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Abstract In photosynthetic bacteria, light-induced electron transfer takes place

in a protein called the reaction center (RC) leading to the reduction of a bound

ubiquinone molecule, QB, coupled with proton binding from solution. We used

electron paramagnetic resonance (EPR) and electron-nuclear double resonance

(ENDOR) to study the magnetic properties of the protonated semiquinone, an

intermediate proposed to play a role in proton coupled electron transfer to QB. To

stabilize the protonated semiquinone state, we used a ubiquinone derivative,

rhodoquinone, which as a semiquinone is more easily protonated than ubisem-

iquinone. To reduce this low-potential quinone we used mutant RCs modified to

directly reduce the quinone in the QB site via B-branch electron transfer

(Paddock et al. in Biochemistry 44:6920–6928, 2005). EPR and ENDOR signals

were observed upon illumination of mutant RCs in the presence of rhodoquinone.

The EPR signals had g values characteristic of rhodosemiquinone (gx = 2.0057,

gy = 2.0048, gz * 2.0018) at pH 9.5 and were changed at pH 4.5. The ENDOR

spectrum showed couplings due to solvent exchangeable protons typical of

hydrogen bonds similar to, but different from, those found for ubisemiquinone.

This approach should be useful in future magnetic resonance studies of the

protonated semiquinone.
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1 Introduction

Light-induced electron transfer is responsible for conversion of light energy into

chemical energy in photosynthesis. In photosynthetic bacteria, the initial photo-

chemistry takes place in a protein called the reaction center (RC) and involves

electron transfer from the primary electron donor, a bacteriochlorophyll dimer

through a series of bound cofactors [1–3]. The structure of the RC shows roughly

twofold symmetry with two groups of cofactors forming parallel pathways across

the protein; an active group called the A branch and an inactive group called the B

branch. Electron transfer normally occurs along the A branch from the primary

donor, a bacteriochlorophyll dimer through bacteriochlorophyll then bacteriophe-

ophytin to a primary ubiquinone, QA. The reduced QA
�- then transfers an electron to

a symmetrically related but weakly bound ubiquinone molecule QB that is

connected to QA through an His-Fe2? complex. Although QA and QB are both

ubiquinone molecules and are symmetrically related in the RC, the functions of the

two quinones are quite different [4, 5]. QA is reduced by the primary electron

transfer reaction in *10-10 s with a quantum yield close to unity and normally only

accepts one electron. QB is not directly reduced in the primary photochemistry but is

reduced by QA
�- on a much slower time scale (10-3–10-4 s). The full reduction of

QB occurs in two one-electron transfer steps coupled to proton transfer to yield the

fully reduced hydroquinone (see Eq. 1).

QB þ 2e� þ 2Hþ ! QBH2 ð1Þ
The mechanism for this reaction has been proposed consisting of a sequence of

electron and proton transfer steps which involves an intermediate protonated

semiquinone (QBH�) [6].

QB!
e�

Q��B ,H
þ

QBH�!e� QBH�!H
þ

QBH2 ð2Þ
The first step is electron transfer from QA

�- forming the anionic semiquinone QB
�-.

The second step is a reversible, transient protonation of the anionic semiquinone

QB
�- to form a higher energy protonated semiquinone intermediate QBH� which is

easily reduced to form the stable QBH- state. Finally, the second protonation event

leads to the fully reduced state. The work presented here is designed to study the

magnetic resonance properties of the protonated semiquinone in bacterial RCs.

In solution, the protonated semiquinone species is unstable with respect to

disproportionation into hydroquinone and quinone [7]. Consequently, in chemical

systems the protonated semiquinone has been studied in transient or steady state

populations resulting from formation either under ultraviolet illumination [8–10] or

pulse radiolysis [11]. In addition, the protonated semiquinone has been observed by

trapping at cryogenic temperature using electron paramagnetic resonance (EPR)

spectroscopy [12] or infrared spectroscopy [13]. In native RCs containing

ubiquinone, the protonated ubisemiquinone has never been observed. This is

believed to be due to the low pKa for the protonated ubisemiquinone state. However,

the presence of the protonated semiquinone was required to explain both the pH

dependence and the electron driving force dependence of the rate of proton coupled
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transfer of the second electron to QB leading to the proposed proton coupled

electron transfer reaction.

In order to overcome the low steady state population of the protonated

semiquinone, Graige et al. [14] used a low potential quinone, rhodoquinone, which

is expected to have a higher pKa value, to replace ubiquinone in the QB site. Its

reduction required the use of a modified low potential QA. In this system, a

protonated semiquinone intermediate state was observed by transient optical

spectroscopy with a pKa of 7.5. The observed rate of the second electron transfer to

the rhodosemiquinone decreased nearly tenfold per pH unit at pH values above this

pKa consistent with the mechanism of electron transfer to the protonated

semiquinone.

In this work, we used a new procedure for reducing rhodoquinone in the QB site

that should be useful for magnetic resonance studies. A difficulty in the original

system used by Graige et al. [14] is due to the low potential of rhodoquinone

requiring the use of low potential analogues of QA in order to obtain electron

transfer to QB. Besides the difficulty in binding different quinones in the QA and QB

sites, a second complication arises due to incomplete electron transfer from QA
�- to

QB which would lead to background signals due to the QA
�- radical. This results in

EPR and electron-nuclear double resonance (ENDOR) spectra containing an

admixture of QA
�- and QB

�- signals.

To avoid these difficulties, we developed a strategy to generate QB
�- via direct

electron transfer from bacteriopheophytin in the B branch using modified RCs in

which the binding site of QA is eliminated and direct electron transfer to QB along

the B branch is enhanced by suitable mutations [15]. The modified RC contains a

total of five mutations and thus is called the quintuple mutant (see Fig. 1). Although

the quintuple mutant RC has many modified residues, none of these changes is in

the region around QB. Thus, we expect that the QB binding site in the mutant RCs to

be similar to native. Support for the integrity of the QB environment comes from the

crystal structure, the light-induced charge recombination rates, and the ENDOR

spectrum of ubisemiquinone in the QB site, which are all similar for quintuple

mutant and native RCs [15–17]. The resultant low quantum yield for reduction of

QB (about 5%) could be overcome in these studies using continuous illumination in

the presence of an electron donor resulting in nearly complete reduction of QB

without an admixture of QA
�-.

In the experiments described in this work, rhodoquinone (RQ-3) was added to

quintuple mutant RCs in which the Fe2? was replaced with Zn2? to eliminate

broadening due to magnetic coupling. The RC was illuminated to generate the

radical states and frozen in liquid nitrogen. The EPR and ENDOR spectra (80 K,

Q-band) at neutral and high pH are characteristic of a semiquinone radical but differ

in detail from those of the ubisemiquinone in the QB site. These signals are assigned

to the anionic rhodosemiquinone. EPR spectra of the semiquinone showed changes

at low pH (pH 4.5), which could be due to protonation of the rhodosemiquinone.

The results show the potential for generating low potential radical species by

reduction via the B-branch electron transfer.
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2 Materials and Methods

2.1 Sample Preparation

Rhodoquinone (RQ-3) was synthesized as described in Ref. [18]. It differs from

ubiquinone in the substitution of an amino group for a methoxy group on the quinone

ring (Fig. 2). The rhodoquinone radical anion in vitro (RQ�-, 1 mM) was generated

electrochemically [19]. The coulometry of the quinone was performed using

tetrabutylammonium fluoroborate (0.2 mol/l) as supporting electrolyte under high

vacuum conditions in a home-built electrolysis cell. A mixture (1:1) of dimethoxyethane

(DME, Fluka) and 2-methyltetrahydrofuran (MTHF, Merck) was used as solvent. Both

solvents were purified, distilled and dried over liquid Na/K alloy on high vacuum line.

They were then distilled into the electrolysis cell from the high vacuum line.

Electrochemical reduction was performed at room temperature under controlled

potential using a platinum net and an uncoated silver wire as working and reference

electrodes, respectively. A fraction of the obtained semiquinone anion radical solution

was transferred to the Q-band EPR tube (outer diameter, 3 mm; inner diameter, 2 mm),

which was finally plunged into liquid nitrogen and sealed under high vacuum conditions.

The RC protein was isolated from semi-aerobically grown cells of the quintuple

B-branch mutant which includes the AWM260 mutation that excludes quinone from

binding to the QA site. [15] The RCs were purified as described in Ref. [20] with an optical

ratio OR = A280/A802 \ 1.3. The isolated RCs were concentrated to A802 * 200.

Fig. 1 Structure of the quintuple RC. The cofactors and mutation sites are shown. The mutated residue
Trp M260 is in the QA site and prevents QA binding. The other mutations enhance electron transfer
directly to QB via the B-branch. Modified from Ref. [15] with permission. Copyright 2006 American
Chemical Society
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To perform EPR and ENDOR studies on RQB
�-, the high-spin Fe2? was removed

and replaced with diamagnetic Zn2? as described by Debus et al. [21] and as

modified by Utschig et al. [22]. Ubiquinone and ubisemiquinone were removed as

described in Ref. [17]. The QB site was reconstituted with RQ-3 by adding a *10-

fold excess. The concentrated stock was diluted 1:5 into 50 mM N-cyclohexyl-2-

aminoethanesulfonic acid (CHES) buffer pH 9.5 for the high pH sample and 50 mM

citrate pH 4.5 for the low pH sample, each containing 0.04% b-D-maltoside. The RC

samples were illuminated in quartz EPR cells using a tungsten lamp (I * 1 W/cm2)

with a heat filter (1 in. water) for *5 s prior to freezing in liquid nitrogen. In these

samples, residual metal and/or ethylenediaminetetraacetic acid (EDTA) that

remained from the metal replacement procedure acted as an external electron source

that reduced D�?.

2.2 EPR and ENDOR Measurements

Continuous-wave (CW) EPR and ENDOR measurements at Q-band (35 GHz) and

80 K were performed in San Diego. The spectrometer is a home-built superhet-

erodyne-type instrument with a Varian klystron, a cylindrical TE011 brass cavity,

and an immersion Dewar system for temperature control. The cavity and coupler is

similar to one described by Sienkiewicz et al. [23]. A Li:LiF sample was used as a

primary g value standard (g = 2.00229) [24], and P-doped Si as a secondary

standard (g = 1.99891 at 80 K) [25]. The P–Si marker was permanently attached to

the bottom wall of the cavity. ENDOR experiments were performed with the EPR

spectra 50% saturated. ENDOR spectra were recorded at the magnetic field position

as indicated in the corresponding traces, using frequency modulation (FM) of

±140 kHz, at a FM rate as indicated in the figure caption. The output of the radio-

frequency (RF) amplifier (ENI 3100L) feeding the ENDOR coils was 50 W.

EPR measurements of rhodosemiquinone (RQ�-) in vitro (T = 80 K) were

performed in Mülheim using a pulsed Q-band (34 GHz) Bruker ELEXSYS E580

spectrometer with a Super Q-FT microwave bridge equipped with a homebuilt

resonator similar to that used in the laboratory of San Diego. Field-swept free

induction decay (FID)-detected EPR spectra were recorded using a hole-burning

microwave (MW) pulse of 1,000 ns (p/2).
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Fig. 2 Structures of a rhodoquinone and b ubiquinone. In rhodoquinone, an amino group replaces a
methoxy group on the ubiquinone ring. The rhodoquinone compound used in this study has n = 3
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3 Results

3.1 EPR Spectra

Figure 3a shows the EPR spectrum of the rhodosemiquinone anion radical (RQ�-)

in nonprotic solvents (DME/MTHF). At Q-band, the rhodosemiquinone EPR signal

displays a characteristic g anisotropy with principal g values of 2.0058 (gx), 2.0049

(gy) and 2.0017 (gz). These values are different to those corresponding to the

ubisemiquinone anion radical (UQ�-) in nonprotic solvents (see Table 1) [19]. The

difference in g values of RQ�- and UQ�- shows that the spin density distribution in

the rhodosemiquinone is different than that in the ubisemiquinone. This is probably

due to the difference between the electronic properties of amine group in RQ and

methoxy group in UQ (see Fig. 2).

The RC samples containing RQB had the high-spin Fe2? replaced by Zn2?. The

semiquinone state was generated by illumination and then the samples were quickly

frozen. Figure 3b shows the Q-band EPR spectrum of the RC sample prepared at pH

9.5. At this frequency, the low-field (gx and gy) region of the spectrum is due to the

semiquinone radical, whereas the region near gz can contain contributions of

the donor radical D�? [17]. The amount of D�? was variable. Thus, we focus on the

regions near gx and gy which are reflective of the semiquinone states. The EPR

signal obtained at pH 9.5 is attributed to that of RQB
�- due to the absence of a signal

in parallel samples made without the addition of RQ and the similarity to that of

Fig. 3 EPR powder spectra of
rhodosemiquinone and
ubisemiquinone at 80 K. a RQ�-
in nonprotic organic solvents, b
RQB
�- in quintuple mutant RCs

at pH 9.5, c RQB
�- (or RQBH�)

in quintuple mutant RCs at pH
4.5 and d UQB

�- in quintuple
mutant RCs at pH 7.1. Both gx

and gy differ between the RQB
�-

and UQB
�- samples and show

slight shifts between pH 9.5 and
4.5. Experimental conditions: a
MW frequency = 33.87 GHz,
MW power = 3.2 9 10-4 W,
spectrum obtained by pseudo-
modulating the field-swept
FID-detected EPR spectrum
with 0.15 mT (see Sect. 2.2),
average of 2 scans, 40 s per
scan. The others: MW
frequency = 35.03 GHz, MW
power = 1 9 10-7 W, field
modulation = 0.15 mT peak-to-
peak at 270 Hz. Number of
scans: b 7, c 29 and d 100.
Scan time: 20 s
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RQ�- in vitro (see Fig. 3a, b). The measured g values are 2.0057 (gx) and 2.0048

(gy). The spectra from samples made at pH 8.0, 7.5 and 6.0 all resembled that from

the sample at pH 9.5 (not shown). However, the g values of RQB
�- (gx and gy) differ

significantly from those of UQB
�- (Fig. 3d). This is in line with the observations in

model systems (see Table 1). Thus, the structural difference between the quinones is

also responsible for the difference in g values of RQB
�- and UQB

�-.

To search for conditions under which the rhodosemiquinone is protonated,

quintuple mutant RCs containing RQ were illuminated at lower pH values. No

changes in the EPR spectra measured at 80 K were observed at pH 6 (data not

shown) where rhodosemiquinone has been reported to be protonated in room

temperature experiments. However, a small shift in values of gx from 2.0057 to

2.0055 and gy from 2.0048 to 2.0045 were measured in the lower pH 4.5 sample (see

Fig. 3b, c; Table 1). These changes may be due to protonation of the

rhodosemiquinone.

3.2 ENDOR Spectra

In addition, we used ENDOR spectroscopy to measure the magnetic interaction of

the semiquinone with the protein surrounding (e.g., with hydrogen bonded protons).

This technique has recently been used to characterize in detail the hydrogen bonding

situation of QA
�- [26]. Furthermore, it was used to monitor local conformational

changes associated with the electron-transfer reaction DQB ? D?QB
�- involving

one of the hydrogen bonds to QB
�- [17].

Figure 4 shows the Q-band 1H ENDOR spectra of illuminated quintuple mutant

RCs containing UQ or RQ. These spectra were measured by monitoring the EPR

spectrum at the magnetic field position corresponding to gy (see Fig. 3a) where the

largest semiquinone ENDOR signals are obtained and contributions from donor

radical signals are negligible. Since deuterated ubiquinone-10 was used, only

exchangeable protons and protons of the protein matrix contribute to the 1H

ENDOR spectrum of UQB
�- (see Fig. 4, top trace). The lines outside the matrix

region (i.e., between 48.5 and 52 MHz) were previously assigned to protons in

Table 1 g-Tensor principal values of quinone related radicals in RCs of Rb. sphaeroides and of model

systems in nonprotic organic solvent

g value (±0.0001) Rb. sphaeroidesa Model systems

UQB
�-(pH 7.0) RQB

�-(pH 9.5) RQB
�-(pH 4.5) UQ�-b RQ�-c

gx 2.0062 2.0057 2.0055 2.0070 2.0058

gy 2.0053 2.0048 2.0045 2.0054 2.0049

gz 2.0021 – – 2.0020 2.0017

– Values could not be measured accurately due to the overlapping with a small fraction of D�? (see

Fig. 3b, c)
a Values obtained in this work using quintuple mutant RCs, in which the high-spin Fe2? was replaced by

diamagnetic Zn2?

b Values corresponding to ubiquinone-3 (UQ-3) as taken from Ref. [19]
c Values obtained in this work using rhodoquinone-3 (RQ-3)
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hydrogen bonds to the carbonyl oxygens of the semiquinone UQB
�- (for details see

Paddock et al. [17]). The peaks at 50.6 and 51.6 MHz (indicated by arrows) were

attributed to the perpendicular components of the hyperfine coupling tensors

associated with the H-bonded protons. The shifts of these peaks from the proton

Larmor frequency (*53.2 MHz) represent a direct measure of the couplings

between the electron in UQB
�- and the hydrogen bonded protons.

Figure 4, middle trace shows the 1H ENDOR spectrum of RQB
�- (i.e., the RC

sample prepared at pH 9.5). Similar spectra were obtained from the RC samples

prepared at pH 8.0, 7.5 and 6.0 (not shown). Since protonated rhodoquinone was

used, the ENDOR spectrum has contributions from all protons, i.e., exchangeable

protons, protons of the protein matrix and nonexchangeable protons on the quinone.

The peaks at 50.2 and 51.7 MHz (indicated by arrows) seem to belong to hydrogen-

bonded protons due to their line shape and position, i.e., they seem to be related to the

perpendicular components of the H-bond tensors. The assignment of these peaks to

hydrogen bonding protons is supported by their absence in the 1H ENDOR spectrum

of the RC sample prepared in D2O, i.e., the protons were exchanged by deuterons

(see Fig. 4, bottom trace). The couplings measured for RQB
�- are different than those

measured for UQB
�-. This is probably due to the difference in spin density at the

hydrogen-bonded oxygen atoms between RQB
�- and UQB

�-. The difference in spin

density was also manifested in the EPR spectra of RQB
�- and UQB

�-. However, a

change due to differences in the H-bond distances or orientations cannot be ruled out.

Fig. 4 ENDOR powder spectra
of RQB
�- and UQB

�- in quintuple
mutant RCs. Arrows indicate the
couplings between exchangeable
protein protons that form H-
bonds with UQB

�- (upper trace)
and proposed to form H-bonds
with RQB
�- (middle trace).

Assignment of these latter peaks
to H-bonds is supported by their
absence upon exchange into
D2O (lower trace). Spectra
recorded at the magnetic field
position corresponding to gy

(see Fig. 3). Experimental
conditions: T = 80 K, MW
frequency = 35.03 GHz, MW
power = 3 9 10-6 W,
frequency modulation
(FM) = ±140 kHz at a rate of
947 Hz. Number of scans:
18,000 (top), 500 (middle) and
2,600 (bottom). Scan time: 4 s
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4 Discussion

In this work, we utilized modified RCs to reduce the low potential quinone,

rhodoquinone in the QB site to facilitate studies of the protonated semiquinone

state which is important for understanding the mechanism of proton coupled

electron transfer (Eq. 2). Quintuple mutant RCs were used in this study which

have mutations that block the binding of QA and enhance electron transfer to QB

directly from the B-branch bacteriopheophyin. RCs reconstituted with RQ-3 and

illuminated while freezing to cryogenic temperatures displayed an EPR signal

with g values characteristic of in vitro rhodosemiquinone. The ENDOR spectrum

of RQB
�- shows a pattern of couplings due to hydrogen bonding protons that are

similar to those observed for UQB
�- suggesting that the hydrogen bonding to the

anionic rhodosemiquinone is similar to that for ubisemiquinone. These results

show the potential of this system to reduce low potential quinones in the QB site

that are not readily reduced in the native RC.

Initial attempts were made to look for the effects of protonation by performing

the reaction at variable pH. Although the rhodosemiquinone was reported to be

protonated at pH 7.5 based on transient optical measurements at room

temperature, no changes in low-temperature EPR or ENDOR spectra were

observed until the pH was much lower (pH 4.5). The difficulty in forming the

protonated semiquinone at cryogenic temperature may be due to the temperature

dependence of the protonation reaction. This result is consistent with the

suggestion that the protonation step is energetically unfavorable (higher enthalpy)

and that the QB site stabilizes the negatively charged anionic semiquinone state

[27].

We have done preliminary ENDOR measurements on the rhodosemiquinone

in the RC at lower pH values. Changes in the spectrum have been observed at

pH 4.5 which need to be understood by studying model compounds. To do this,

we have initiated a study together with Wolfgang Lubitz, of the EPR and

ENDOR spectra of the rhodosemiquinone in organic solutions in order to assign

the ENDOR lines in the RC and are also investigating the EPR and ENDOR

spectra of protonated semiquinones in the solid state to elucidate the interactions

of this species with its surroundings. The results should provide further insights

into the proton and electron transfer reactions in bacterial photosynthesis.
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