Skip to main content
Log in

EPR Spectroscopy of Impurity Ytterbium Ions in Synthetic Forsterite Single Crystals

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

Continuous wave and pulse X-band electron paramagnetic resonance spectroscopy are used to determine structure, magnetic and relaxation properties of paramagnetic centers formed by impurity ytterbium ions in forsterite (Mg2SiO4) single crystals. It is found that Yb3+ ions substitute Mg2+ ions both as single ions and as dimeric associates with nearby magnesium vacancy. For all ytterbium centers, magnetic properties are characterized by the strong easy plane anisotropy. Measurements in temperature range 5–15 K showed that spin–lattice relaxation of the Yb3+ ions in Mg2SiO4 is due to joint action of direct one-phonon process, Raman two-phonon process and resonance two-phonon Aminov–Orbach process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. H. de Riedmatten, M. Afzelius, M.U. Staudt, C. Simon, N. Gisin, Nature 456, 773 (2008). https://doi.org/10.1038/nature076

    Article  ADS  Google Scholar 

  2. C.W. Thiel, T. Böttger, R.L. Cone, J. Lumin. 131, 353 (2011). https://doi.org/10.1016/j.jlumin.2010.12.015

    Article  Google Scholar 

  3. M. Bonarota, J.-L. Le Gouët, T. Chanelière, New J. Phys. 13, 013013 (2011). https://doi.org/10.1088/1367-2630/13/1/013013

    Article  ADS  Google Scholar 

  4. C.W. Thiell, R.M. Macfarlane, Y. Sun, T. Böttger, N. Sinclair, W. Tittel, R.L. Cone, Laser Phys. 24, 106002 (2014). https://doi.org/10.1088/1054-660X/24/10/106002

    Article  ADS  Google Scholar 

  5. M. Lovrić, P. Glasenapp, D. Suter, B. Tumino, A. Ferrier, P. Goldner, M. Sabooni, L. Rippe, S. Kröll, Phys. Rev. B 84, 104417 (2011). https://doi.org/10.1103/PhysRevB.84.104417

    Article  ADS  Google Scholar 

  6. P. Jobez, C. Laplane, N. Timoney, N. Gisin, A. Ferrier, P. Goldner, M. Afzelius, Phys. Rev. Lett. 114, 230502 (2015). https://doi.org/10.1103/PhysRevLett.114.230502

    Article  ADS  Google Scholar 

  7. M. Gündoğan, P.M. Ledingham, K. Kutluer, M. Mazzera, H. de Riedmatten, Phys. Rev. Lett. 114, 230501 (2015). https://doi.org/10.1103/PhysRevLett.114.230501

    Article  ADS  Google Scholar 

  8. S. Bertaina, S. Gambarelli, A. Tkachuk, I.N. Kurkin, B. Malkin, A. Stepanov, B. Barbara, Nat. Nanotechnol. 2, 39 (2007). https://doi.org/10.1038/nnano.2006.174

    Article  ADS  Google Scholar 

  9. S. Bertaina, J.H. Shim, S. Gambarelli, B.Z. Malkin, B. Barbara, Phys. Rev. Lett. 103, 226402 (2009). https://doi.org/10.1103/PhysRevLett.103.226402

    Article  ADS  Google Scholar 

  10. J. Lehmann, A. Gaita-Arino, E. Coronado, D. Loss, Nat. Nanotechnol. 2, 312 (2007). https://doi.org/10.1038/nnano.2007.110

    Article  ADS  Google Scholar 

  11. K. Sato, S. Nakazawa, R. Rahimi, T. Ise, S. Nishida, T. Yoshino, N. Mori, K. Toyota, D. Shiomi, Y. Yakiyama, Y. Morita, M. Kitagawa, K. Nakasuji, M. Nakahara, H. Hara, P. Carl, P. Hofer, T. Takui, J. Mater. Chem. 19, 3739 (2009). https://doi.org/10.1039/b819556k

    Article  Google Scholar 

  12. F. Luis, A. Repolles, M.J. Martınez-Perez, D. Aguila, O. Roubeau, D. Zueco, P.J. Alonso, M. Evangelisti, A. Camon, J. Sese, L.A. Barrios, G. Aromi, Phys. Rev. Lett. 107, 117203 (2011). https://doi.org/10.1103/PhysRevLett.107.117203

    Article  ADS  Google Scholar 

  13. J.N. Nelson, J. Zhang, J. Zhou, B.K. Rugg, M.D. Krzyaniak, M.R. Wasielewski, J. Chem. Phys. 152, 014503 (2020). https://doi.org/10.1063/1.5128132

    Article  Google Scholar 

  14. B.Z. Malkin, A.M. Leushin, A.I. Iskhakova, J. Heber, M. Altwein, K. Moller, I.I. Fazlizhanov, V.A. Ulanov, Phys. Rev. B 62, 7063 (2000). https://doi.org/10.1103/PhysRevB.62.7063

    Article  ADS  Google Scholar 

  15. V. Mehta, D. Gourier, J. Phys. Condens. Matter 13, 4567 (2001)

    Article  ADS  Google Scholar 

  16. G.S. Shakurov, V.F. Tarasov, Appl. Magn. Reson. 21, 597 (2001). https://doi.org/10.1007/BF03162432

    Article  Google Scholar 

  17. A.V. Gaister, E.V. Zharikov, A.A. Konovalov, K.A. Subbotin, V.F. Tarasov, JETP Lett. 77, 625 (2003). https://doi.org/10.1134/1.1600819

    Article  ADS  Google Scholar 

  18. A.A. Konovalov, D.A. Lis, K.A. Subbotin, V.F. Tarasov, E.V. Zharikov, Appl. Magn. Reson. 45, 193 (2014). https://doi.org/10.1007/s00723-013-0510-6

    Article  Google Scholar 

  19. V.F. Tarasov, A.A. Sukhanov, V.B. Dudnikova, E.V. Zharikov, D.A. Lis, K.A. Subbotin, JETP Lett. 106, 92 (2017). https://doi.org/10.1134/S0021364017140132

    Article  ADS  Google Scholar 

  20. R.B. Zaripov, L.V. Mingalieva, V.F. Tarasov, E.V. Zharikov, K.A. Subbotin, D.A. Lis, Phys. Solid State 61, 174 (2019). https://doi.org/10.1134/S106378341902032X

    Article  ADS  Google Scholar 

  21. J.D. Birle, G.V. Gibbs, P.B. Moore, J.V. Smith, Am. Mineral. 53, 807 (1968)

    Google Scholar 

  22. V.B. Dudnikova, E.V. Zharikov, D.A. Lis, N.N. Eremin, Phys. Solid State 61, 614 (2019). https://doi.org/10.1134/S1063783419040097

    Article  ADS  Google Scholar 

  23. J. Gale, A.L. Rohl, Mol. Simul. 29, 291 (2003). https://doi.org/10.1080/0892702031000104887

    Article  Google Scholar 

  24. V.B. Dudnikova, V.S. Urusov, E.V. Zharikov, Inorg. Mater. 41, 627 (2005)

    Article  Google Scholar 

  25. S. Stoll, A. Schweiger, J. Magn. Reson. 78, 42 (2006). https://doi.org/10.1016/j.jmr.2005.08.013

    Article  ADS  Google Scholar 

  26. A. Abragam, B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Clarendon Press, Oxford, 1970), pp. 565–573

    Google Scholar 

  27. S. Campos, A. Denoyer, S. Jandl, B. Viana, D. Vivien, P. Loiseau, B. Ferrand, J. Phys. Condens. Matter 16, 4579 (2004). https://doi.org/10.1088/0953-8984/16/25/015

    Article  ADS  Google Scholar 

  28. J.C. Gill, Proc. Phys. Soc. 79, 58 (1962)

    Article  ADS  Google Scholar 

  29. A.V. Astashkin, A. Schweiger, Chem. Phys. Letters 174, 595 (1990). https://doi.org/10.1016/0009-2614(90)85493-V

    Article  ADS  Google Scholar 

  30. A. Schweiger, G. Jeschke, Principles of Pulse Electron Paramagnetic Resonance (Oxford University Press, New York, 2001), p. 429

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. F. Tarasov.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarasov, V.F., Sukhanov, A.A., Zharikov, E.V. et al. EPR Spectroscopy of Impurity Ytterbium Ions in Synthetic Forsterite Single Crystals. Appl Magn Reson 53, 1211–1226 (2022). https://doi.org/10.1007/s00723-021-01453-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-021-01453-9

Navigation