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Abstract As an early visitor to the injured loci, neutrophil-derived human

Myeloperoxidase (hMPO) offers an attractive protein target to modulate the in-

flammation of the host tissue through suitable inhibitors. We describe a novel

methodology of using low temperature ESR spectroscopy (6 K) and FASTTM

technology to screen a diverse series of small molecules that inhibit the peroxidase

function through reversible binding to the native state of MPO. Our initial efforts to

profile molecules on the inhibition of MPO-initiated nitration of the Apo-A1 peptide

(AEYHAKATEHL) assay showed several potent (with sub-micro molar IC50s) but

spurious inhibitors that either do not bind to the heme pocket in the enzyme or retain

high ([50 %) anti oxidant potential. Such molecules when taken forward for X-ray

did not yield inhibitor-bound co-crystals. We then used ESR to confirm direct

binding to the native state enzyme, by measuring the binding-induced shift in the

electronic parameter g to rank order the molecules. Molecules with a higher rank

order—those with g-shift Rrelative C15—yielded well-formed protein-bound crystals

(n = 33 structures). The co-crystal structure with the LSN217331 inhibitor reveals

that the chlorophenyl group projects away from the heme along the edges of the

Phe366 and Phe407 side chain phenyl rings thereby sterically restricting the access

to the heme by the substrates like H2O2. Both ESR and antioxidant screens were
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used to derive the mechanism of action (reversibility, competitive substrate inhi-

bition, and percent antioxidant potential). In conclusion, our results point to a viable

path forward to target the native state of MPO to tame local inflammation.

1 Introduction

Inflammation arising from the innate defenses is a pervasive clinical parameter of

concern across atherosclerosis, diabetes, cancer, chronic kidney disease, and neuro

degeneration [1–5]. Our interest is focused on identifying and deriving the

mechanism of action (MOA) of inhibitors directed against an inflammatory target

protein derived from the innate defense cells.

Neutrophils dominate the innate defense response of the host system and, in

response to infection, perform the following actions: extravasation, phagocytosis,

degranulation of the microbicidal agents into the lysosomes, and respiratory burst of

oxyradicals and their byproducts like HOCl (a powerful antimicrobial detoxifier)

[3–6]. In addition, they also employ neutrophil extracellular traps (NETs) that

contain proteolytic and DNAses enzymes, dual acting anti-siderophore and cationic

protein, and decondensed histones [7]. A central player in all these defense

processes (with the exception of phagocytosis) is Myeloperoxidase (MPO), which

uniquely catalyzes the reaction between the chloride and hydrogen peroxide to form

hypochlorous acid (HOCl). MPO’s role in balancing and regulating the above

response toward detoxification without tissue damage is still unraveling [8–10].

MPO is implicated in atherosclerosis through its presence in advanced lesions,

oxidation of High Density Lipoproteins (HDL) (via Apo A1), its function as NO

oxidase leading to endothelial dysfunction, and by its catalytic release of the

metalloproteinases [4, 11]. MPO is a 150 KD protein, having a ferric heme as a

catalytic site covalently linked to the protein. As a catalytic pro-oxidant enzyme,

MPO presents itself as a viable upstream therapeutic target to manage the cascade of

events leading to inflammation.

Current drug discovery approaches to control MPO’s toxic response include [4,

12]

1. Inhibition of NADPH oxidase, a local source of H2O2 in the neutrophil

granules, that fuels MPO’s catalytic action;

2. Scavenging MPO’s oxidant products like HOCl;

3. Inhibition of the catalytic active Compound I with reversible inhibitors;

4. Guiding the catalytic cycle to accumulate the less potent catalytic intermediate,

Compound II; and

5. Using suicidal substrates to inactivate the enzyme.

We took an approach that focused on the inhibitor reversibly binding to the heme

pocket in the native state of the enzyme (Fe3?) as against the catalytic forms

Compound I/II in hMPO. In this model, we rationalized that the inhibitor-bound-

MPO will hinder peroxide access to the heme (a requirement for the catalytic state

generation) [13] and hence may render it dysfunctional both in its intracellular

(granular or lysosomal states) and in the extracellular (NETs or plasma bound)
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forms. Potent nitration of proteins is one among the several microbicidal pathways

used by MPO (via Compound I, Approach 3 above) for detoxifying the tissue. We

initially used this route to investigate the inhibition of MPO by a library of

compounds. However, the results from this approach were ambiguous as it was

difficult to delineate the MOA of inhibition from the antioxidant/redox process. We

reasoned that the inhibitors, in the midst of an oxidant pool of Ferric (Fe3?) and

Compound I (Fe(IV)=O), H2O2, and superoxide/singlet oxygen are either acting as

one electron donors (antioxidant pathway) or converted to a co-substrate for the

enzyme. Further, many of the potent molecules from this screening method do not

co-crystallize with the protein. To obtain direct proof of binding and to steer clear of

antioxidant-mediated-inhibition, we employed ESR, to detect direct binding of the

inhibitors to the paramagnetic iron in the heme pocket. While our work is under

progress, another group reported the use of modified hydroxamates as highly potent

(IC50 = 5 nM) and specific reversible inhibitors of the native hMPO [13]. Using

Surface plasmon resonance studies, they measured the strength of binding and

correlated it with the degree of inhibition of the enzyme. Our studies differ from the

above in two aspects. We used a novel methodology (low temperature ESR) to

screen molecules for their binding strengths. ESR was complimented with FASTTM

technology (a method of screening mixtures of small molecule fragments for

binding to the protein molecules in the crystalline state) to initiate a fragment based

drug design (FBDD) approach for the identification and confirmation of actives [14,

15]. Both ESR and antioxidant screens were then used to derive the mechanism of

action (reversibility, competitive substrate inhibition, and percent antioxidant

potential). Secondly, we identified non-substrate type of inhibitor scaffolds as

inhibitors of the native hMPO.

The current study describes our successful efforts toward identifying molecular

scaffolds that bind to the active site in the native state (confirmed with ESR and

X-ray results), which do not act via the anti oxidant pathway, and are

mechanistically competitive and reversible in binding. We used a diverse set of

molecular scaffolds for probing the binding to the MPO active site. These

compounds evolved from a SAR design of five structural scaffolds (Manuscript

describing the SAR design, syntheses, X-ray structures, a MPO-specific chemilu-

minescence method to derive the enzyme-inhibition-constants, mouse inflammation

model development, and in vivo results is under preparation).

2 Experimental Section

2.1 Reagents

For the alpha screen assay, hMPO was obtained from Biodesign (Cat # A31804H,

1.5 mg/ml). For ESR, hMPO was obtained from Athens Research and Technology

in a lyophilized from in 50 mM Sodium acetate, pH 6.0 with 100 mM NaCl at a

concentration of 1 mg/0.321 ul/vial. For the X-ray work, hMPO was purchased

from Lee Biosciences (Catalog # 426-10, St Louis, MO). AlphaScreen� protein A

acceptor beads and Streptavidin-coated donor beads were obtained from
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PerkinElmer (IgG detection kit (Protein A) Cat # 6760617M). Biotinylated peptide

substrate (AEYHAKATEHL) was obtained from SynthAssist. Rabbit anti-nitroty-

rosine antibody (cat# A21285) was obtained from Molecular Probes. Superblock

buffer was from Pierce (Cat# 37535). FBS was obtained from Gibco (Cat

10091-148). 2, 20-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS, Cat#

A3219- 100 ml, concentration 1.8 mM), reagent grade H2O2 (30 % by volume, Cat

# H1009), and Potassium Persulfate (Cat # 379824-5G) were obtained from Sigma-

Aldrich. Alpha screens and ABTS decolorization assays employed sterile 96-well

plates (Corning, Cat # 3688 and #3603), respectively.

2.2 Inhibitors

A large library of compounds (n * 2500) were tested for binding to MPO to inhibit

its catalytic activity. All the compounds reported in this paper were obtained from

various commercial sources. Proprietary compounds are not included in this paper.

Inhibitors are dissolved in 100 % DMSO for the stock solution and were

appropriately diluted with 100 % DMSO or an appropriate buffer as required in

the assay. A total of n = 350 compounds were tested as inhibitors against the native

state (Fe3?) of MPO by ESR.

2.3 Crystallography

Human Myeloperoxidase and co-crystals of MPO were crystallized and analyzed

using methods similar to those described by Davey and Fenna [16, 17]. Briefly,

hanging drops of 25 mg/mL MPO, 25 mM sodium acetate pH 5.0, 50 mM NaCl,

50 mM ammonium sulfate, 2 mM calcium chloride, and 3-10 % polyethylene

glycol 8000 were set up at 21 �C over reservoir solutions containing 300 mM

sodium chloride. Crystals of the space group P21 and having two MPO subunits per

asymmetric unit grew with the aid of micro-seeding as very thin plates having a

brownish orange tinge. Crystals were soaked with inhibitor compounds at a

concentration of 50 mM, in a stabilizing buffer containing 18 % polyethylene

glycol 8000, 56 mM ammonium sulfate, 2.2 mM calcium acetate, and 56 mM

HEPES pH 7.0. Co-crystals were cryo-protected in a stabilizing buffer containing

22.2 % methylpentanediol prior to flash cooling in liquid nitrogen.

Diffraction data were collected at 100 K using Synchrotron beam line 31ID at the

Advanced Photon Source (Argonne National Laboratory) and were integrated using

MOSFLM v.6.2.6 [18]. The structure was solved (Table 1 shows the details) by

rigid body refinement against the diffraction data using a starting model derived

from Protein Data Bank entry 1D7W [19]. Inhibitor binding to the MPO heme group

was indicated by appropriately shaped peaks in the Fo–Fc electron density maps.

The inhibitor was included in the model, and iterative cycles of manual model

building with COOT [20] and restrained refinement with REFMAC v5.2.0019 [21]

were used to complete the overall structure. Figures of the crystal structure were

generated using PYMOL (www.pymol.org). Mean B-factors for the inhibitor

molecules bound in each of the A- and B-subunit active sites are 27.4 and 36.1 Å2,

respectively, which are significantly higher than the B-factors of 8.6 and 11.0 Å2
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associated with the respective A- and B-subunit heme groups. The higher B-factors

for the inhibitor molecules could be attributed to inhibitor occupancies of less than

1.0 or to higher degrees of thermal motion associated with the inhibitors. Lower

than expected electron density peak heights were also observed for the Cl atom in

the inhibitors, which could be due to the radiation damage to this X-Ray sensitive

group.

2.4 Alpha Screen Assay

In a typical experiment, MPO (11.8 nM final concentration) in 20 mM phosphate

buffer pH 7.4, 10 % glycerol and 0.005 % gelatin (PB) is added to each well of a

multi-well plate containing 20 ll PB ± compound (final concentration of

DMSO = 0.9 %). The reaction is started by the addition of 20 ll PB containing

1.5 lM ApoAI peptide substrate, 300 lM diethylenetriaminepentaacetic acid

(DTPA), 300 lM sodium nitrite, and 30 lM H2O2. The total reaction volume is

60 ll. The plates are incubated with agitation for 45 min at RT. The reaction is

terminated with the addition of 20 ll of a stop solution containing 11.2 nM rabbit

anti-nitrotyrosine antibody (final conc. of 2.8 nM), 100 lg/ml streptavidin donor

beads, and 100 lg/ml protein A acceptor beads (final concentration of 40 lg/ml),

FBS (1.6 % final concentration) in Superblock buffer. The plates are sealed,

incubated in the dark for 1 h, and read on a Packard Fusion alpha plate reader.

2.5 ESR Binding Assay

Sodium acetate (0.1 M, with and without 100 mM NaCl according to the assay

requirement) pH 6 buffer containing 25 % n-propanol was used as the reaction

buffer for ESR. In a typical binding assay, the following are sequentially added in an

Table 1 Data collection (values in parenthesis are for the highest resolution shell of 1.71–1.62 Å)

Space Group, P21

Cell dimensions, 92.2 Å 9 63.5 Å 9 111.2 Å, b (beta) = 97.38

Resolution, 1.62 Å

Rsym, 0.142 (0.814)

Mean I/rI, 4.9 (1.6)

Completeness (%), 100 (100)

Redundancy, 3.7 (3.6)

Refinement

(values in parenthesis are for the highest resolution shell of 1.662–1.620 Å)

Resolution, 1.62 Å

No. Reflections, 160977 (11830)

Rwork/Rfree, 0.178/0.201

R.M.S deviations

Bond lengths, 0.01 Å

Bond angles, 1.38
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eppendorf tube: 50 ll of 20.8 lM MPO (4.6 lM final concentration) and 15 ll of
inhibitors in DMSO at 409 concentrations to the enzyme followed by 170 ll of the
buffer. After 5-min. incubation at room temperature, the entire reaction mixture

(0.235 mL) was transferred to the ESR quartz tubes. To avoid the quartz tubes

breaking during the rapid freezing cycles, the ESR tubes were initially frozen in a

1:1 Isopentane-Cyclohexane mixture cooled with dry ice powder and then

transferred to a liquid nitrogen Dewar to be queued up for ESR measurements.

The reaction mixture contained a final concentration of 6 % DMSO. ESR spectra

were recorded on a Varian E-12, X-band spectrometer equipped with an Air

Products liquid helium cryostat. The other instrument settings are as follows: sample

temperature, 5 K; n = 7 scans; t = 9.0482 GHz; microwave power, 10 dB; 579

A/Ds per point; 1.00 min. scan; time constant 0.032 s; gain:3.20E ? 3; and

Modulation amplitude 10.00 G. Magnetic fields were calibrated with an NMR

Gaussmeter.

2.6 Reversible Binding Assay

We performed the following two assays for independently confirming the

reversibility of binding. In the filtration method, hMPO stock (1.5 mg/ml) is

diluted to 5 lg/ml with 20 mM phosphate buffer pH 7.4, 10 % glycerol (no gelatin).

120 ll of this solution is mixed with an equal volume of the compounds at a

concentration of 30 lM (final concentration 10 lM), followed by mixing in the

plate and incubation for 15 min. at room temperature. 120 ll aliquot of this solution
is transferred into separate YM30 Micron filter units and centrifuged 6 min at

9000 rpm, followed by the addition of 300 ll of the buffer and further

centrifugation for 12 min. at 9000 rpm. Wash and centrifuge cycles are repeated

2 more times with 300 ll buffer, each followed by 12 min. centrifugation steps. The

protein left on the membrane is mixed with the PB buffer to a final volume of 120 ll
and subjected to Alpha screen method as described before to probe the nitration of

Apo A1 peptide substrate which is taken as a confirmation of the restoration of the

catalytic activity of the protein.

In the ESR protocol, the methodology of Hori et al. [22] was applied with

some modifications.The protocol followed is similar to the binding assay except

that a higher concentration of hMPO (9.2 lM final) is used. This is necessary as

multiple washings followed by dilutions lead to considerable loss of the enzyme

due to its retention on the membrane. After 5 min of incubation in the

eppendorf at room temperature, the contents were transferred to an Amicon

Ultra-4 tube (5 ml capacity) and filled with 4 ml of 0.1 M sodium acetate buffer

(containing 50 mM NaCl) pH 6.0. Using spin conditions of 40009g in a

swinging bucket rotor at 20 �C, the samples are washed repeatedly (29)

followed with a final wash containing 1 ml of the sodium acetate buffer

(chloride free) ? 25 % n-propanol and then concentrated. The concentrated

solution ca. 300 ll is transferred to ESR quartz tubes and measured at 4 K. A

higher concentration of MPO in these reversible binding assays enabled a good

ESR signal over noise from the washed (3X) sample.
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2.7 ABTS Radical Cation Decolorization Assay to Measure the Antioxidant
Capacity

The assay was modeled after the published procedure [23]. Briefly, ABTS radical cation

was prepared by adding 100 ll of 70 mM K2S2O8 to 10 ml ABTS, followed by

vortexing and incubating at 37 �C water bath for 2 h. The solution turns blue with a

strong absorbance at 734 nm (blank absorption). The MPO inhibitors were dissolved in

DMSO, and further dilutions were made in water (dilution plate: Falcon Cat. # 351172).

Trolox standards are dissolved in water. The reaction is started by adding the ABTS

radical cation solution to the MPO inhibitors or Trolox (final concentration 20 lM).

The plate is gently shaken for 1 min and then set on a bench top at room temperature

for 30 min. The plate is then read at 734 nm on a Spectromax M5. The data are

analyzed as % inhibition at 20 uM single dose treatments.

2.8 Peroxidase Inhibition Assay

Hydrogen peroxide (30 %, v/v; 9.71 M) is used with different dilutions in ice-cold

deionized water. MPO at 50 ll of 20.8 lM (4.6 lM final concentration) is

incubated with different concentrations of H2O2 in the absence and in the presence

of inhibitors (inhibitor to MPO concentration is 40:1) for 1 min and rapidly frozen

at 77 K. The inhibitors are added to MPO, incubated for 5 min prior to H2O2

addition in these reactions.

3 Results and Discussion

3.1 Inhibition of the MPO-Initiated Apo-A1 Nitration Pathway

Through a chloride independent pathway, MPO catalyzes the one electron oxidation

of nitrite ions to nitrogen dioxide radicals which then nitrosylate protein amino

acids like Tyrosine [24]. We used the Apo-A1 peptide substrate (AEYHAKATEHL)

to follow the nitration of the Tyrosine (indicated by Y in the scheme below):

MPO þ H2O2 ! Compound I

NO�
2 þ Compound I ! NO�

2 þ Compound II

Our initial experiments focused on identifying inhibitors that bind to the heme to

inhibit the above catalytic action. A representative set of inhibitors is collected in

Fig. 1a (strong binders, vide infra) and b (non binders, vide infra). The IC50s for

these compounds are indicated in Table 2. As shown in Table 2, several potent

inhibitors, with desirable IC50 (B10 lM), were found by this procedure.

Previous studies [13, 25–28] have shown that compounds inhibit the above

pathway by either coordinating with the heme iron or by scavenging the radicals

(antioxidant) or acting as substrate to Compound I. The latter two are not a desired
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route for the native state inhibition. But the predominant contribution in the above

nitrosylation inhibitory mechanism is not apparent from the observed IC50 values in

Table 2. In our studies, we focussed on avoiding the antioxidant-mediated-

inhibition by using an ABTS assay [23] to filter compounds based on a threshold of

50 % above which the compounds are classified as strong anti oxidants. Those

compounds that showed the desirable profile of IC50 B10 lM and antioxidant

capacity\50 % (Table 2 shows only a representative set) were taken forward for

the crystallization of inhibitor-bound MPO crystals. However, we had very little

success in isolating bound X-ray quality co-crystals from these compounds.

Evidently, these spurious molecules (a subset collected separately in Fig. 1b) are

acting as competitive electron donors to Compound I or II or in some cases acting as

substrates. This necessitated an alternate method to unambiguously confirm the

inhibitor binding to the protein.
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Fig. 1 Concentration response curves from the alpha screen assay run on a representative set of the
compound library profiled for inhibition of the MPO’s catalytic nitration of Apo-A1 nitration.
a Compounds that bind to the heme (as found later with ESR), b non-binding compounds. The IC50
values for these compounds are collected in Table 2
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Table 2 A small subset of hMPO inhibitors used to describe the mechanism of action (MOA) in terms of

their binding (IC50, lM), rank ordering from ESR, success of co-crystal growth from X-ray and percent

anti oxidant potential
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Table 2 continued
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3.2 ESR Spectra is Sensitive to Inhibitor Binding

We employed ESR, a technique that uniquely describes the putative inhibitors

binding to the heme iron in MPO. Binding induces electronic changes in the heme

active site symmetry which manifests itself in shifting the g values [22] and thus can

be used as a sensitive probe of the protein conformation. The tetrapyrrole containing

heme unit is usually planar (D4h) in the absence of interactions with the protein.

When the heme gets attached to the apo protein, the heme plane is distorted. These

distortions are brought about by the protein through covalent binding to heme [29,

30]. The geometry of the water molecules in the heme pocket also plays a role.

These distortions modulate the redox properties of the heme iron. Further distortions

(and hence further lowering of the symmetry) are expected to happen when the

inhibitor molecules enter the heme pocket to coordinate with the heme or with the

water molecules. ESR is a sensitive technique to track the effect of these structural

distortions on the d-orbital symmetry of the iron. Hence, ESR at liquid helium

temperatures was used to assess inhibitors binding to the heme. In addition, in some

of the bound complexes, the snap freezing of the reaction mixture containing the

inhibitor and enzyme enables us to capture both the bound and unbound states (on/

off states) in the solution state (vide infra).

ESR spectra of the native state of the hMPO enzyme in pH 6 buffer is rhombic at

4 K and showed a predominantly high-spin Fe3? spectrum with gX = 6.778

gY = 4.978, and gZ = 2.00 (Fig. 2).

A signal at g * 4.3 (at *1550 G Fig. 1) from high-spin rhombic Fe3?

represents a small amount of non-heme iron; it is invariably present because the

middle Kramers’ doublet (±3/2) is almost magnetically isotropic and has high

transition probability. The broad signal on the low-field side of gZ * 2 in Fig. 1 is

due to a cavity contaminant. The ESR spectrum of the native state (Fig. 1) is most

probably a representative of the resting enzyme in the phagosome where the pH is

low and the chloride concentration is high [31]. Masao-Ikeda et al. [31] studies have

Table 2 continued
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revealed that axial water coordination increases rhombicity along with a mixture of

low- and high-spin Fe3? signals. Our enzyme preparations contained 0.05 M NaCl

in sodium acetate buffer at pH 6. At these conditions, to the best of our knowledge,

there is little prior evidence of water or hydroxyl coordination to the 6th axial

position of the heme.

This spectral behavior is reflective of Fe in a distorted heme plane bonded to a

protein with a proximal histidine and a weak (distal) axial coordination by chloride

[31]. The experimental g values correspond to the spin Hamiltonian pertinent to the

high-spin ion (S = 5/2) [29].

H ¼ D S2Z � 1=3 S Sþ 1ð Þ þ E=D S2X� S2Y
� �� �

þ bgeS:Be ð1Þ

where D and E are the eigen values of the axial and rhombic field components, i.e.,

the symmetry of the ligand (inhibitors approaching heme in this case). In axially

symmetric systems (tetragonal symmetry with E/D = 0), the ESR behavior pre-

dominantly reveals a two line spectrum with gX = gY = 6, and gZ = 2. When the

heme lodges inside the protein, the protein side chain amino acid (histidine) ap-

proaches the heme vicinity and either binds (axially) directly to the iron in the heme

pocket. This results in the deviation from the axial symmetric environment. Thus, the

fifth ligand leads to lower (rhombic) symmetries causing the signal at g * 6 to split.

This non-tetragonal splitting of the heme is quantitated by the relationship [29],

E=D ¼ Dg=48 ð2Þ

where Dg represents the absolute difference between the gX and gY components.

Alternatively, making use of the fact that E/D maximum value = 1/3, one can

simplify the above expression as a percentage of rhombicity, R:
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R ¼ Dg=16ð Þ � 100%: ð3Þ

The native heme in MPO itself has an axial symmetry with small rhombic distor-

tion, reflected by gX = gY = gZ. To rank-order molecules in terms of their ability

to distort the heme pocket/plane environment, we used a ratio of total distortion in

the bound complex w.r.t. distortion seen in the native unbound enzyme:

Rrelative ¼ Rbound�Rnativeð Þ / Rnativeð Þ � 100: ð4Þ
The gZ region (*2, Fig. 2 field range 3340–3550) was not used due to the fact

that gZ is fairly insensitive to E/D, when E/D is small (i.e., nearly axial). From the

relative rhombicities of the bound and unbound complex, a measure of the strength

of binding could be derived. We have used this Rrelative (Eq. 4) as a sensitive

measure of the distortion of the native heme environment brought about by the

incoming inhibitor molecule. For the ease of classification, we have empirically

defined those with 5 B Rrelative C 2 as weak binding; 15 C Rrelative C 10 as

moderate binding; and 25 C Rrelative C 15 as strong binding (Table 2). This

classification was used to select only the moderate and strongly bound molecules

for testing the co crystal growth for the X-ray crystal structure (vide infra).

No other iso forms of MPO are observed under these conditions. No low-spin

signals are seen. Previous studies on the bovine MPO identified both the high- and

low-spin signals at 77 K [22]. However, the authors did not report the concentra-

tions of the enzyme used in those ESR studies. We could not reproduce this ESR

behavior in our batches of hMPO obtained from the vendor. The ESR signal

intensity of the hMPO (at a concentration 23.07 uM) decreases, as the temperature

is raised from 5 to 77 K. This decrease at a higher temperature (77 K relative to

5 K), however, is not accompanied by the appearance of low-spin signals, i.e., no

evidence of temperature dependence in the spin state equilibrium could be detected.

We henceforth used 4–7 K for all our binding studies in ESR.

We were justified in using ESR to confirm binding when we found that many of

the compounds which were considered potent inhibitors (IC50 B10 lM) from the

alpha screen assay (Table 2; Fig. 1b) did not affect the ESR spectra of native hMPO

as can be seen in the Fig. 3a. In contrast, when the putative inhibitors bind to MPO,

the ESR signals at gX and gY (800–1450 G) were broadened or even split into two

components, signifying the formation of bound complexes (Fig. 3b). In the spectra

of the some of the bound-complexes, there is still a significant proportion of the

unbound enzyme. This enables one to calculate the percent or proportion of the

bFig. 3 X-band ESR spectra in the low-field region (800–1450 G) is a sensitive measure of the heme
plane distortions on binding. a Indicates absence of binding of the structurally different scaffolds of
compounds to the heme iron as indicated by the non-variance of the gX and gY signals. The native hMPO
signal is shown in bold black as a visual aid to depict the non shifting of g values of the native enzyme
with the addition of purported inhibitors. b Significant shifts in the ESR resonances on binding in the gX
and gY regions. A majority of the inhibitors shift the native hMPO signal in the positive side (difference
between bound versus unbound g values is positive, Dg[ 0) due to different distortions on the heme
plane symmetry. c LSN17948 binding accompanied by greater/positive Dg, i.e., 30 % of the enzyme is
unbound while 70 % is bound. The reaction volume in the ESR tube is 235 ll. MPO 50 ll (23.07 lM
final), 15 ll inhibitor in 100 % DMSO, Inhibitor:MPO ratio is 40:1. DMSO final concentration is 6 %.
buffer 170 ll (0.1 M Sodium acetate containing 100 mM NaCl pH 6 ? 25 % n-propanol)
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bound versus the unbound enzyme complex (Fig. 3c). The g values of the bound

complexes are collected in Table 3.

For ESR, we used inhibitor at 409 concentration to the enzyme. In some cases

when this concentration is lowered to 49, the proportion of the bound versus

unbound changed. This could be, in part, due to the fact that since the inhibitor-

protein interactions are largely non-covalent and weak, some of the displaced water

molecules in the heme environment now return to restore the symmetry and thereby

affect the bound:unbound ratios. Alternatively, since DMSO (used for dissolving the

inhibitor used at 6 % final concentration) also competes for the binding with the

heme, the inhibitor-induced distortion (and hence the bound:unbound ratio) is

changed. Since we have used ESR mainly in binary mode (to detect the presence or

absence of binding) only, these dilution-induced changes in the proportion of the on/

off states did not change our end points.

4 Solution State ESR Results are Confirmed with X-ray Crystal
Structures

To test whether the solution state results hold well in the solid state and further

to decrease the incidence of unbound crystals, we then attempted to co-crystallize

the enzyme with the moderate (15 C Rrelative C 10) and strong binding (25 C

Rrelative C 15) series of compounds. In all the cases, we obtained high-quality

Table 3 Electronic g values of a representative set of the bound complexes

S. No. LSN gX gY Dg

1 17,948 6.995 4.739 2.256

2 87,637 6.917 4.827 2.09

3 23,500 6.789 4.914 1.875

4 131,429 6.559 5.215 1.344

5 106,019 7.023 4.713 2.31

6 811,183 6.924 4.809 2.115

7 2,303,506 6.9749 4.799 2.1759

8 2,944,556 7.0681 4.7601 2.308

9 2,975,402 7.006 4.735 2.271

10 2,993,636 6.976 4.793 2.183

11 217,331 6.901 4.819 2.082

12 3,019,807 6.948 4.773 2.175

13 3,023,528 7.036 4.725 2.311

14 2,976,159 7.007 4.705 2.302

15 3,016,204 7.023 4.725 2.298

16 3,014,727 7.007 4.739 2.268

The gZ is *2.00 for all the complexes. Dg is the absolute difference between gX and gY

Due to low S/N ratio in the high-field region (weak signal on a high cavity background at 5 K), gZ value is

not accurately determined
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Fig. 4 Binding mode of the inhibitor LSN217331 to the MPO active site. Carbon, oxygen, nitrogen,
chlorine, and iron atoms are colored yellow, red, blue, green and orange, respectively. Close
intermolecular contacts are indicated by dashed green lines with distances labeled in Å. The protein
backbone is displayed as a yellow ribbon diagram, with side chains of key residues modeled as sticks. Fo–
Fc electron density map, contoured at 3 r is displayed as gray mesh
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Fig. 5 X-band ESR spectra (800–1450 G) depicting the reversible nature of the inhibitor binding to
hMPO. Only a representative example (LSN87637) is shown. After incubation of the compound with
hMPO for 5 min, the bound complex was washed with buffer ± chloride on an Amicon desalting tube
followed by concentration to 250 ll for ESR measurements
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co-crystals (n = 33). In each of these cases, the compounds were located inside the

heme pocket and are found to bind either directly to the heme iron or to the side

chains via the water molecules.

The crystal structure of 217331 bound to MPO (Fig. 4a, b) reveals a large

number of specific interactions between the inhibitor and enzyme, thus providing a

clear structural rationale for the inhibitory mechanism. The compound hydroxyl

group makes close direct contacts to the heme iron ion (3.1 Å), the Gln91 side chain

amide nitrogen (3.2 Å) and the His95 imidazole NE2 (2.7 Å). These non-bonded

contact distances are consistent with the hydrogen bonds to the side chains and a

favorable dipole interaction with the iron ion. The isoxazole O atom also contacts

the Gln91 side chain amide nitrogen (3.1 Å), while the ring N atom makes contacts

of 3.1 and 3.4 Å with the two methylene carbon atoms from the Glu242 side chain.

One side of the isoxazole ring contacts the gamma and delta methylene C atoms of

Arg239 in a nearly parallel orientation, while the other side lies against the heme

prosthetic group at an angle of approximately 508, with the CH contacting the

porphyrin at 3.2 Å. The chlorophenyl group projects away from the heme along the

edges of the Phe366 and Phe407 side chain phenyl rings. Occupation of this space

by the inhibitor would sterically block peroxide and co-substrates (e.g., chloride)

from reacting at the heme center of the active site. Indeed, the inhibitor sterically

blocks both the peroxide binding site between the iron ion and His95 and the halide

binding site near the Gln91 side chain amide [16].

4.1 MOA

4.1.1 Reversible Binding

Since the gX and gY regions are very sensitive to the binding of compounds in the

heme pocket, we next assessed the reversibility of the binding of these compounds.

We used two methods (Filtration and ESR) to independently verify the reversibility

of the binding. In every case of the strong and moderately strong binders tested, the

shifted ESR spectra of the bound complexes return to the native unbound state after

washing. Figure 5 shows a representative example from a moderately strong binder

(LSN87637) series.

bFig. 6 A X-band ESR spectra (800–1450 G) of hMPO exposed to different concentrations of H2O2. As
the H2O2 concentration (label inset) increases, the gX and gY signals (arrows indicate the direction of
change) decrease with a corresponding increase in gintermediate = 6, i.e., the rhombic pattern (gX, gY, and
gZ) gradually changes into gintermediate (axial). B Inhibitor LSN 17948 (15 ll in 100 % DMSO) is added to
hMPO (50 ll) before H2O2 (555 lM) is introduced in the reaction mixture. The spectrum is unchanged
and no gintermediate signal is seen. In B, a and b are taken from A and shows decay (down arrows) of gX and
gY in the presence of 555 lM H2O2, the sign * indicates the growth of signal corresponding to
denaturation, while c shows the absence of peroxide-induced decay in the presence of 17948 (the binding-
induced g-shifts are indicated with horizontal arrows). The reaction volume in the ESR tube is 235 ll.
hMPO 50 ll (23.07 lM final), 15 ll of H2O2 at the indicated concentrations, buffer 170 ll (0.1 M
Sodium acetate containing 100 mM NaCl pH 6 ? 25 % n-propanol)
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4.1.2 Substrate (H2O2) Inhibition

We used ESR to gain additional insights on the competitive nature of the

compounds to inhibit peroxidase action, a key requirement for our native state

binders. Since ESR and X-ray have clearly established the binding of the

compounds in the vicinity of the heme, we focussed on the mode of action of these

compounds (with moderate and strong Rrelative) to classify the MOA.

Using heme-H2O2 systems, several studies have tracked and characterized the

protein and hydroperoxyl radicals with concomitant formation of ferryl (Fe=O)3?

species [32, 33]. In our studies, we focused only at the high-spin region (g * 6)

ignoring the g * 2 region where free radicals dominates [33].

Figure 6A shows the spectral changes in the low-field region of the native

enzyme as H2O2 is varied. As the peroxide concentration increases, the gX and gY
signals drop down in intensity with a concomitant increase in the g * 6 region

(B value * 1050 G). A similar behavior is reported in the presence of denaturing

agent like guanidine HCl [34]. A likely explanation for these effects is the snapping

of the covalent (via the axial histidine) and non-covalent (hydrogen bonds and other

van der Wall contacts) interaction-driven control by the protein on the heme

conformation resulting in the tetrapyrrole unit returning to its near planar (higher

symmetry) state. This is a dynamic reversible process with a threshold, above

which, the heme with its restored planarity, is ejected from the enzyme [35]. The

ESR spectrum of MPO in the presence of H2O2 indicates that the rhombicity

(gX = gY = gZ) is gradually replaced with more axial symmetry (gX = gY, and gZ).

We then added the inhibitors (with 25 C Rrelative C 10) prior to the introduction

of H2O2 and followed the ESR changes in this region. In the presence of the bound

inhibitors, these changes are prevented (Fig. 6c) even at very high concentrations of

H2O2 (555 lM, hMPO: H2O2 1:20 Fig. 6b), and the spectrum is identical to the

native human MPO (albeit shifted due to inhibitor binding). The native gX * 6.778

signal does not go down in intensity. In contrast, Forbes et al. [13] showed that the

MPO-bound hydroxamates are metabolized by MPO in the presence of H2O2. The

presence of bound inhibitors inside the heme pocket blocks the entry of H2O2 (as

seen in the co-crystal structures above) and prevents the denaturation of the enzyme.

It has been reported [4] that H2O2[50 lM causes enzyme denaturation and the new

ESR signal at g = 6 (indicated by ‘*’ in Fig. 6b) is a probable fingerprint of that

process. The absence of these spectral changes in the presence of bound inhibitors

clearly indicates that the access of H2O2 into the heme pocket either at the gate or to

the 6th axial coordination site (distal side) is prevented by these inhibitors. We

found that DMSO can also mimic this process of restricting peroxide access and

coordination to the heme. In order to differentiate the inhibitor role from DMSO, we

used hydroxamic acid inhibitors which are water soluble and found these to bind to

the enzyme and prevent the peroxide-induced changes on the enzyme even in the

absence of DMSO.

In conclusion, the results represent a comprehensive analysis of the electronic

structural changes of MPO induced by compound libraries of different scaffolds.

Using low temperature ESR, our studies provided several lead molecules (for e.g.,

LSN 17948, LSN294456, LSN87637, LSN2975402, etc.) with the following traits:
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• Inhibitor of the MPO enzyme in its catalytic state;

• Reversible in its action;

• Well defined binding mode as shown by inhibitor-bound X-ray crystal

structures;

• MOA dominated by inhibitor binding to the active site and preventing the access

of the heme to incoming H2O2 rather than acting as an anti oxidant;
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Schröder, D. Benten, D. Lau, K. Szocs, P.G. Furtmüller, P. Heeringa, K. Sydow, H.J. Duchstein, H.

Ehmke, U. Schumacher, T. Meinertz, M. Sperandio, S. Baldus, Blood 117, 1350–1358 (2011)

11. B. Shao, S. Pennathur, J.W. Heinecke, J. Biol. Chem. 280, 38–47 (2012)

12. A. Tiden, T. Sjorgren, M. Svensson, A. Bernlind, R. Senthilmohan, F. Auchére, H. Norman, P.
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