to find the historically macro- and micro-environmen-

tal surroundings, under which historic causes triggered the

mutations.

As the searching of each historically instant cause

appears difficult, we might need to direct our effort for-

ward the searching of constant causes, because the protein

constantly evolutes although its evolutionary speed is

not constant. Randomness should be one of such constant

causes, which engineer mutations through generation, not

only because the pure chance is now considered to lie at

the very heart of nature (Everitt, 1999) and the occurrence

of mutation is generally considered a random event (Fitch

et al., 1997), but also because randomness suggests that an

event does not occur deliberately, but naturally. This fur-

ther suggests that the event with a bigger probability

would occur more easily than the event with a smaller

probability. Although nature should deliberately construct

the absolutely necessary structure for a protein with more

time and energy, there must be some structures that can be

explained by random mechanism, because not only nature

follows parsimony, but also nature cannot predict the fu-

ture by constructing the structure for the future, which are

currently useless.

Once we could measure and quantify this randomness,

we could compare the quantified randomness before and

after mutations to determine whether randomness plays

a role. If so, we could build a quantitative cause-muta-

tion relationship to predict the mutations engineered by

randomness.

Although it is difficult to measure and quantify the ran-

domness in nature, we could measure and quantify the

randomness in a protein, which mirrors the randomness

in nature. Since 1999, we have developed three methods

to quantify the randomness in protein, and find the quan-

tified randomness sensitive to mutations. This means that

the randomness does play an important role in engineer-

ing mutations or we can use the random mechanism to

explain some mutations.

Furthermore, this also means that we can build a cause-

mutation relationship accounting for the mutations engi-

neered by randomness. This is possible, because we can

classify the occurrence and non-occurrence of mutation as

unity and zero. This way, the cause-mutation relationship

is switched into the classification problem, which can be

solved either using logistic regression or neural network.

However, the occurrence and non-occurrence of mutation

is a binary event, which means that we can only use this

cause-mutation relationship to predict the mutation posi-

tions rather than the would-be-mutated amino acids at

predicted positions.

For prediction of would-be-mutated amino acids, we

have more difficulties to build a deterministic relationship

or classification model. However, there are several com-

mon ways (Dayhoff et al., 1978; Feng et al., 1985; Karlin

and Ghandour, 1985; M€uuller et al., 2002) as well as the

amino acid mutating probability developed by us (Wu and

Yan, 2005g, 2006a, 2007b) to solve this issue.

All these indicate that the prediction of mutations

includes at least two steps, say, the prediction of mutation

position and the prediction of would-be-mutated amino

acids at predicted positions. Along this two-step frame,

we very recently conducted several concept-initiated stud-

ies to test whether we can apply this cause-mutation rela-

tionship with logistic regression as well as neural network

to predicting the mutation positions, and then apply the

amino acid mutating probability to predicting the would-

be-mutated amino acids at predicted mutation positions

in hemagglutinins from influenza A virus (Wu and Yan,

2006e, f, 2007a, c, d).

As the results of these concept-initiated studies appear

promising, we need to conduct many more proof-of-con-

cept studies to determine whether this approach is depen-

dent on different proteins, subtypes, etc., and to refine the

approach and to clarify the related issues. Hence, we at-

tempt to apply this approach to predicting the mutations in

H5N1 neuraminidase from influenza A virus in this study.

Materials and methods

429 H5N1 neuraminidases from influenza A virus from 1996 to 2006 are

obtained from influenza virus resources (Influenza virus resources, 2006).
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As our approaches are not familiar to most researchers, we will explain

them in great details.

Prediction model

In our two-step frame, the prediction model is only related to the cause-

mutation relationship, which is switched to the classification problem.

Thus, we use the logistic regression, whose output ranges between zero

and unity, PðyÞ ¼ 1
1þeb0þb1x1þb2x2þb3x3þb4x4þb5x5þb6x6þb7x7

, where xi is the indepen-

dent, y is the dependent, and bi is the model parameters. As our previous

studies shows that seven independents work better than six independents

(Wu and Yan, 2006f, 2007a, d), we will use seven independents in model-

ing of neuraminidase in this study.

Independent I – amino-acid pair predictability

This quantification is calculated according to permutation, and we have

used it to study various proteins (Wu, 1999, 2000a–g; Wu and Yan,

2000a–c, 2001a–c, 2002a–d, 2003a–h, 2004a–e, 2005a–d, f, 2006b, d–f,

2007a, c). Its rationale includes: (i) this is the simplest way to quantify

the randomness in a protein, (ii) the counting of amino-acid pairs was

inspired from modern encryption technology by counting the frequency

of basic unit in an unknown language, and (iii) a good signature pattern of

a protein must be as short as possible, but the conserved sequence is not

longer than four or five residues (PROSITE, 2002), while our previous

studies show the amino-acid pair the best for our aim. The practical

meanings are that this amino-acid pair predictability is very sensitive to the

change in neighboring amino acids, and answers why a type of amino acid

is adjacent to a certain type of amino acid but not to the others.

The simplest calculations are as follows: according to the permuta-

tion, for example, there are 44 glycines (G) and 34 isoleucines (I) in 2005

AB239126 neuraminidase, the randomly predicted frequency of amino-

acid pair ‘‘GI’’ is 3 (44=449� 34=448� 448¼ 3.3318), that is, ‘‘GI’’ would

appear three times in this neuraminidase, which is the predicted frequency

and is the reference for comparison. Actually we do find 3 ‘‘GI’’, so ‘‘GI’’

is predictable and the difference between its actual and predicted frequen-

cy is 0. Again, there are 28 threonines (T) in AB239126 neuraminidase,

and the randomly predicted frequency of ‘‘TI’’ is 2 (28=449� 34=448�
448¼ 2.1203), i.e. there would be two ‘‘TI’’ in the neuraminidase. But the

‘‘TI’’ appears five times in reality, so the difference between its actual and

predicted frequency is 3. After such calculations, each amino-acid pair has

its difference between actual and predicted frequency. As a point mutation

is related to a single amino acid, it connects with two neighboring amino

acids except for the terminal one and constructs two amino-acid pairs, so

each amino acid can have the sum of difference between actual and

predicted frequency in two neighboring amino-acid pairs (SDAPF).

Independent II – percentage of SDAPF

This is a derivate quantification, because our previous studies show that the

mutation minimizes the difference between actual and predicted frequen-

cy, and the bigger the difference is, the more vulnerable the amino-acid

pair to mutation is (Wu and Yan, 2002a–c, f, 2003a–h, 2004a–c). As each

amino acid in neuraminidase has its SDAPF, which generally ranges from

�5 to 9, we count how many amino acids have SDAPF of 1, SDAPF of 2,

and so on, then calculate their percentage with respect to all amino acids,

and each amino acid has this percentage.

Independent III – interaction between SDAPF and its percentage

This quantification is based on the common consideration in regres-

sion, that is, the first-order interaction between independents is fre-

quently included in regression analysis (Draper and Smith, 1981;

Hosmer and Lemeshow, 2000). In our case, SDAPF and its percentage

are closely related one another, and our previous studies suggest that

the interaction significantly enhances the predictability (Wu and Yan,

2006e, f, 2007a, d). We therefore assign the first-order interaction to

each amino acid.

Independent IV – amino-acid distribution probability

This quantification is calculated according to the occupancy of subpopula-

tions and partitions (Feller, 1968), and we have used this quantification to

study various proteins (Gao et al., 2006; Wu and Yan, 2000d, 2001d, e,

2002c–f, 2004f, 2005d, e, 2006c–f, 2007a, c, d).

The quantification is developed along such line of thought, for example,

there are two methionines (M) among 141 amino acids in human hemo-

globin a-chain (Wu and Yan, 2000d). With regard to their random distri-

bution, our intuition may suggest that there would be one ‘‘M’’ in the first

half of the chain and another ‘‘M’’ in the second half, which is true in real-

life case. In fact, there are only three possible distributions of ‘‘M’’s in

human hemoglobin a-chain, i.e. (i) both ‘‘M’’s are in the first half, (ii) one

‘‘M’’ is in each half and (iii) both ‘‘M’’s are in the second half. If we do not

distinguish either first half or second half but are simply interested in

whether both ‘‘M’’s are in both halves or in any half, we will have the

probability of 1=2 for each distribution.

If we are interested in the distribution probability of three amino acids

in a protein sequence, we naturally imagine to group the protein into three

parts, and our intuition may suggest that each part contains an amino acid.

If we do not distinguish the first, second and third part, actually there are

three types of distributions, i.e. (i) each part contains an amino acid, (ii)

two amino acids are in a part and an amino acid in another part, and (iii)

three amino acids are in a part. However, the distribution probabilities are

different for them, say, 0.2222 for (i), 0.6667 for (ii) and 0.1111 for (iii).

Clearly the protein can only adopt one type of distribution for these three

amino acids, which is the actual distribution probability, and we may guess

that the distribution (ii) is more likely to happen because of its biggest

probability, which is the predicted distribution probability and is the

reference for comparison.

For four amino acids, we will have five distribution probabilities, i.e. (i)

each part contains an amino acid, (ii) a part contains two amino acids and

two parts contain an amino acid each, (iii) two parts contain two amino

acids each, (iv) a part contains an amino acid and a part contains three

amino acids, and (v) a part contains four amino acids. Their distribution

probabilities are 0.0938, 0.5625, 0.1406, 0.1875, 0.0156, respectively.

Further, we have seven distributions for five amino acids, we have 11

distributions for six amino acids, we have 15 distributions for seven amino

acids, and so on.

So we view the positions of each kind of amino acids in a protein as a

certain distribution, whose probability can be calculated according to the

equation of r!=(q0!� q1!� � � � � qn!)� r!=(r1!� r2!� � � � � rn!)� n�r

(Feller, 1968), where ! is the factorial function, r is the number of a kind of

amino acid, q is the number of parts with the same number of amino acids

and n is the number of grouped parts in the protein for a kind of amino

acid. In fact, this distribution probability can be referred to the statisti-

cal mechanics, which classifies the distribution of elementary particles

in energy states according to three assumptions of whether or not dis-

tinguishing of each particle and energy state, i.e. Maxwell-Boltzmann,

Fermi-Dirac and Bose-Einstein assumptions (Feller, 1968). In plain words,

this distribution probability is the probability if we would receive seven

letters in a week but the letters distribute randomly.

The practical meanings are that this quantification is mainly subject to

any change in the position of amino acid, and answers why the majority of

amino acids cluster in some regions rather than homogenously distribute

along the primary structure of a protein.

With respect to neuraminidases in this study, for instance, there are 18

cysteines (C) in AB239126 neuraminidase. Its predicted and actual distri-

bution probabilities are 0.1246 and 0.0138, so the ratio of predicted versus

actual distribution probabilities is 9, whose natural logarithm is 2.1972

(LRPADP). In this way, each amino acid has its LRPADP.
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Independents V and VI – percentage of LRPADP and interaction

between LRPADP and its percentage

With the similar consideration of independents II and III, we give the

percentage of LRPADP and the first order interaction between LRPADP

and its percentage to each amino acid.

Independent VII – future composition of amino acids

This quantification is calculated according to the translation probability

between RNA codons and translated amino acids (Wu and Yan, 2005g,

2006a, 2007b), and we have used this quantification to study various

proteins (Wu and Yan, 2005g, 2006a, f, 2007a–d).

This quantification is developed along such line of thought, for example,

we are interested in the amino acid threonine and its mutated amino acids

with their mutating probability. As the RNA codons have the unambiguous

relationship with their translated amino acids, we can extend this question

to RNA level, this is, a point mutation in RNA codon leads to the mutation

at amino acid level.

Threonine is related to RNA codons ACU, ACC, ACA, and ACG, the

mutation at the first position of ACU can lead ACU to mutate to CCU, GCU,

and UCU, which correspond to threonine to mutate to proline, alanine, and

serine at amino acid level. Similarly, the mutation at second position of

ACU can result in isoleucine, asparagine, and serine, the mutation at the

third position of ACU can result in threonine, threonine and threonine.

Taken four RNA codons together, threonine would mutate in such a way,

say, 4 alaninesþ 2 argininesþ 2 asparaginesþ 3 isoleucinesþ 2 lysinesþ
methionineþ 4 prolinesþ 6 serinesþ 12 threonines. Thus we have the

threonine mutating probability to these amino acids, say, 4=36þ 2=36þ
2=36þ 3=36þ 2=36þ 1=36þ 4=36þ 6=36þ 12=36. For all 20 kinds of

amino acids, we have the amino acid mutating probability in Table 1.

For the calculation of future composition of amino acids, we have the

following steps: (i) We would expect that ‘‘A’’ has the 12=36 chance of

mutating to ‘‘A’’ (line 2 in Table 1), ‘‘R’’ and ‘‘N’’ have no chance of mu-

tating to ‘‘A’’ (lines 3 and 4 in Table 1), ‘‘D’’ has 2=18 chance (line 5 in

Table 1), ‘‘C’’ has no chance (line 6 in Table 1), ‘‘E’’ has 2=18 chance, and so

on. (ii) Meanwhile, AB239126 neuraminidase has 18 ‘‘A’’, 16 ‘‘R’’, 29 ‘‘N’’,

21 ‘‘D’’, 18 ‘‘C’’, 20 ‘‘E’’, and so on. (iii) So we can estimate how many ‘‘A’’

can be mutated using 18� 12=36þ 16� 0þ 29� 0þ 21� 2=18þ 18�
0þ 20� 2=18þ, and so on. In total, this is the future composition of amino

acid ‘‘A’’. (iv) After calculated all 20 kinds of amino acids, ‘‘A’’ contributes

6.3374% to the future composition of neuraminidase, which is the predicted

composition and is the reference for comparison. (v) On the other hand,

‘‘A’’ contributes 4% (18=450) to the current composition of AB239126

neuraminidase. (vi) Thus, we have the ratio of future versus current

compositions, for example, the ratio of ‘‘A’’ is 1.5844 (6.3374%=4%),

which can be assigned to each ‘‘A’’ in AB239126 neuraminidase.

The practical meanings are that this quantification is mainly subject to

the future mutation trend, and answers with what probability an amino

acid mutates to another type of amino acid.

Dependent – occurrence or non-occurrence of mutation

The phylogenetics analyses the evolutionary process of neuraminidases in

question. Along same branch of the evolutionary tree, we can compare the

parent and daughter neuraminidases, the difference between them indi-

cates the occurrence of mutation, which is marked as unity, whereas no

difference between them indicates the non-occurrence of mutation, which

is marked as zero.

Would-be-mutated amino acid

To predict the would-be-mutated amino acids at predicted positions,

we can also use Table 1 to make the estimation, for example, we would

like to know which type of amino acid ‘‘T’’ would mutate to, according to

Table 1, we find that ‘‘T’’ has the highest mutating probability (12=36),

however this is only the case that ‘‘T’’ mutates to ‘‘T’’, then the next to the

highest probability is the one that would be likely to be mutated, that is,

‘‘S’’ has 6=36 probability of occurrence. This way, we can approximately

predict the would-be-mutated amino acids at the predicted positions.

Table 1. Amino acid mutating probability based on the translation probability between RNA codons and translated amino acids

Amino acid Mutated amino acid with its translation probability

A 12=36Aþ 2=36Dþ 2=36Eþ 4=36Gþ 4=36Pþ 4=36Sþ 4=36Tþ 4=36V

R 2=54Cþ 6=54Gþ 2=54Hþ 1=54Iþ 2=54Kþ 4=54Lþ 1=54Mþ 4=54Pþ 2=54Qþ 18=54Rþ 6=54Sþ 2=54Tþ 2=54Wþ 2=54STOP

N 2=18Dþ 2=18Hþ 2=18Iþ 4=18Kþ 2=18Nþ 2=18Sþ 2=18Tþ 2=18Y

D 2=18Aþ 2=18Dþ 4=18Eþ 2=18Gþ 2=18Hþ 2=18Nþ 2=18Vþ 2=18Y

C 2=18Cþ 2=18Fþ 2=18Gþ 2=18Rþ 4=18Sþ 2=18Wþ 2=18Yþ 2=18STOP

E 2=18Aþ 4=18Dþ 2=18Eþ 2=18Gþ 2=18Kþ 2=18Qþ 2=18Vþ 2=18STOP

Q 2=18Eþ 4=18Hþ 2=18Kþ 2=18Lþ 2=18Pþ 2=18Qþ 2=18Rþ 2=18STOP

G 4=36Aþ 2=36Cþ 2=36Dþ 2=36Eþ 12=36Gþ 6=36Rþ 2=36Sþ 4=36Vþ 1=36Wþ 1=36STOP

H 2=18Dþ 2=18Hþ 2=18Lþ 2=18Nþ 2=18Pþ 4=18Qþ 2=18Rþ 2=18Y

I 2=27Fþ 6=27Iþ 1=27Kþ 4=27Lþ 3=27Mþ 2=27Nþ 1=27Rþ 2=27Sþ 3=27Tþ 3=27V

L 6=54Fþ 2=54Hþ 4=54Iþ 18=54Lþ 2=54Mþ 4=54Pþ 2=54Qþ 4=54Rþ 2=54Sþ 1=54Wþ 6=54Vþ 3=54STOP

K 2=18Eþ 1=18Iþ 2=18Kþ 1=18Mþ 4=18Nþ 2=18Qþ 2=18Rþ 2=18Tþ 2=18STOP

M 3=9Iþ 1=9Kþ 2=9Lþ 1=9Rþ 1=9Tþ 1=9V

F 2=18Cþ 2=18Fþ 2=18Iþ 6=18Lþ 2=18Sþ 2=18Vþ 2=18Y

P 4=36Aþ 2=36Hþ 4=36Lþ 12=36Pþ 2=36Qþ 4=36Rþ 4=36Sþ 4=36T

S 4=54Aþ 4=54Cþ 2=54Fþ 2=54Gþ 2=54Iþ 2=54Lþ 2=54Nþ 4=54Pþ 6=54Rþ 14=54Sþ 6=54Tþ 1=54Wþ 2=54Yþ 3=54STOP

T 4=36Aþ 3=36Iþ 2=36Kþ 1=36Mþ 2=36Nþ 4=36Pþ 2=36Rþ 6=36Sþ 12=36T

W 2=9Cþ 1=9Gþ 1=9Lþ 2=9Rþ 1=9Sþ 2=9STOP

Y 2=18Cþ 2=18Dþ 2=18Fþ 2=18Hþ 2=18Nþ 2=18Sþ 2=18Yþ 4=18STOP

V 4=36Aþ 2=36Dþ 2=36Eþ 2=36Fþ 4=36Gþ 3=36Iþ 6=36Lþ 1=36Mþ 12=36V

STOP 1=27Cþ 2=27Eþ 1=27Gþ 2=27Kþ 3=27Lþ 2=27Qþ 2=27Rþ 3=27Sþ 2=27Wþ 4=27Yþ 4=27STOP

A alanine;R arginine;N asparagine;D aspartic acid;C cysteine; E glutamic acid;Q glutamine;G glycine;H histidine; I isoleucine; L leucine;K lysine;M

methionine; F phenylalanine; P proline; S serine; T threonine; W tryptophan; Y tyrosine; V valine
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Statistics

The SigmaStat (SPSS 1992–2003) and Systat (Systat Software 2004) are

used to conduct all the logistic regressions. The outlier (3SD) is calculated

according to Healy (1979). The prediction sensitivity, specificity and total

correct rate are calculated according to the method mentioned in Systat

software (Systat Software 2004). The Chi-square test is performed for

comparison.

Results and discussion

After all the calculations, each parent neuraminidase has

seven independents and one dependent for each amino

acid of its sequence, for example, Table 2 shows a frac-

tion of a neuraminidase after the calculation, where each

amino acid is associated with seven independents and

one dependent, which is determined by comparing 1996

AAD51926 and 1997 AAK38299 neuraminidases. Thus,

we can input this format of data into the logistic regres-

sion to obtain the model parameters.

In modeling, we use the so-called population estimates

to make predictions, and we have technically two ways to

obtain the population estimates, either by calculating

mean � SD of all obtained model parameters or by pool-

ing the data into a representative. We use the second

method in this study because the logistic regression does

not appear powerful enough to capture the mutation in

each sequence, which is particularly related to the ratio

of number of mutations to the length of sequence, al-

though neuraminidase is generally longer than hemagglu-

tinin and the logistic regression functions better.

In our previous studies (Wu and Yan, 2006e, f), we used

the linear regression to evaluate the prediction perfor-

mance, which is a very traditional method for evaluation

of prediction performance. However, we soon realized the

limitation of linear regression in context with the predic-

tion of mutation. This is because we generally have the

paired datasets for linear regression, for example, we

might have the measured and predicted blood drug con-

centrations at certain time points, and then we can use the

linear regression to regress them and get the correlation

coefficient. However, this is not suitable for the prediction

of mutation, for example, we might have five actual mu-

tation positions, but four predicted mutation positions. In

such a case, it would be difficult to use the linear regres-

sion because of unpaired datasets. Still, we also cannot

use the linear regression for evaluation of would-be-mu-

tated amino acids, because an amino acid can mutate to

several different types of amino acids, which cannot be

considered as paired cases.

To overcome this difficulty, we used the percentage of

captured positions for evaluation (Wu and Yan, 2007a, d),

and more recently we use the prediction sensitivity, spec-

ificity and total correct rate (Wu and Yan, 2007c) accord-

ing to the method mentioned in Systat software (Systat

Software 2004) because we can classify the predicted

mutation positions as the positives, false positives, nega-

tives and false negatives when comparing the predicted

with the actual mutation positions. Thus, the percentage

of captured positions in our previous studies (Wu and Yan,

2007a, d) is in fact equal to the total correct rate.

As can be seen in Fig. 1, the prediction pattern of H5N1

neuraminidase is similar to the prediction patterns of other

hemagglutinins although we can find the statistical differ-

ence. However, the statistical difference is mainly found

between the prediction in hemagglutinins with distin-

guishing arginine, leucine and serine and others. This is

very suggestive because it implies our research direction

in near future, say, to conduct the prediction at RNA

codon level as a single mutation in RNA codon level may

not lead to the mutation at amino acid level such as ‘‘A’’

has 12=36 chance of mutating ‘‘A’’ in Table 1.

Table 2. Independents and dependent of AAD51926 neuraminidase

Position Amino acid Independents Dependent

I II III IV V VI VI

1 M 2 22.3404 44.6809 0.4055 1.4894 0.6039 1.1468 0

� � � � � �
16 V 1 21.4894 21.4894 1.4962 6.8085 10.1868 0.9826 0

17 V 0 12.3404 0.0000 1.4962 6.8085 10.1868 0.9826 1

18 G 0 12.3404 0.0000 2.1752 9.5745 20.8265 0.7309 0

19 I 2 22.3404 44.6809 2.4812 8.0851 20.0611 0.7020 0

20 I 5 3.6170 18.0851 2.4812 8.0851 20.0611 0.7020 1

21 S 3 16.5957 49.7872 1.0498 11.4894 12.0618 0.8347 0

� � � � � �
469 K 2 22.3404 44.6809 2.9957 4.0426 12.1104 0.9620 0
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Still, Fig. 1 suggests that the cause-mutation relation-

ship defined is independent of subtypes of protein as well

as proteins, at least for hemagglutinins and neuramini-

dases. In this case, it means that the randomness does

play a mutating role not only in hemagglutinins but also

in neuraminidases although we need to conduct more

proof-of-concept studies to further determine this issue.

This way, we can obtain the population estimates

from regressing historical data. Thereafter, we can in-

put seven independents of recent neuraminidases, whose

mutations are yet to know, into the logistic regres-

sion with population estimates and get the output,

which is ranged from 0 to 1 in each position. For exam-

ple, the human H5N1 neuraminidase (AB239126) is a

relatively new sequence, which can serve for our predic-

tion. For this neuraminidase, we have seven indepen-

dents (Table 3), and then we put them into PðyÞ ¼
1

1þe0:42�0:214x1�0:061x2�0:156x3�0:021x4þ0:11x5þ0:016x6þ0:035x7
which is based

on the population of 90 neuraminidases from 2000 to

2004.

Figure 2 displays the prediction of mutation in

AB239126 H5N1 neuraminidase according to our two-

step frame. The solid line in the lower panel is the pre-

dicted mutation probability with respect to each position,

and the dash-dotted line is the cut-off mutation probabili-

ty of 0.5, that is, the amino acid whose mutation proba-

bility is larger than 0.5 risks mutation. The pie picture in

the upper panel shows how to predict the would-be-mu-

tated amino acid from serine at position 319 according to

the amino acid mutating probability in Table 1.

With the population estimates as model parameters for

prediction, an important issue is the sampling strategy

(Wu et al., 1995, 1996; Wu, 1997), that is, from which

population we get the population estimates, not only be-

cause there are many subtypes in neuraminidases (Air et al.,

Table 3. Independents of AB239126 neuraminidase

Position Amino acid Independents

I II III IV V VI VI

1 M 1 22.2222 22.2222 2.1972 5.7778 12.6951 0.9433

2 N 1 22.2222 22.2222 0.3365 6.4444 2.1684 0.6475

3 P 4 8.8889 35.5556 3.5766 4.8889 17.4854 0.9764

4 N 5 4.6667 23.3333 0.3365 6.4444 2.1684 0.6475

5 Q 2 21.3333 42.6667 2.8134 2.4444 6.8772 0.9832

6 K 0 12.8889 0.0000 0.8755 4.6667 4.0855 0.7919

7 I �1 5.1111 �5.1111 1.0527 7.5556 7.9535 0.7410

8 I 1 22.2222 22.2222 1.0527 7.5556 7.9535 0.7410

� � � � � �
449 K 2 21.3333 42.6667 0.8755 4.6667 4.0855 0.7919

Fig. 1. Prediction performance in studied proteins. The sensitivity is equal

to the predicted positives=the actual mutations (%), the specificity is equal to

the predicted negatives=the actual non-mutations (%), and the total correct

rate is equal to (predicted positivesþ predicted negatives)=length of hem-

agglutinin (%). 241 H5N1 HA six is the predictions using 241 H5N1

hemagglutinins with six independents; 333 H5N1 HA seven is the predic-

tions using 333 H5N1 hemagglutinins with seven independents; 333 H5N1

HA seven with RrLlSs is the predictions using 333 H5N1 hemagglutinins

with seven independents with distinguishing arginine, leucine and serine;

482 H3N2 HA seven is the predictions using 482 H3N2 hemagglutinins with

seven independents; 429 H5N1 NA seven is the predictions using 429 H5N1

neuraminidases with seven independents. The Chi-square test indicates the

statistically significant difference in sensitivity between 241 H5N1 HA six

and 333 H5N1 HA seven with RrLlSs, between 333 H5N1 HA seven and

333 H5N1 HA seven with RrLlSs, between 333 H5N1 HA seven with

RrLlSs and 482 H3N2 HA seven, between 333 H5N1 HA seven with RrLlSs

and 429 H5N1 NA seven; the statistically significant difference in specificity

between 241 H5N1 HA six and 333 H5N1 HA seven with RrLlSs, between

333 H5N1 HA seven and 429 H5N1 NA seven, between 333 H5N1 HA

seven with RrLlSs and 482 H3N2 HA seven, between 333 H5N1 HA seven

with RrLlSs and 429 H5N1 NA seven; the statistically significant difference

in total correct rate between 241 H5N1 HA six and 333 H5N1 HA seven with

RrLlSs, between 333 H5N1 HA seven with RrLlSs and 482 H3N2 HA

seven, between 333 H5N1 HA seven with RrLlSs and 429 H5N1 NA seven
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1985; Schreier et al., 1988; Harley et al., 1989; Liu et al.,

2003; Campitelli et al., 2004; Suzuki et al., 2004;

Bragstad et al., 2005) but also the migration of wild birds

is different one from another (Donis et al., 1989; Rohm

et al., 1995; Hoffmann et al., 2000; Guan et al., 2004;

Krauss et al., 2004; Wu and Yan, 2005e). This implies

that the population estimates obtained from Asian wild

bird may not be suited for the prediction of mutation in

wild bird in North America, which nevertheless needs

more studies. Suggestive is that we may have many dif-

ferent population estimates, based on which we make the

predictions, which of course needs more studies.
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