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Summary. The concentrations of free amino acids in plasma change co-

ordinately and their profiles show distinctive features in various physiolog-

ical conditions; however, their behavior can not always be explained by

the conventional flow-based metabolic pathway network. In this study, we

have revealed the interrelatedness of the plasma amino acids and inferred

their network structure with threshold-test analysis and multilevel-digraph

analysis methods using the plasma samples of rats which are fed diet de-

ficient in single essential amino acid.

In the inferred network, we could draw some interesting interrelations

between plasma amino acids as follows: 1) Lysine is located at the top

control level and has effects on almost all of the other plasma amino acids.

2) Threonine plays a role in a hub in the network, which has direct links to

the most number of other amino acids. 3) Threonine and methionine are

interrelated to each other and form a loop structure.

Keywords: Plasma amino acids – Profile – Relation – Network –

Threonine – Amino acid deficiency

Introduction

The recent advances in experimental technology made it

possible to analyze various kinds of metabolites in biolog-

ical samples comprehensively. The amounts of the meta-

bolites in biological fluids and tissues change temporally

in coordination with physiological conditions in complex

metabolic and signaling pathways. Multivariate analysis

and pattern recognition studies have revealed that these

metabolite profiles contain the phenotypic information

which can be used as a signature for a physiological con-

dition (Nicholson et al., 1999).

Amino acids are a group of metabolites which are im-

portant as substrates for protein synthesis as well as sig-

naling molecules (Felig, 1975). The plasma amino acid

concentrations, like other metabolites, have distinctive

features for various physiological conditions. Some dis-

eases such as liver failure (Holm et al., 1999), renal failure

(Hong et al., 1998), cancer (Watanabe et al., 1984), diabetes

(Watanabe et al., 1983), muscle dysfunction (Jimenez

Jimenez et al., 1991) and aminoacidemia (Tudor et al.,

1976) have been reported to have specific abnormalities

in plasma amino acid profiles. There are some studies

which make use of plasma amino acid profiles to diagno-

sis and distinguish abnormal subjects from healthy sub-

jects, or subtypes and stages of diseases (Noguchi et al.,

2006). One of the traditional examples of using plasma

amino acid profiles for diagnostic markers is the Fisher’s

ratio, which is a ratio of branched-chain amino acids to

aromatic amino acids and is used for the marker of liver

fibrosis (Ferenci and Wewalka, 1978; Soeters and Fischer,

1976). These studies clearly show that plasma amino acid

profile itself can be a useful tool for monitoring the phy-

siological state of an organism.

Although these previous studies discuss how to distin-

guish different physiological states using the plasma amino

acid profile data, the control mechanism behind the change

in the profile is not thoroughly discussed. Further investiga-

tions on the control mechanism of plasma amino acids

should uncover the trigger reasons for diseases or propose

a new treatment to improve the physiological conditions,

however, the control mechanism is so complicated that the

investigations have not been succeeded. The reasons for this

complexity should come from the interrelatedness of the

amino acids and a number of internal and external factors

affecting their concentrations. Amino acids are directly and



indirectly related to each other within a large metabolic

pathway and their concentrations in the plasma are equiva-

lent to the whole sum of the metabolic flow in each organs

and tissues. The metabolic flow in organs and tissues are

affected by various factors such as nutrition, diseases, exer-

cise, and body composition, and so does the plasma amino

acid profile. Also, there are still unknown metabolic path-

ways, which are being discovered not only experimentally

but also with using automated methods (Chou et al., 2006).

From these reasons, the changes in the concentrations of

plasma amino acids can not be simply explained by the

topological network structure of metabolic pathway map.

In the previous study, we have introduced the correla-

tion based network analysis of plasma and tissue amino

acids (Noguchi et al., 2006) and demonstrated the simi-

larity of the behavior of two amino acids in plasma and

tissues. In this study, we carried out the network analysis

one step further and introduced the directional relation-

ship between plasma amino acids. For this purpose, we

used plasma amino acid profile data of rats fed on a single

amino acid-deficient (minus-one) diet. In this experimen-

tal model, the plasma concentration of deficient amino

acid decreases drastically, which also affects the concen-

tration of other amino acids. This resembles the changes

observed in the gene expression profile of single gene

knock-out models (Yeang et al., 2005). Taking advantage

of this resemblance, the methods used for inferring gene

expression network structure are adopted in this study for

inferring the interrelated and directional network structure

of plasma amino acids without considering any prior topo-

logical information on metabolic pathways. This data dri-

ven analysis should lead us to the further understanding of

the dynamics of the plasma amino acid profiles and gives

us some clues for the factors affecting the interrelated

network under various physiological conditions.

Materials and methods

Animals, experimental design and sample collection

Adult male Sprague-Dawley rats were maintained on a 12:12-h light–dark

cycle, with water provided freely. Starting from 10 weeks of age, the rats

were randomly assigned and switched to control or one of the experi-

mental diets (n¼ 6 each). The composition of the diet is based on AIN93G

standard diet, slightly modified by replacing dextrin and sucrose by corn

starch, and casein by amino acid mixture shown in Table 1. Each experi-

mental diet (minus-one diet) is completely depleted of single essential

amino acids; histidine, isoleucine, leucine, lysine, methionine, phenylala-

nine, threonine, tryptophan and valine. The rats fed branched-chain amino

acid (BCAA) minus-one diets were kept for 5 weeks, and those fed other

essential amino acid (EAA) minus-one diets were kept for 15 weeks under

ad libitum feeding condition. Rats were sacrificed 3 h after feeding and

blood samples were collected from postcaval vein and mixed with EDTA

immediately to prevent coagulation. The plasma separated from the blood

samples are mixed with 2 volumes of 5% (w=w) trichloroacetic acid, and

centrifuged immediately at 4 �C, 8000� g for 20 minutes. The supernatant

Table 1. Amino acid composition in minus-one diet

%, w=w Control �His �Ile �Leu �Lys �Met �Phe �Thr �Trp �Val

His 2.54 0.00 2.54 2.54 2.54 2.54 2.54 2.54 2.54 2.54

Ile 4.45 4.45 0.00 4.45 4.45 4.45 4.45 4.45 4.45 4.45

Leu 8.13 8.13 8.13 0.00 8.13 8.13 8.13 8.13 8.13 8.13

Lys �HCl 8.82 8.82 8.82 8.82 0.00 8.82 8.82 8.82 8.82 8.82

Met 2.43 2.43 2.43 2.43 2.43 0.00 2.43 2.43 2.43 2.43

Phe 4.50 4.50 4.50 4.50 4.50 4.50 0.00 4.50 4.50 4.50

Thr 3.81 3.81 3.81 3.81 3.81 3.81 3.81 0.00 3.81 3.81

Trp 1.08 1.08 1.08 1.08 1.08 1.08 1.08 1.08 0.00 1.08

Val 5.73 5.73 5.73 5.73 5.73 5.73 5.73 5.73 5.73 0.00

Ah 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55 2.55

Arg 3.28 3.28 3.28 3.28 3.28 3.28 3.28 3.28 3.28 3.28

Asn �H2O 3.60 3.60 3.60 3.60 3.60 3.60 3.60 3.60 3.60 3.60

Asp 3.16 3.16 3.16 3.16 3.16 3.16 3.16 3.16 3.16 3.16

Cys-Cys 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

Gln 9.16 12.76 11.64 13.70 16.22 10.35 11.15 11.50 9.94 12.74

Glu 9.16 9.16 9.16 9.16 9.16 9.16 9.16 9.16 9.16 9.16

Gly 1.62 1.62 1.62 1.62 1.62 1.62 1.62 1.62 1.62 1.62

Pro 9.37 9.37 9.37 9.37 9.37 9.37 9.37 9.37 9.37 9.37

Ser 5.06 5.06 5.06 5.06 5.06 5.06 5.06 5.06 5.06 5.06

Tyr 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85 4.85

AA-Total 93.82 94.87 91.85 90.22 92.06 92.58 91.31 92.35 93.51 91.67

Starch 6.18 5.13 8.15 9.78 7.94 7.42 8.69 7.65 6.49 8.33

Total 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
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was filtrated with Ultrafree-MC filter (Cat. No. UFC3LGC00, Millipore),

and the amino acid concentrations were measured by an automatic amino

acid analyzer (L-8800; Hitachi, Tokyo, Japan).

Inferring methods

In this study, we are to use threshold-test analysis and the multi-level

digraph analysis methods to infer amino acid networks. Using graphic

approach or diagraph method to study biology-related can make the

problem more intuitive, facilitating illustration and stimulating imagina-

tion so as to help reveal the essence of the problem concerned. Graphic

approach has been successfully used to study enzyme-catalyzed system

(Chou, 1981, 1989; Chou and Liu, 1981; Kuzmic et al., 1992; Lin and

Neet, 1990), protein folding kinetics (Chou, 1990), HIV reverse transcrip-

tase inhibition mechanisms (Althaus et al., 1993a, b, c; Chou et al., 1994),

and analysis of base frequencies in the anti-sense strands of human protein

coding sequences (Zhang and Chou, 1996). Recently, the images of cel-

lular automata were used to investigate HBV virus gene missense mutation

(Xiao et al., 2005a), HBV viral infections (Xiao et al., 2006b), represent

biological sequences (Xiao et al., 2005b), predict protein subcellular

location (Xiao et al., 2006a), and analyze the fingerprint of SARS coro-

navirus (Wang et al., 2005).

Our strategy for the inference of interrelated amino acid networks can be

summarized as follow: (1) Given data of fold-change in concentration of

deficiency or over-consumption in one essential amino acid under the sta-

tionary state, the threshold-test analysis method is applied to infer binary

relationships between target amino acids. (2) The multi-level digraph anal-

ysis method infers consistent minimal binary relationships starting from

many binary relationships derived from the threshold-test analysis method.

Threshold-test analysis method

A threshold-test analysis method treats the data representing the binary

relations of change in the concentration of amino acids. These relations

describe the effects of one amino acid on the concentration of the other

amino acids and are mainly provided by the changes in the state of amino

acid concentrations (Fig. 1). Upon setting an arbitrary threshold value of

concentration ratio, one can extract binary relations between two amino

acids directly by estimation of the relative change in concentration ratios

(yF) or by the statistical probability of change in average concentrations

(yP) from deficiency or over-consumption in one essential amino acid

experimental data. The following method is explained using the concen-

tration ratios (yF) as an example. A set of amino acids is defined as

S ¼ fa; b; c; . . .g. We assume here experiments are those of deficiency

or over-consumption of one essential amino acid, and that the measure-

ments of concentrations of many amino acids are performed simulta-

neously. The change in concentration of the amino acids resulting from

the deficiency or over-consumption of one target amino acid relative to its

concentration under normal conditions (control of amino acids) is exam-

ined and recorded. This change may be recorded as an increase, decrease,

or no change. An concentration ratio matrix, E, is created from a set of

deficiency in one amino acid (or over-consumption) experiments, in which

each matrix element represents the real-valued ratio of amino acid con-

centration. For instance, the value of matrix element Eða; bÞ indicates the

relative change (the concentration ratio) in concentration of amino acid ‘b’

in comparison to its concentration under control conditions caused by the

deficiency (or over-consumption) in amino acid ‘a’. Thus the matrix E is

defined as E ¼ fða; bÞ; . . .g. The inference procedures of this network

model are as follows: (0) Obtain the concentration ratio matrix E using

several sets of the amino acid concentrations resulting from deficiency or

over-consumption of one essential amino acid. (1) Using the concentration

ratio matrix E, we determine whether a given amino acid affects another

given amino acid. For example, if, following the deficiency of amino acid

‘a’, the ratio of amino acid ‘b’ becomes higher than a given threshold

value (specifically, more than yF-times higher), or becomes lower than a

given threshold value (specifically, less than 1=yF-times lower) we say that

amino acid ‘a’ affects amino acid ‘b’ directly or indirectly, and the value of

element (a, b) in the binary matrix R is set to 1; R(a, b)¼ 1. (2) It should

be noted that the condition amino acid ‘a’ affects amino acid ‘b’, that is

R(a, b) takes the value 1, means both ‘‘a change in concentration-value of

‘a’ leads to a change in that of ‘b’’’ and also ‘‘no change in the concentra-

tion-value of ‘b’ leads to no change in that of ‘a’’’. Thus the probability of

Rða; bÞ takes the value 1, or more generally the probability that the value

Rði; jÞ takes the value 1, PðRði; jÞ ¼ 1Þ (where i; j ¼ 1; 2; . . . ; n in which n

is the total number of target amino acid) is examined through all the

experiments of deficiency or over-consumption of one essential amino

acid. An arbitrary second threshold value for probability is set, r, and

experimental events with PðRði; jÞ ¼ 1Þ>r are extracted statistically.

Multi-level digraph analysis method

A multi-level digraph analysis method infers amino acid networks by using

a set of binary relations between amino acid (e.g. amino acid ‘a’ affects

Fig. 1. Process of threshold-test analysis method
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amino acid ‘b’) (Maki et al., 2001, 2004). A systematical analysis of the

binary relations between pairs of amino acids enables us to reconstruct a

possible minimum architecture of the amino acid network that is consistent

with all of the data. In Fig. 2, the accessibility matrix R� is derived directly

from the binary relation R. In the accessibility matrix R�, if there exists

the relation that amino acid ‘a’ and ‘b’ affect each other, that is that

R�(a, b)¼R�(b, a)¼ 1, we cannot decide which amino acid is located

at the upper stream. We therefore introduce an ‘‘equivalence set’’, which

makes a single set of the group of amino acids affect each other, and this

group is deemed to be a single amino acid. In order to partition amino

acids into equivalence sets, we use the accessibility matrix R�. This matrix

is a relative transitive closure of the binary relation matrix, R,

R� ¼
[x
n¼0

Rn R0ði; jÞ ¼ 1 : i ¼ j

0 : i 6¼ j

�

Rnþ1 ¼ minð1;
P

k R
nði; jÞ � Rðk; jÞÞ

8<
: ð1Þ

where the matrix entry R�ða; bÞ indicates whether amino acid ‘a’ finally

affects amino acid ‘b’ or not. The multi-level digraph analysis model is

implemented on the basis of this accessibility matrix R�. Figure 2 shows

the procedure for drawing a multi-level digraph. For the accessibility

matrix R� in the figure, since ‘c’ and ‘d’ can be regarded as an equivalence

set, we can combine them as ‘c�’. In this manner, we can draw up

equivalence sets in a semi-ordered (topologically sorted) accessibility

matrix. A semi-ordered accessibility matrix between equivalence sets

includes indirect amino acid relations. In order to remove them and to

make a skeleton matrix, we process the semi-ordered matrix as follows:

The value of line i and column j in a semi-ordered matrix A and skeleton

matrix S are represented as Aði; jÞ and Sði; jÞ, respectively. If Aði; jÞ ¼ 1,

Sði; kÞðk ¼ 1; . . . ; nÞ is set to maxfAði; jÞ � Að j; kÞ; 0g. Thus, all indirect

effects are removed from the semi-ordered matrix. In Fig. 2, the relation

between amino acid ‘a’ and ‘c�’ are removed, we thus can construct the

skeleton matrix S. Finally we draw lines between nodes based on the value

Fig. 2. Process of the multi-level digraph analysis method

Fig. 3. Plasma amino acid concentration ratio. The concentration of plasma amino acid by amino acid minus-one diet is shown as the ratio to that of

control diet
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of each element in the skeleton matrix. In Fig. 2, the amino acids with

parentheses indicate an equivalence set of amino acids.

Results

Constructing binary interaction matrix

for plasma amino acids

The sample plasma was obtained from the amino acid

minus-one diet fed rats, whose plasma concentration of the

deficient amino acid is less than half of that of the control

diet fed rats. Deficiency in one essential amino acid trig-

gers the change in concentrations of all the other amino

acids in plasma as shown in Fig. 3. This change is con-

verted to the directional relation from the deficient amino

acids to all the other amino acids by the described

method. Two different values were adopted to set the

threshold. One is the fold-change value (yF-value). Larger

yF-value means the severer filtering condition. The other

value is the p-value (level of significance) for the aver-

age difference (yP-value). Each experimental and control

groups consist of 6 samples, and for all the amino acids

measured, the p-value, level of significance, for the aver-

age difference between the experimental group and the

control group was calculated using Dunnet’s multiple

comparison method. In this case, smaller yP-value means

the severer filtering condition.

Network structure estimated by the multi-level

digraph method

From the binary interaction matrix, multi-scale digraph

was drawn (Fig. 4). In the analysis using fold-change

value as the threshold, the number of amino acids (nodes)

composing the network decreases as the filtering threshold

becomes severer. In the analysis using the p-value (level

of significance), the number of nodes does not change

drastically as the threshold changes.

In either analysis, some amino acids formed an equiva-

lence group, in which the interactions (links) form a loop

and the direction of the effect on one another cannot be

Fig. 4. Network structure estimated by threshold-test analysis and multi-level digraph analysis methods. Network structure of plasma amino acids is

estimated using threshold-test analysis and multi-level digraph analysis methods. The amino acids whose minus-one diet experiments were performed

are indicated in circles. The change in plasma amino acid concentration was converted to binary relational values, in the manner described in the

results. The threshold to determine the binary value is set using a fold-change (yF-value) and b p-value (yP-value). For both cases, the figures to the

right uses severer threshold in determining the binary values. Lines with black arrowheads indicate the positive effects and the lines with white

arrowheads indicate the negative effects
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decided. When the filtering condition becomes severer, the

link forming the loop is disappeared and the equivalence

group disperses into the smaller groups or individual amino

acids. In the case using fold-change value, the equivalence

group disperses at the threshold of 3.0, and 3-level digraph

with 9 amino acids is drawn. In the case using p-value, the

equivalence group does not completely disappear and at

the threshold p¼ 0.001, which is the severest condition

inspected, 4-level digraph with 11 amino acids is drawn.

Since we should like to infer network model with as many

nodes and links as possible, we decided to use p-value for

the threshold for the further analysis.

Fig. 5. Network estimated from partial data. The minus-one dataset left out from the analysis is indicated in the left column. Each horizontal row uses

the same partial dataset for analysis. The figures to the right uses severer threshold in determining the binary values. Lines with black arrowheads

indicate the positive effects and the lines with white arrowheads indicate the negative effects
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Effect of each amino acid on the network structure

The same analysis was carried out using the partial data-

set. By excluding one amino acid minus-one dataset, we

can estimate the network structure without considering the

effect of the excluded amino acid. The results are shown

in Fig. 5. At the threshold p¼ 0.05, the removal of threo-

nine minus-one dataset changed the network structure

drastically. The equivalence group disappears and the in-

teractions between the amino acids which belonged to the

group are alternatively revealed. This indicates that the

relation responsible for holding the equivalence group

together was the effect of threonine on the other amino

acids, leucine, methionine, tryptophan and valine, in the

group. At the threshold p¼ 0.001, the only amino acids

forming the equivalence group are threonine and methio-

nine. By excluding threonine minus-one dataset, the ef-

fects of methionine on other amino acids are revealed, and

by excluding methionine minus-one dataset, the effects

of threonine are revealed. Integrating the information

obtained from the analysis of partial dataset, the estimated

network structure is further refined to the model shown in

Fig. 6. Threonine directly interacts with the most number

of amino acids, and lysine is located at the top control

level in all the other amino acids. Threonine and methio-

nine is interrelated each other, which forms a feedback

loop.

Discussion

Using the data obtained under the essential amino acid

minus-one condition, we have first estimated the coarse net-

work structure of the plasma amino acids. The minus-one

condition lowers the plasma concentration of the deficient

amino acid to less than half, and this condition was main-

tained for a fairly long period. This drop in the concentration

and the consequent changes in other amino acid concentra-

tions are theoretically equivalent to the single gene disrup-

tion experiments in which the expression of the disrupted

gene drops to nearly zero and the expression of the other

genes are altered. In these experiments the genes whose ex-

pression levels were altered are suggested to be directly or

indirectly regulated by the disrupted genes. Similarly, the

amino acids whose plasma concentration changed under

minus-one condition are suggested to be directly or indirect-

ly regulated by the deficient amino acid. Combining the es-

sential amino acid minus-one datasets, we were able to draw

a coarse network model which can explain the change in the

concentration of the plasma amino acids in our experiments.

Role of lysine and threonine in the network

In the estimated plasma amino acid network structure,

lysine is located at the top control level, which affects

most of the amino acids, but is not influenced by any

amino acids. This indicates the biological essentiality of

lysine in an organism. Lysine deficiency is the strongest

signal and the wide range of amino acid metabolism has

to be modulated to mitigate the damage. Threonine inter-

acts directly with the most number of the amino acids,

acting as a hub in the network. This suggests the possible

role of plasma threonine as a messenger which spreads the

information of any essential amino acid deficiency to the

whole body. When rats are fed minus-one diet, they will

respond by changing their metabolic flow, to save and re-

cycle the limited amino acid (Kimball, 2002) and com-

pensate for the shortage by making use of internal ami-

no acid pool, such as skeletal muscle (Kadowaki and

Kanazawa, 2003). In this regulation of metabolic rate,

threonine might play an important role. The concentration

of threonine rises in any amino acid minus-one condition,

except for threonine minus-one. Thus it is highly possible

that threonine may be used to regulate the pathway which

will be needed in any essential amino acid shortages.

Threonine-methionine loop

As shown in Fig. 6, we can speculate that threonine gives

positive influence to methionine, and methionine gives

Fig. 6. Refined network structure of plasma amino acids. The network

structure estimated in Fig. 4. is refined using results of the partial

dataset analysis in Fig. 5. Lines with black arrowheads indicate the

positive effects and the lines with white arrowheads indicate the nega-

tive effects. Dashed lines indicate the relationship extracted under

loose threshold value
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negative influence to threonine. These positive and nega-

tive interactions make up a loop which causes the temporal

oscillatory behavior of the threonine-methionine concen-

tration. This kind of oscillation can play a role in a trigger

switch in a biological system. One of the mutual rela-

tionships that link threonine and methionine is the com-

mon catabolic pathway downstream of 2-oxobutanoate.

Threonine is deaminated to form 2-oxobutanoate (Kapke

and Davis, 1976; Scarselli et al., 2003), and methionine

forms 2-oxobutanoate via L-homocysteine and cystathio-

nine (Stabler et al., 1993). This can partly explain the

positive effect of threonine on methionine. When the con-

centration of plasma threonine decreases, the concentra-

tions of 2-oxobutanoate may also decrease and the me-

thionine catabolism may be stimulated. Cystathionine

beta-synthase usually catalyzes the reaction of replac-

ing beta-OH of serine by homocysteine, however, it is

reported that threonine can be substituted for serine in

this reaction forming 3-methylcystathionine (Borcsok and

Abeles, 1982). Cystathionine beta-synthase is a key enzy-

me in methionine metabolism which directs the metabo-

lite flux towards catabolic trans-sulfuration pathway rath-

er than methionine recycling salvage pathway (Banerjee

and Zou, 2005). The fact that threonine can be a counter

substrate for this enzyme indicates the possibility of thre-

onine having direct regulatory effect on methionine meta-

bolism. Another possible link between threonine and

methionine is vitamin B12. There are two enzymes which

require vitamin B12, L-methylmalonyl-CoA mutase and

methionine synthase. L-methylmalonyl-CoA mutase cat-

alyzes the conversion of L-methylmalonyl-CoA to succi-

nyl-CoA. L-methylmalonyl-CoA is one of the metabolites

of threonine. Methionine synthase catalyzes the conversion

of 5-CH3-tetrahydrofolate and homocysteine to tetrahy-

drofolate and methionine, respectively (Allen et al., 1993;

Watanabe and Nakano, 1999). This may be a clue which

explains the negative effect of methionine to threonine.

The model reported in this study is constructed using the

static plasma amino acid data obtained in a condition

where plasma amino acids concentration had been equili-

brated by the minus-one condition. It is a snapshot or a

cross section, taken under this particular minus-one condi-

tion, of the dynamic plasma amino acid network. It is

constructed without any prior topological information of

the amino acid metabolic pathway, however, it is notable

that some relations in the model, such as the direct relation

of phenylalanine to tyrosine, can be explained by the path-

way map. By comparing and integrating snapshots taken

under various conditions, we can refine and validate the

estimated network structure of the plasma amino acid.
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