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Abstract MtsslWizard is a computer program, which operates as a plugin for the

PyMOL molecular graphics system. MtsslWizard estimates distances between spin

labels on proteins quickly with user-configurable options through a simple graphical

interface. In default mode, the program searches for ensembles of possible MTSSL

conformations that do not clash with a static model of the protein. Once confor-

mations are assigned, distance distributions between two or more ensembles are

calculated, displayed, and can be exported to other software. The program’s use is

evaluated in a number of challenging test cases and its strengths and weaknesses

evaluated. The benefits of the program are its accuracy and simplicity.

1 Introduction

Distance determination by pulsed electron–electron double resonance (PELDOR)

[or double electron–electron resonance (DEER)] spectroscopy has become a

popular tool to determine exact distances in bio-macromolecules [19, 28, 29]. Since

many proteins do not contain intrinsically electron paramagnetic resonance (EPR)-

active (paramagnetic) centers, PELDOR relies on the introduction of spin labels, in

most cases nitroxide groups. Most commonly, site-directed spin labeling (SDSL) of

cysteine residues is used to introduce spin labels on the molecular surface of a

protein [2]. The distances between these labels can then be determined and, if

multiple sites are labeled, distance fingerprints can be produced, even for large

membrane proteins [5, 11, 13, 16]. If conditions are known that drive the protein of
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interest into a different conformation, another fingerprint can be prepared under

these conditions and the conformational changes can be investigated [13].

An intrinsic limitation of SDSL is due to the widely used methanethiosulfonate

spin label (MTSSL [4]), which introduces five torsion angles and a[7 Å separation

between the spin center and the Ca of the protein (Fig. 1). The five torsion angles

lead to a very large number of possible positions for the unpaired electron. This

causes uncertainty in the interpretation of experimental data in structural terms.

Different approaches have been used to deal with this problem. The uncertainty

can be allowed for by adding ±14 Å to any distance restraints (e.g., [22]). This

approach undermines the ability of PELDOR to identify structural changes that are

well within the intrinsic error of measurement. A more sophisticated approach has

been to use a priori knowledge, i.e., that the nitroxide has to be located somewhere

inside a conical space around the attachment site (‘‘tether-in-a-cone-model’’ [1, 14,

17, 18, 36]). This cone can be further reduced by using rotamer libraries of the free

label derived from crystal structures [12, 14, 23] or molecular dynamics (MD)

simulations [3, 27]. This method aims to predict in which area of the cone the label

will most likely reside. The most time-intensive and rigorous method is a full-atom

MD simulation of MTSSL attached to the protein (e.g., [3, 8, 9, 25, 26, 30, 31]).

We present here a computer program, mtsslWizard that allows the user to attach

MTSSL labels to selected positions of a protein by pointing and clicking with a

computer mouse. The program is designed as a plugin for the PyMOL

(http://www.pymol.org) molecular graphics program (PyMOL plugins are often

called wizards, hence our choice of name). PyMOL is widely used for the gener-

ation of figures of macromolecules in publications and its source code is available

free of charge (http://sourceforge.net/projects/pymol/). Our program has a graphical

user interface (GUI) that is fully integrated into PyMOL.

MtsslWizard is inspired by the ‘‘tether-in-a-cone’’ approach [17, 18, 36] in that

the program searches for all MTSSL rotamers that do not clash with the protein

structure (within a variable tolerance). The approach does not make assumptions

about rotamer probability, nor does it estimate interaction energies. Despite this, in
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many cases, mtsslWizard predicts experimental data rather well, in a simple and

rapid (seconds) manner.

2 Results and Discussion

2.1 Overview and Usage of MtsslWizard

MtsslWizard is launched via the PyMOL GUI and integrates seamlessly into it.

Once a structure of interest has been loaded into PyMOL and mtsslWizard has been

started, the residue to be labeled can be selected with a mouse click and the user can

adjust the thoroughness of the search procedure, if needed (Fig. 2). In brief, the

search algorithm of the program generates random values for each of the five Chi-

angles and checks the corresponding conformation of MTSSL for clashes with the

protein. A clash is here defined as a violation of a ‘‘vdW cutoff’’ between label and

protein, and not as two atoms having exactly the same position in space (see below).

Depending on the ‘‘thoroughness’’ setting, different amounts of generation/check

cycles are performed for each of the five Chi-angles: 1,500 in ‘‘painstaking search’’,

300 in ‘‘thorough search’’, 90 in ‘‘normal search’’ or 10 in ‘‘quick search’’. In

contrast to a full-brute search, this method allows the search procedure to be

shortened (if desired) without systematically missing conformations. Each gener-

ated conformation is also checked for clashes within the label itself. If internal

clashes occur, the corresponding conformation is discarded.

Fig. 2 a The mtsslWizard GUI is integrated into PyMOL (http://www.pymol.org). The mtsslWizard
menu on the bottom right is marked with an asterisk. Depending on the selection in ‘‘Mode’’, the
appearance of the interface changes as shown in panels b–d. b Menu for the ‘‘Search’’ mode, c menu for
distance calculation, d ‘‘Copy and Move’’ menu allowing to transfer ensembles of conformations to
symmetry related positions in multimeric proteins
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Depending on the search parameters and the size of the protein, the calculation

for one site typically takes on the order of 10–15 s on a standard laptop computer.

For very large protein assemblies ([2,000 residues), calculation times on the order

of 2–10 min may occur. Wherever the protein is a symmetric multimer, only one

calculation per unique site is required; the distribution is easily transferred to other

symmetry related positions by simply clicking in ‘‘Copy and Move’’ mode of the

program.

Wherever the label is attached close to a hydrophobic surface pocket,

conformations that place the label inside the pocket might be particularly stable.

Such a fixed conformation would give a very different distance distribution than

models assuming a flexible spin label. Identifying such a pocket would be key to

correctly interpreting PELDOR data and avoiding ‘‘identifying’’ a conformational

change where none occurred. As a possible solution to this problem, mtsslWizard

sums the number of atoms that reside outside the vdW cutoff of a non-clashing

conformation but are still within a 4.5 Å sphere around the same label conforma-

tion. We then use the number of these contacts as a surrogate for fit to the protein

surface. The conformation with the highest number of such contacts is flagged as a

‘‘snuggly fit’’, as are all those conformations that have at least 75% of this maximum

value (see Spa15 example, below). The ‘‘snuggly fit’’ algorithm is only activated

when the program runs with the thoroughness set to ‘‘painstaking’’ since otherwise

the conformational space is not sampled well enough for this feature to work

properly. We would like to stress that the ‘‘snuggly fit’’ algorithm merely flags up

possibilities for the scientist to further investigate.

MtsslWizard was initially designed as a tool to assist in the selection of labeling

sites for PELDOR experiments. The program gives the user an immediate idea if a

planed labeling site is too occluded for the attachment of MTSSL and if the distance

between two planed labeling positions will fall into the PELDOR window of

15–80 Å. Furthermore, we found that the program is very useful to interpret

PELDOR data if two or more models for a protein structure are available. In this

case, a comparison of the experimental distance distributions with the in silico data

can often help to decide which of the available models shows the best agreement

with the experimental data.

2.2 Accounting for Conformational Changes at the Labeling Site

Almost by definition, SDSL is performed on solvent-accessible surface residues;

however, the local environment of the protein structure can change due to the

introduction of the spin label. A good example for this is the spin-labeled Spa15

structure which shows some significant conformational changes compared to the

wild-type structure [24, 32]. It is also important to remember that the protein

structure, especially with respect to surface residues is not as static as it appears in a

molecular graphics program. Surface residues are often not well defined in electron

density or have multiple conformations and as yet there is no simple way to capture

such uncertainty. If no experimental electron density map is available, crystallo-

graphers rely in such cases. Further, crystal packing can introduce conformational

artifacts of individual surface residues. Nuclear magnetic resonance (NMR)-derived
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structures are a very important source of data and model structural variability

explicitly by producing a structural ensemble. Any approach which implicitly

assumes that a single structure is a perfect model for the solution state of the protein

runs the risk of errors, since clashes in the static model may not exist in the solution

structure. It is for this reasons that we have allowed the user control over two

parameters in mtsslWizzard: ‘‘vdW cutoff’’ and ‘‘allowed clashes’’, which allow

conformations with apparent label/protein clashes. The ‘‘vdW cutoff’’ determines

when a contact between label and protein is counted as a clash and is by default set

to ‘‘3.4 Å’’ which is a typical distance (carbon–carbon) between residues in the

hydrophobic core of a protein structure. This value can be changed by the user

between values of 2.6 Å (length of a typical hydrogen bond, ignoring the hydrogen)

and 3.4 Å. The mtsslWizard employs this cutoff value for all atom types. Although

vdW radii differ between, e.g., oxygen (1.52 Å) and sulfur (1.80 Å), we found that

the error of the distance prediction (*3.5 Å) of mtsslWizard and, e.g., MMM

dwarfs this difference by far. The ‘‘allowed clashes’’ parameter is by default set to

‘‘0’’ but can be adjusted to values between ‘‘0’’ and ‘‘5’’. As mentioned above, a

clash is here defined as a violation of the above described ‘‘vdW cutoff’’ and does

not mean that two atoms share exactly the same position in space. A conformation

that seriously protrudes into the protein surface would have far more than five such

clashes. We would envisage such parameters being varied for low-resolution

structures, flexible regions, for NMR structures or homology models from SWISS-

PROT or if it is known that a certain site can be labeled but no conformations can be

found using the default parameters. Again we stress that the scientists have to

exercise their judgment with respect to what degree they deviate from the defaults,

and the program specifically cautions when the parameters are varied.

2.3 Distance Calculation

Once two or more sites of a protein have been labeled in silico, the mtsslWizard is

switched into ‘‘Distance’’ mode and all distances between a pair of label ensembles

are determined (N–N distances between nitroxide groups), displayed and written out

to a file if desired (Fig. 2c). For a quick overview, a text-based histogram of all

distances is calculated and displayed together with statistical information (arith-

metic mean, median, the shortest, and the longest distance) and the Cb–Cb distance

between the selected sites. The speed of the distance calculation depends on the

number of conformations at the two selected sites but typically takes *10 s.

2.4 Comparison of MtsslWizard Predictions with Experimental Data

2.4.1 Example 1: T4 Lysozyme and H3–H4 Histone

We tested mtsslWizard against a dataset of 52 published PELDOR and CW-EPR-

derived distances of double spin-labeled T4 lysozyme (T4L) and (H3–H4)2 histone

[7]. The program was run with the default settings except for the cases indicated in

Tables 1, 2. In these cases the program could not find any conformations that do not

clash with the protein using the default settings. Since the sites could be labeled
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Table 1 EPR-derived distances of spin-labeled T4L (PDB entry 2LZM, [33]) compared to predictions

from mtsslWizard and MMM in 298K and 175K mode

AA EPR
\r[/rpk

Cb–Cb MtsslWizard
\r[/rpk

MMM 298 K
\r[/rpk

MMM 175 K
\r[/rpk

061–135d 47.2/– 40 49/50 47/47 46/46

065–135d 46.3/– 37 47/47 44/44 42/41

061–086d 37.5/– 37 45/46 42/43 41/42

065–086d 37.4/– 31 37/38 36/36 33/30

080–135d 36.8/– 27 36/38 33/36 32/35

061–080d 34/– 29 34/33 31/31 31/31

065–080d 26.5/– 22 25/24 24/24 23/23

119–131b 25/– 13 24/25 19/23 18/17

123–131b 23/– 14 24/25 20/22 19/19

065–076d 21.4/– 17 18/19 19/20 18/16

116–131b 19/– 11 18/19 17/20 17/20

119–128b 19/– 9.7 18/19 16/19 15/12

140–151b 18/– 17 21/21 21/20 19/20

089–093b 16/– 12 17/17 18/16 18/18

086–119b 15/– 10 13/12 16/14 16/17

120–131b 14/– 9 12/12 (120: vdW 3.2, t)a 14/13 14/14

127–151b 14/– 12 14/14 16/17 16/18

59/159c 41.9/42 34 43/43 40/40 38/40

60/90c 37.8/38 37 45/46 44/45 43/42

60/94c 25.5/26 28 31/32 33/33 33/36

60/109c 35.2/34 31 39/40 35/36 34/33

60/154c 34.1/34 34 38/39 (154: t) 38/40 40/42

62/134c 41.1/41 36 48/48 (both: t) 44/47 46/47

64/122c 34.1/33 33 38/38 38/38 38/39

82/94c 30.7/32 24 32/33 31/31 29/31

82/132c 26.3/29 21 28/27 26/27 25/25

82/155c 35.8/38 28 38/39 35/37 33/31

83/123c 20.5/21 15 17/17 19/21 18/15

93/112c 26.1/26 21 32/33 (112:vdW3.2, t) 30/32 29/31

93/123c 24.8/25 19 26/27 25/26 24/24

93/154c 25.1/25 16 26/27 (154:t) 23/25 21/23

94/132c 31.7/32 19 32/33 (both: t) 29/31 27/29

108/155c 35.2/36 25 37/37 34/36 32/32

109/134c 30.6/31 21 31/33 28/31 27/25

115/155c 28.2/27 23 33/33 29/30 26/27

116/134c 20.2/20 12 17/17 18/20 17/17

Distances are given in angström. MtsslWizard was run with default parameters (‘‘normal search’’, ‘‘vdW cutoff:
3.4’’, ‘‘allowed clashes: 0’’) if not stated otherwise. For the EPR data, the average values \r[ are taken from the
indicated publications. If available the distance distributions were digitized and the highest peak of the distribution
rpk is also given. For the prediction programs \r[ and rpk are given

t ‘‘thorough search’’ was used in mtsslWizard
a Position 120 could only be labeled with the vdW cutoff set to 3.2 and the thoroughness set to ‘‘thorough’’
b [1]
c [21]
d [6]
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experimentally the vdW cutoff parameter was adjusted in these cases. In the tables

and wherever available, the weighted mean (\r[) and the most probable/peak

distances rpk are listed. The reason for the usage of the mean distance is that the

value for the mean distance is more stable in DEER analysis-derived distance

distributions than the peak distance or the asymmetry of the distribution, especially

in the case of broad distributions [20]. The residual plots in Fig. 3 show that on

average, mtsslWizard gives a significantly better (\Dr[ = 1.2 Å, r(Dr) = 3.0 Å)

estimate of the PELDOR experimental distance than the Cb–Cb distance

(\Dr[ = -6.4 Å, r(Dr) = 3.5 Å) and performs on par with the MMM program

[27] (\Dr[ = -0.9 Å, r(Dr) = 3.3 Å). Here, \Dr[ is the mean value of the

difference between in silico and experimentally derived distance and r(Dr) is its

standard deviation. Thus, mtsslWizard is ‘‘safe’’ to use, it is not worse than MMM,

the current gold standard on average. Bowman et al. [7] used MD simulations to

predict the PELDOR distance distributions of the histone distances in our test

Table 2 PELDOR derived distances of spin-labeled H3-H4 histone [7] (PDB entry 1TZY, [34]) com-

pared to distances predicted by mtsslWizard and MMM in 298 K and 175 K mode

AA EPR

\r [/rpk

Cb–Cb MtsslWizard

\r [/rpk

MMM298 K

\r [/rpk

MMM175 K

\r[/rpk

MD

rpk

H3

V46 60/60 51 61/64 57/58 55/58 60

R49 63/63 54 65/66 61/61 59/59 64

L65 70/70 66 76/76 72/71 71/70 77

Q76 68/70 61 71/71 68/70 67/66 71

M90 57/59 50 61/62 57/60 55/54 61

Q125 29/28 20 30/31 26/26 24/26 31

H4

N25 73/67 59 71/71 70/70 69/66 70

T30 66/67 55 66/66 63/63 60/61 68

R45 35/33 31 35/34 36/37 36/37 33

S47 35/26 30 32/33 31/33 32/34 38

L49 45/46 34 41/41 37/37 32/24 38

V60 39/38 32 38/38 35/35 35/35 39

E63 40/46 39 47/48 43/43 40/43 46

R67 45/45 38 44/44 (p) 37/39 37/39 43

T71 45/43 36 47/46 (t, vdW3.0) 42/46 43/45 40

T82 53/51 44 50/50 (t, vdW 3.0) 45/44 46/46 50

Distances are given in angström. MtsslWizard was run with default parameters (‘‘normal search’’, ‘‘vdW

cutoff: 3.4’’, ‘‘allowed clashes: 0’’) if not stated otherwise and the average distance that the program

calculates is listed. For MMM, the highest peak in the calculated distance distribution is listed. The MD

values are taken from [7]. For the EPR data, the average distance and the highest peak of the distance

distribution is given. For the prediction programs the average distance is given as well as the distance that

corresponds to the highest peak in the predicted distance distribution

t thorough search, p painstaking search
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dataset. The data in Table 2 and Fig. 3 show that on average and within error,

mtsslWizard and MMM perform very similar to this more sophisticated and time-

consuming approach. The correlation plot for the Cb–Cb distances reveals (Fig. 3a)

that the usage of Cb–Cb distances underestimates the experimental distance by

about 6.5 Å. Adding this value to the Cb–Cb distances leaves a standard deviation

of r(Dr) = 3.5 Å that is not much worse than any of the simulation approaches.

Thus, as a rule of thumb, 6.5 Å can be added to any Cb–Cb distance to get a good

idea of which experimental distance is to be expected between a pair of MTSSL

Fig. 3 PELDOR distances derived from the T4L and Histone datasets (compare Tables 1, 2) are plotted
against different in silico predictions. The x-axis shows the experimental distance and the y-axis the
difference of the experimental value to the prediction (Dr). The ideal y = 0 line is marked in red, the
areas corresponding to different prediction errors are shaded with different colors (green: B3 Å, yellow:
B5 Å, white:[5 Å). Each graph contains two plots, white circles show a comparison of the highest peaks
of experiment and prediction (r(EPR)pk/r(Pred)pk) and black squares compare averages of experiment and
predictions (r(EPR)avg/r(Pred)avg). The two vertical histograms (dark gray: EPRavg/Predavg; light gray:
EPRpk/Predpk) on the right of each plot visualize the spread of the residuals for both plots. The average
difference (\Dr[) between prediction and experiment and the standard deviation of this value (r(Dr)) are
given in the table to the right of each plot. The average difference (\Dr[) is also marked by blue
horizontal lines in the histograms. The blue line in the residual plots (left) corresponds to the average
difference for EPRavg/Predavg. The MD values were taken from [7]
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spin labels. However, the benefit of simulation programs is the calculation of

distributions that can be compared to experimental data.

2.5 Unrestricted Search versus Rotamer Libraries

For the comparison above, MMM was run in default mode (assuming a temperature

of 175 K) and in 298 K mode. In 175 K mode we found that MMM often produces

very sharp but spiky distance distributions, which can be difficult to interpret and

that are usually not found in PELDOR experiments. At 298 K the MMM

distributions are much more smooth and rather wide, which means that most of the

MTSSL rotamers that MMM predicts for a certain site are assumed to be populated

at this temperature (Supplementary Figure 1). In essence, this comes close to the

mtsslWizard strategy of sampling the whole conformational space of the label at

this site and calculating an average distance. Furthermore, Fig. 3 shows that for both

mtsslWizard and MMM the predictions within our dataset are more reliable (smaller

standard deviation) if the average of the calculated distribution is compared to the

average of the experimental distribution as opposed to the peak values of

experiment and prediction. This is especially obvious for MMM when run in 178 K

mode where the weighting that MMM applies to the distinct rotamers becomes more

apparent. This might on one hand be due to errors in the experimental distance

distributions themselves (see above and [20]) or on the other hand this may indicate,

that the MTSSL rotamer libraries need to be combined with a more sophisticated

energy scoring function taking the protein environment, solvent and electrostatics

explicitly into account. This would however come at great computational costs and

only slight variations between experiment and simulation (ionic strength, pH,

temperature, concentration of ethylene glycol,…) might render the outcome of such

efforts futile. The influence of the protein environment on the conformation of the

label becomes apparent in Fig. 4 which shows Chi-angles from PDB entries that

contain MTSSL in comparison with the computationally derived rotamer library

used in MMM [27]. Although the overall fit of the computational library to the

experimentally observed conformations is good, there are experimental Chi-angles

that are not contained in the libraries or are predicted to have a very low probability.

For whatever reason—the local environment of the spin label seems to promote Chi-

angles that are energetically unfavorable for the free label. We believe that such

Chi-angles ought not to be excluded without good reason. Thus, mtsslWizard

searches all possible Chi-angles restricted only by vdW clashes.

2.5.1 Example 2: Potassium Ion Channel KcsA

In 2009, Endeward et al. [11] analyzed spin-labeled KcsA (KcsA R64C) by

PELDOR spectroscopy and derived orientation of the label from PELDOR data. We

used the published results as another test for mtsslWizard and tried to predict the

experimental data. The program was run using the KcsA structure by Zhou et al.

[35]. Figure 5 shows the resulting spin-label ensembles. Since the label is situated in

a cone-shaped cavity, the spread of the allowed conformations is rather small. The

1–2 and 1–3 distances were then calculated with mtsslWizard and a distance
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histogram was prepared. The maximum of the distance histogram coincides exactly

with the published PELDOR results of 22 and 31 Å for 1–2 and 1–3, respectively.

We also prepared polar histograms for the Chi-angles of the mtsslWizard

ensembles to compare them to values found experimentally by Endeward et al. [11].

Interestingly, Chi1 and Chi2 of the predicted ensemble are close to the experimental

values of -60 and 180� indicating that in this case the protein environment drives

the label into this conformation (Fig. 5).

2.5.2 Example 3: Type III Secretion Chaperone Spa15

The type III secretion effector chaperone Spa15 is an interesting test case because a

crystal structure of the spin-labeled protein shows the label to reside in a confined

hydrophobic surface pocket. This led to unexpected PELDOR results and the MMM

program [27] was reported as failing to model the observed data, even when the

crystal structure of the spin-labeled chaperone was used for the modeling efforts

[24].The mtsslWizard was run with the spin-labeled Spa15 structure and a broad

spread of possible conformations was found with the most frequent distance at

*56 Å. This is more than 10 Å longer than the experimentally determined

PELDOR distance of 45 Å, and similar to the discrepancy that occurs with the

MMM approach (Fig. 6) [24].

1 2 

3 4 5 

Fig. 4 Comparison of MTSSL Chi-angles taken from available X-ray structures with a computationally
produced library for the free spin label [27]. The datasets are represented by polar histograms. The
experimentally found angles are color coded as follows: Chi1-blue, Chi2-red, Chi3-green, Chi4-yellow,
Chi5-purple. The computed Chi-angles are overlaid as gray polar histograms and are taken from Polyhach
et al. [27] Experimental Chi-angles where taken from the following PDB entries: 1zwn, 1zyt, 2cuu, 2igc,
2nth, 2ou8, 2ou9, 2q9d, 2q9e, 3g3v, 3g3w, 3g3x, 3ifx, 3m8b, 3m8d, 2w8h. In addition, the Chi-angles
reported by Langen et al. [23] were used

386 G. Hagelueken et al.

123



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

0 5 10 15 20 25 30 35 40 45 50 55 60

0 

90 

180 

-90 

Chi1 

Chi2 

Chi3 

Chi4 

Chi5 

1 

2 

3 

distance (Å) 

1-2 1-3 

fr
eq

ue
nc

y 

Fig. 5 Example 2: the KcsA potassium transporter spin-labeled with mtsslWizard. Left: Found
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spheres. Middle: distance histograms (green) produced for distances 1–2 and 1–3. The experimental
PELDOR distance distributions [11] are shown as red line. Right: polar histogram plots of all Chi-angles
from the MTSSL conformations shown in the left part of the figure
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Fig. 6 Example 3: The Spa15 chaperone. a All MTSSL conformations predicted by mtsslWizard are shown
as green sticks. Note that the program was run in ‘‘painstaking’’ mode to activate the ‘‘snuggly fit’’ feature and
the vdW cutoff was lowered to 2.8 Å. The MTSSL conformation found in the X-ray structure (29ga) is colored
yellow). The molecular surface of the protein is colored according to atom type. Carbon: gray, oxygen: red,
nitrogen: blue. b Same as (a), but for the subset of conformations (salmon) that were flagged as ‘‘snuggly fit’’ by
mtsslWizard. The conformation observed in the crystal structure is thicker and highlighted in yellow. c The
respective distance histograms after labeling both monomers of the Spa 15 dimer (for visualization purposes,
both are individually scaled to values between 0 and 1). Experimental PELDOR data were digitized from [24]
and is shown as red line. The inset shows a magnification of the overlapping part of the two histograms
indicating that the ‘‘snuggly fitting’’ conformations are truly a subset of all conformations. d MtsslWizard
results compared to the X-ray structure of spin-labeled (pos 118) T4L. The ‘‘snuggly fit’’ algorithm (red sticks)
predicts the location of the spin label in a hydrophobic surface pocket, as found by crystallography.
Conformations that were not flagged as ‘‘snuggly fit’’ by the program are colored green
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This problem is an ideal test case for our above mentioned ‘‘snuggly fit’’

algorithm and in the case of Spa15 the subsets of snuggly fitting conformations are

located in the surface pocket and match quite well with the location of the label

observed by crystallography (Fig. 6). The distance histogram derived from the

snuggly fitting conformations peaks at 46.5 Å, close to the experimentally observed

distance of 45 Å (Fig. 6). Note that the program was run in ‘‘painstaking’’ mode to

activate the ‘‘snuggly fit’’ feature and the vdW cutoff was lowered to 2.8 Å. Another

example that demonstrates the usability of this approach is T4L spin labeled at

position 118. A crystal structure of this spin-labeled mutant was solved and shows

the spin label buried in a surface cavity [15]. We ‘‘spin labeled’’ this position with

mtsslWizard and the 15 conformations (of 265 total found conformations) that were

flagged as ‘‘snugglyFits’’ by the program are all contained within the surface pocket

close to the position found by crystallography (Fig. 6d).

2.5.3 Example 4: The Escherichia coli Capsule Export Channel Wza; Limitations
of Current Snuggly Fit Approach

Wza is a bacterial outer membrane protein that has been crystallized with and

without attached spin label [10, 16]. An MTSSL spin label attached to position

Q335C of the protein was found to have two conformations by crystallography,

explaining a pronounced shoulder in the PELDOR data [16].

We used mtsslWizard to see if the PELDOR results including the double peak

can be predicted. Distances derived from the ensemble of found conformations

closely coincide with the experimental data of 28.6 and 54 Å (main peaks in [16],

Fig. 7). The pronounced shoulder that was observed in the PELDOR data is

however not observed in the mtsslWizard results. Figure 7 shows that both
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Fig. 7 Example 4: The octameric outer membrane channel Wza. a All conformations found by mtsslWizard
are shown in translucent and surrounded by a green outline to indicate the size of the whole distribution. Those
conformations flagged as ‘‘snuggly fits’’ are shown as red sticks. The two conformations from the X-ray
structure are colored yellow. The molecular surface of the protein is colored according to atom type. Carbon:
gray, oxygen: red, nitrogen: blue. b The corresponding histograms for the 1–2 and 1–3 distances of Wza. The
histograms for all conformations are filled green; the histograms for the ‘‘snuggly fit’’ conformations are
colored red. Experimental PELDOR data were taken from [16]. Note that both the red and green histograms are
individually normalized, otherwise the ‘‘snuggly fit’’ histogram would not be visible on the chosen y-axis scale
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crystallographic conformations are contained in the predicted conformations, but

their contribution to the histograms is overwhelmed by the other possible

conformations and thus no double peak is simulated. The distance histograms of

the ‘‘snuggly fitting’’ conformations do show multiple peaks, but deviate from the

observed distances (Fig. 7). Although the simple scoring of ‘‘snuggly fit’’ does fail

in this case, the approach does provide models for user inspection and possible

further analysis.

In the Wza mutant Q335C the label is attached to the bottom of a relatively large

hydrophilic crevice in the molecular surface (Fig. 6, compare molecular surface to

Fig. 5). In comparison to the Spa15 and T4L examples above, this shows that our

current ‘‘snuggly fit’’ approach may only be valid for hydrophobic pockets and less

reliable for hydrophilic environments. Intuitively this seems reasonable as vdW

interactions will sum but polar interactions have important geometric considerations

or can be repulsive. Improvement of the ‘‘snuggly fit’’ algorithm can come from two

sources, further increase in experimental data, which defines pockets that the label

can occupy, or a more sophisticated scoring function. A more sophisticated scoring

algorithm would differentiate between repulsive and attractive forces and treat polar

atoms differently. The challenge for future development is to balance an

increasingly sophisticated treatment of label–protein interactions against simplicity

and speed.

2.6 Interpreting MtsslWizard Results

The T4L and histone examples show that the mean distance calculated by

mtsslWizard predicts the experimental values quite well and we found that in many

cases the shape of the distance histogram derived from mtsslWizard is also a

reasonable match to the PELDOR derived distance distribution (Supplementary

Figure 1). Since mtsslWizard is based on the ‘‘tether-in-a-cone’’ approach [1, 14,

17, 18] the logical implication is that indeed in many cases the spin label does

sample a range of conformations.

Wherever the spin label is not disordered but adopts a fixed or restricted set of

conformations due to interaction with the protein, only a fraction of the possible

conformations that mtsslWizard finds will match the observed data. Additional

parameters such as the surface complementarity score (‘‘snuggly fit’’) have been

introduced to improve the predictions (example 3: Spa15). We also found that it is

often helpful to interpret mtsslWizard results in the light of room temperature CW

spectra because the latter contain experimental information about the flexibility of

the spin label and would thus hint to whether a label is indeed trapped in a pocket or

pointing into the solvent.

3 Conclusion

MtsslWizard is a simple to use and freely available program that allows users to

generate plausible for MTSSL labels attached to a protein, to measure distances

between labels and indeed to vary parameters to allow superficially implausible
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models. We have argued above that there are sound reasons (e.g. errors or

uncertainties in experimental structures) not to assume each side chain of an amino

acid is positioned correctly (especially on the protein surface).

As we would predict our approach produces similar results to MMM in most

cases, any benefit in such cases would derive only from it being a PyMOL plugin,

rather than MATLAB. Importantly, the integration of the program into a freely

available, sophisticated and powerful molecular graphics program like PyMOL

makes it easy for users to critically evaluate mtsslWizard results. We believe the

advantage of our program occurs when PELDOR data does not match the simple

model. Incorrectly interpreting disagreement between PELDOR data and a distance

model in functional terms must be avoided. Determining crystal structures to

resolve such anomalies is definitive but may not be possible in each case. Our

approach allows the scientist to explore whether the measured distances are

plausible from a range of models. As we show the program does a very good job for

a number of test cases where there are unusual positions of the spin label, we stress

the program is intended to provide a basis for further analysis and experimentation.

By eliminating alternative explanations for discrepancy between model and data,

scientists will be able to confidently identify conformational changes.

The source code of mtsslWizard is freely available at htp://www.pymolwiki.

org/index.php/mtsslWizard.
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Note added in proof During the analysis of the T4L and histone datasets with mtsslWizard the vdW
cutoff was in 4 cases lowered to a minimum of 3.0 Å (see Table 1 and 2). This prompted us to re-analyse
the whole dataset with this lower cutoff and we found that the prediction results are the same within
statistical error (see supplementary figure 2). Thus, in cases where large datasets have to be analysed it is
safe to use a cutoff of 3.0 Å to increase the consistency of the analysis.
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