Skip to main content
Log in

NMR Self-diffusion Study of Amino Acid Ionic Liquids Based on 1-Methyl-3-Octylimidazolium in Water

  • Original Paper
  • Published:
Applied Magnetic Resonance Aims and scope Submit manuscript

Abstract

In comparison with the conventional ionic liquids, water-miscible amino acid ionic liquids (AAILs) are considered as more biodegradable and biocompatible, less toxic, and as able to enhance the biomaterials stability. An application of some long-chain ionic liquids in catalysis, extraction, etc. requests the detailed analysis of ionic and water transport properties of their diluted aqueous solutions close to the area of its critical micelle concentration (cmc). In this work, the molecular transport properties of two 1-methyl-3-octylimidazolium-based AAILs, [C8mim][Val], and [C8mim][Leu] (with anions of l-Leucine or l-Valine), in the aqueous solutions were studied by measuring the self-diffusion coefficients and the solution’ viscosities in the temperature ranges 273–343 K at the AAIL’s concentrations below and above its cmc. The data on self-diffusion coefficients of water molecules and cations/anions of AAILs are discussed in terms of activation energies and of hydration effects. Above the cmc, the [C8mim][Val] molecules demonstrate the strengthening effect on the solvent structure, while the molecules of [C8mim][Leu] have structure-destructive effect. The results obtained for the relative dynamic viscosities show a decrease of micellar size with increasing temperature. In addition, it was found that the degrees of counterion binding for both AAILs are higher than for 1-methyl-3-octylimidazolium halides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. F. Tang, Q. Zhang, D. Ren, Z. Nie, Q. Liu, S. Yao, J. Chromatogr. A 1217, 4669–4674 (2010). https://doi.org/10.1016/j.chroma.2010.05.013

    Article  Google Scholar 

  2. K. Fukumoto, M. Yoshizawa, H. Ohno, J. Am. Chem. Soc. 127, 2398–2399 (2005). https://doi.org/10.1021/ja043451i

    Article  Google Scholar 

  3. R.L. Gardas, R. Ge, P. Goodrich, C. Hardacre, A. Hussain, D.W. Rooney, J. Chem. Eng. Data 55, 1505–1515 (2010). https://doi.org/10.1021/je900660x

    Article  Google Scholar 

  4. E.V. Alopina, E.A. Safonova, I.B. Pukinsky, N.A. Smirnova, J. Chem. Eng. Data 61, 2013–2019 (2016). https://doi.org/10.1021/acs.jced.5b00948

    Article  Google Scholar 

  5. Z. Yu, H. Gao, H. Wang, L. Chen, J. Chem. Eng. Data 56, 4295–4300 (2011). https://doi.org/10.1021/je200030k

    Article  Google Scholar 

  6. Y. Wei, Y. Jin, Z.-J. Wu, Y. Yang, Q.-G. Zhang, Z.-H. Kang, J. Chem. Eng. Data 58, 349–356 (2013). https://doi.org/10.1021/je300932n

    Article  Google Scholar 

  7. H. Gao, Z. Yu, H. Wang, J. Chem. Thermodyn. 42, 640–645 (2010). https://doi.org/10.1016/j.jct.2009.12.003

    Article  Google Scholar 

  8. Y. Wei, Q.-G. Zhang, Y. Liu, X. Li, S. Lian, Z. Kang, J. Chem. Eng. Data 55, 2616–2619 (2010). https://doi.org/10.1021/je900865y

    Article  Google Scholar 

  9. Q.-G. Zhang, K.-D. Cai, Z.-X. Jin, S.-L. Wang, S.-S. Sun, J. Chem. Eng. Data 55, 4044–4047 (2010). https://doi.org/10.1021/je100137g

    Article  Google Scholar 

  10. O. Ben Ghanem, M.I.A. Mutalib, J.-M. Lévêque, G. Gonfa, C.F. Kait, M. El-Harbawi, J. Chem. Eng. Data 60, 1756–1763 (2015). https://doi.org/10.1021/je501162f

  11. D. Fang, Q. Yan, D. Li, L.-X. Xia, S.-L. Zang, J. Chem. Thermodyn. 79, 12–18 (2014). https://doi.org/10.1016/j.jct.2014.06.022

    Article  Google Scholar 

  12. Y. Zhang, X.-Y. Chen, H.-J. Wang, K.-S. Diao, J.-M. Chen, J. Mol. Struct. Theochem. 952, 16–24 (2010). https://doi.org/10.1016/j.theochem.2010.03.033

    Article  Google Scholar 

  13. S.S. Rao, S.P. Gejji, Comput. Theor. Chem. 2015, 24–38 (1057). https://doi.org/10.1016/j.comptc.2015.01.012

    Google Scholar 

  14. T. Fan, C. Chen, T. Fan, F. Liu, Q. Peng, J. Hazard. Mater. 297, 340–346 (2015). https://doi.org/10.1016/j.jhazmat.2015.05.034

    Article  Google Scholar 

  15. K. Damodaran, Annu. Rep. NMR Spectrosc. 88, 215–244 (2016). https://doi.org/10.1016/BS.ARNMR.2015.11.002

    Article  Google Scholar 

  16. R. Giernoth, in NMR Spectroscopy in Ionic Liquids (Springer, Berlin, 2008), pp. 263–283. https://doi.org/10.1007/128_2008_37

  17. A. Noda, K. Hayamizu, M. Watanabe, J. Phys. Chem. B. 105, 4603–4610 (2001). https://doi.org/10.1021/jp004132q

    Article  Google Scholar 

  18. H. Tokuda, K. Hayamizu, K. Ishii, M.A.B.H. Susan, M. Watanabe, J. Phys. Chem. B. 108, 16593–16600 (2004). https://doi.org/10.1021/jp047480r

  19. K. Hayamizu, S. Tsuzuki, S. Seki, Y. Umebayashi, J. Phys. Chem. B. 116, 11284–11291 (2012)

    Article  Google Scholar 

  20. A. Menjoge, J. Dixon, J.F. Brennecke, E.J. Maginn, S. Vasenkov, J. Phys. Chem. B. 113, 6353–6359 (2009). https://doi.org/10.1021/jp900902n

  21. M. Nakakoshi, S. Ishihara, H. Utsumi, H. Seki, Y. Koga, K. Nishikawa, Chem. Phys. Lett. 427, 87–90 (2006). https://doi.org/10.1016/J.CPLETT.2006.06.052

    Article  ADS  Google Scholar 

  22. O.V. Yarmolenko, A.V. Yudina, A.A. Ignatova, N.I. Shuvalova, V.M. Martynenko, L.M. Bogdanova, A.V. Chernyak, V.A. Zabrodin, V.I. Volkov, Russ. Chem. Bull. 64, 2505–2511 (2015). https://doi.org/10.1007/s11172-015-1184-z

    Article  Google Scholar 

  23. G.Z. Tulibaeva, A.V. Chernyak, A.F. Shestakov, V.I. Volkov, O.V. Yarmolenko, Russ. Chem. Bull. 65, 1727–1733 (2016). https://doi.org/10.1007/s11172-016-1502-0

    Article  Google Scholar 

  24. A.V. Chernyak, A.V. Yudina, O.V. Yarmolenko, V.I. Volkov, Russ. J. Electrochem. 51, 478–482 (2015). https://doi.org/10.1134/S1023193515050043

    Article  Google Scholar 

  25. M. Figueira-González, V. Francisco, L. García-Río, E.F. Marques, M. Parajó, P. Rodríguez-Dafonte, J. Phys. Chem. B. 117, 2926–2937 (2013). https://doi.org/10.1021/jp3117962

    Article  Google Scholar 

  26. V. Klimavicius, V. Bacevicius, Z. Gdaniec, V. Balevicius, J. Mol. Liq. 210, 223–226 (2015). https://doi.org/10.1016/J.MOLLIQ.2015.05.034

    Article  Google Scholar 

  27. J.E. Tanner, J. Chem. Phys. 52, 2523–2526 (1970). https://doi.org/10.1063/1.1673336

    Article  ADS  Google Scholar 

  28. A. Jerschow, N. Müller, J. Magn. Reson. 125, 372–375 (1997). https://doi.org/10.1006/jmre.1997.1123

    Article  ADS  Google Scholar 

  29. W.S. Price, NMR Studies of Translational Motion (Cambridge University Press, Cambridge, 2009)

  30. Y. Yasaka, C. Wakai, N. Matubayasi, M. Nakahara, J. Phys. Chem. A 111, 541–543 (2007). https://doi.org/10.1021/jp0673720

    Article  Google Scholar 

  31. V. Klimavicius, Z. Gdaniec, J. Kausteklis, V. Aleksa, K. Aidas, V. Balevicius, J. Phys. Chem. B. 117, 10211–10220 (2013). https://doi.org/10.1021/jp4021245

    Article  Google Scholar 

  32. S. Ohta, A. Shimizu, Y. Imai, H. Abe, N. Hatano, Y. Yoshimura,  Open J. Phys. Chem. 1, 70–76 (2011). https://doi.org/10.4236/ojpc.2011.13010

    Article  Google Scholar 

  33. K. Holmberg, B. Jönsson, B. Kronberg, B. Lindman, Surfactants and Polymers in Aqueous Solution (Wiley, Chichester, 2002). https://doi.org/10.1002/0470856424

  34. I. Goodchild, L. Collier, S.L. Millar, I. Prokeš, J.C.D. Lord, C.P. Butts, J. Bowers, J.R.P. Webster, R.K. Heenan, J. Colloid Interface Sci. 307, 455–468 (2007). https://doi.org/10.1016/j.jcis.2006.11.034

    Article  ADS  Google Scholar 

  35. V.V. Mank, N.I. Lebovka, NMR Spectroscopy of water in Heterogeneous Systems (Naukova Dumka, Kiev, 1988)

  36. J.C. Hindman, J. Chem. Phys. 60, 4488–4496 (1974). https://doi.org/10.1063/1.1680928

    Article  ADS  Google Scholar 

  37. D.H. Dagade, K.R. Madkar, S.P. Shinde, S.S. Barge, J. Phys. Chem. B. 117, 1031–1043 (2013). https://doi.org/10.1021/jp310924m

    Article  Google Scholar 

  38. B. Palecz, J. Am. Chem. Soc. 124, 6003–6008 (2002). https://doi.org/10.1021/ja011937i

    Article  Google Scholar 

  39. A. Bagno, G. Lovato, G. Scorrano, J.W. Wijnen, J. Phys. Chem. 97, 4601–4607 (1993). https://doi.org/10.1021/j100120a008

    Article  Google Scholar 

  40. Y. Maeda, N. Tsukida, H. Kitano, T. Terada, J. Yamanaka, J. Phys. Chem. 97, 13903–13906 (1993). https://doi.org/10.1021/j100153a073

    Article  Google Scholar 

  41. M. Ide, Y. Maeda, H. Kitano, J. Phys. Chem. B. 101, 7022–7026 (1997). https://doi.org/10.1021/jp971334m

    Article  Google Scholar 

  42. D. Hecht, L. Tadesse, L. Walters, J. Am. Chem. Soc. 115, 3336–3337 (1993). https://doi.org/10.1021/ja00061a045

    Article  Google Scholar 

  43. A.V. Kustov, N.L. Smirnova, R. Neueder, W. Kunz, J. Phys. Chem. B. 116, 2325–2329 (2012). https://doi.org/10.1021/jp2121559

    Article  Google Scholar 

  44. A.A. Nikonorova, E.V. Alopina, Y.G. Dobryakov, N.A. Smirnova Khimicheskie Nauki. “Chronos”, pp. 86–90 (2017) (in Russian)

  45. H. Hoffmann, G. Platz, W. Ulbricht, J. Phys. Chem. 85, 1418–1428 (1981). https://doi.org/10.1021/j150610a029

    Article  Google Scholar 

  46. N.A. Smirnova, A.A. Vanin, E.A. Safonova, I.B. Pukinsky, Y.A. Anufrikov, A.L. Makarov, J. Colloid Interface Sci. 336, 793–802 (2009). https://doi.org/10.1016/j.jcis.2009.04.004

    Article  ADS  Google Scholar 

  47. J. Łuczak, C. Jungnickel, M. Joskowska, J. Thöming, J. Hupka, J. Colloid Interface Sci. 336, 111–116 (2009). https://doi.org/10.1016/J.JCIS.2009.03.017

    Article  ADS  Google Scholar 

  48. J. Bowers, C.P. Butts, P.J. Martin, M.C. Vergara-Gutierrez, R.K. Heenan, Langmuir 20, 2191–2198 (2004). https://doi.org/10.1021/la035940m

    Article  Google Scholar 

  49. U. Preiss, C. Jungnickel, J. Thöming, I. Krossing, J. Łuczak, M. Diedenhofen, A. Klamt, Chem. A Eur. J. 15, 8880–8885 (2009). https://doi.org/10.1002/chem.200900024

    Article  Google Scholar 

  50. J. Wang, H. Wang, in Aggregation in Systems of Ionic Liquids (Springer, Berlin, 2014), pp. 39–77. https://doi.org/10.1007/978-3-642-38619-0_2

  51. N.M. Vaghela, N.V. Sastry, V.K. Aswal, Colloid Polym. Sci. 289, 309–322 (2011). https://doi.org/10.1007/s00396-010-2332-5

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. E. V. Alopina and Dr. Yu. G. Dobryakov from St. Petersburg State University for AAILs provided. NMR measurements were performed at the Center for Magnetic Resonance, SPbSU. The reported study was funded by the Russian Foundation for Basic Research according to the Research Project No. 16-03-00723a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. A. Safonova.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 499 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chernyshev, Y.S., Koneva, A.S. & Safonova, E.A. NMR Self-diffusion Study of Amino Acid Ionic Liquids Based on 1-Methyl-3-Octylimidazolium in Water. Appl Magn Reson 49, 607–618 (2018). https://doi.org/10.1007/s00723-018-1008-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00723-018-1008-z

Navigation