
Vol.:(0123456789)

Journal of Economics (2023) 140:93–119
https://doi.org/10.1007/s00712-023-00833-y

1 3

Technological knowledge and wages: from skill premium 
to wage polarization

Oscar Afonso1   · Tiago Sequeira2 · Derick Almeida2

Received: 23 May 2023 / Accepted: 15 June 2023 / Published online: 11 July 2023 
© The Author(s) 2023

Abstract
This paper studies the impact of automation shocks on the technological-knowl-
edge level, skill premium (or wage inequality), real prices, output, and economic 
growth. To highlight the economic mechanisms, we devise a task-based direct tech-
nical change model that allows us to analyze the determinants of the threshold task, 
the relative output and prices between sectors, intra- and inter-sectoral wage differ-
ences, wage polarization and economic growth rates. We observe that an increase in 
the efficiency of skilled or unskilled workers as well as a decrease in the efficiency 
of medium-skilled workers as possible result of automation always increase wage 
polarization as well as economic growth rates. In a quantitative exercise we also 
assess the change in the weight of routine and non-routine sectors in the economy. 
In this context, governments should implement policies to support the professional 
transition of medium-skilled workers to non-routinazable tasks.

Keywords  Automation · Technological-knowledge progress · Wages · Growth

JEL Classification  O10 · O30 · O40 · O41 · P10

1  Introduction

Robots are getting better and cheaper—and that means they will play a much larger 
role in our lives is highlighted by “The Economist” podcast The Rise of Robots.1 
There is now plenty of evidence of this phenomenon. Taking into account that auto-
mation is getting better and widespread, in this paper we address some of the future 
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possible consequences of this process. It is also important to note that very recent 
evidence has shown the effects of automation on the labor market (e.g., Acemo-
glu and Restrepo 2020; Bessen et al. 2019; Bogliacino and Lucchese 2016; Bordot 
2022). These empirical effects are mixed although pointed for negative effects in 
employment and wages and to wage polarization. In fact, in a survey of the litera-
ture, Barbieri et al. (2019) mentions that studying the effects of automation in labor 
market features is of major importance.

By devising a Direct Technical Change (DTC) growth model that internalizes 
the effects of automation considering R &D activities which improve the qual-
ity of capital goods (robots or not), it contributes to a more fine-grained discussion 
of the possible consequences of automation. The model considers two sectors, the 
routine and non-routine sectors, including the task categorization provided by the 
task-based model approach of Autor et al. (2003) and Acemoglu and Autor (2011), 
which uses a “two-by-two matrix” (Frey and Osborne 2017, p. 258): (1) routine ver-
sus non-routine tasks; and (2) cognitive versus manual tasks. These papers allow to 
address the equilibrium ratio between the highest and the medium and between the 
medium and the lower wages, known as wage polarization (e.g., Autor and Dorn 
2013; Goos et al. 2014). The intuitive reason is that medium-income workers tend 
to be employed in routine tasks that may be automated while both higher income 
earners and lower income earners tend to be employed in tasks that cannot be auto-
mated. However, those papers did not include the possibility of R &D that improve 
the quality of robots and other capital goods. Acemoglu and Restrepo (2018) 
introduce the possibility of innovation that eases the replaceability of workers by 
machines. In particular, R &D increases the number of tasks that can be replaced by 
machines. Also Irmen (2020) develop a model with tasks and skill-biased technical 
change although it considers that technical progress (or R &D) is exogenous. We 
depart from this baseline and consider that endogenous innovation can affect both 
routine and non-routine sectors by improving the quality of the best variety (e.g., 
Aghion and Howitt 1992; Afonso 2006). With this in mind, we developed a task-
based model with quality ladders in R &D and directed technical change. In this 
model there is a routine sector and a non-routine sector, each employing inelasti-
cally supplied labor classified as human capital or skilled (H), raw labor (L) and 
medium-skilled (M). In some close approaches (e.g., Afonso et al. 2022) the routine 
sector may use only a homogeneous type of medium-skilled workers. Our approach 
is theoretically more flexible (and realistic) as the routine sector may use two types 
of medium-skilled workers.

Our model allows us to analyze the determinants of the technological-knowledge 
level, skill premium (or wage inequality), real prices, output, and economic growth. 
In particular, we focus on three different automation effects. The first assumes that 
the automation shock increases the production share of the non-routine sector. This 
may be the outcome of the existence of a set of tasks that is not routinizable at all, as 
mentioned by, e.g., Feng and Graetz (2020) and/or by the declining trend of prices 
of robots (e.g., Brinca et al. 2022). The second considers that the automation shock 
decreases the labor efficiency rate and value-generating ability of workers in the rou-
tine sector, due to a higher propensity of routine tasks being replaced by more effi-
cient machines and robots. The third assumes that the automation shock increases 
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the labor efficiency rate and the ability to generate value of workers in the non-rou-
tine sector.

We quantitatively address these effects through calibration. Initially, the ini-
tial steady-state levels are calculated to target statistics for the US of the key vari-
ables. Then, we evaluate the feasibility of the calibration comparing the economic 
growth rates of the model steady state with the current values for those rates in 
other technological leading countries than the US. Finally, we quantitatively calcu-
late the effects of shocks caused by increasing the level of automation (measured 
by the three effects mentioned above) in the balanced growth path. We conclude 
that (even individually considered) all the changes associated with automation lead 
to even more wage polarization and a small increase in the economic growth rate. 
Thus, it is crucial that governments implement policies to help the professional tran-
sition of workers with medium qualifications working in the routine sector, in order 
to promote social cohesion. Overall, this paper adds new knowledge to the academic 
debate about the potential social and economic effects of automation in wealthy 
technologically leading nations.

Beginning with this brief Introduction, we present the setup (Sect. 2). In Sect. 3 
we solve for the general equilibrium. Finally, in Sect. 4, we calibrate the model for 
the US, assess its fit to another leading economies and present the quantitative eco-
nomic effects of potential automation shocks brought about by automation. Sec-
tion 5 concludes the paper.

2 � Model setup

2.1 � Consumer’s utility maximization problem

Infinitely-lived households obtain utility from the consumption of the numeraire good, 
C, and collect income from investments in financial assets (equity) and from labor, 
which is inelastically supplied by the aforementioned households. Preferences are 
identical across both non-routine and routine sectors, A = {N,R} , and workers, 
i =

{

L,H,M1,M2
} . Thus, the world economy admits a representative household with pref-

erences at time t = 0 given by U = ∫ ∞
0

(

C(t)1−�−1
1−�

)

e−�tdt , where 𝜌 > 0 is the subjective dis-
count rate, ensuring that U is bounded away from infinity if C were constant over time, 
and 𝜃 > 0 is the inverse of the inter-temporal elasticity of substitution, subject to the 
flow budget constraint ȧ(t) = r(t) ⋅ a(t) + w

L

N
(t) ⋅ L

N
+ w

H

N
(t) ⋅ H

N
+ w

M
1

R
(t) ⋅M

1
R

+w
M

2

R
(t) ⋅M

2
R

− C(t) , where a(t) = ∑

i={L,H,M1 ,M2} ai(t)
 denotes household’s real financial 

assets/wealth holdings (composed of equity of intermediate-good producers, consider-
ing the profits seized by the top-quality producers), r is the real interest rate, and wi is 
the wage for labor employed that can be i =

{
L,H,M1,M2

}
—where L, H, M1 and M2 

represent unskilled, skilled, medium-skilled type 1 and medium-skilled type 2 work-
ers. The initial level of wealth a(0) is given and the non-Ponzi games condition 
lim t→∞e

− ∫ t

0
r(s)dsa(t) ≥ 0 is imposed. The representative household chooses the path 

of aggregate consumption [C(t)]t≥0 to maximize the discounted lifetime utility, 
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resulting in the following optimal consumption path Euler equation. The representa-
tive household follows the optimal path of consumption (Euler equation):

where Ċ
C
 is the growth rate of C and the condition lim t→∞e

−�t
⋅ a(t) ⋅ C(t)−� = 0 is 

standard.

2.2 � Produtive activity: outputs, wages, prices and technology

2.2.1 � Aggregate and sectoral outputs

Resources, Y(t), that are not absorbed by families as consumption, C(t), are either 
spent for the production of intermediate goods, X(t), or allocated for R &D activity, 
Z(t); therefore, the output equilibrium is given by Y(t) = C(t) + X(t) + Z(t) . Aggre-
gate output Y is produced with a CES aggregate production function of competi-
tively produced final goods in sector N and R:

where YN and YR are the total outputs of the N- and the R-sectors, respectively; �N 
and �R , with 

∑
A={N,R} �A = 1 , are the distribution parameters, measuring the relative 

importance of the sectors; � ≥ 0 is the elasticity of substitution between the two sec-
tors, where in 𝜀 > 1 (𝜀 < 1) means that they are gross substitutes (complements) in 
the production of Y.

Solving the following maximization problem for the producer of Y:

From the first order conditions (FOC), we have that

Dividing across sectors yields the expression for the demand for the relative output 
in the non-routine intensive sector:

(1)Ċ

C
=

r − 𝜌

𝜃
,

(2)Y(t) =

�
∑

A={N,R}

�AYA(t)
�−1

�

� �

�−1

, � ∈ (0,+∞),

max
YN ,YR

ΠY = PYY − PNYN − PRYR

s.t. Y =

[
�NY

�−1

�

N
+ �RY

�−1

�

R

] �

�−1

and �N + �R = 1.

(3)��

�YA
= 0 ⇒

PA

PY

= �A

(
YA

Y

)−
1

�

.

(4)
YN

YR
=

(
�N

�R

)�(
PN

PR

)−�

,
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where −
� ln

(
YN

YR

)

� ln
(

PN

PR

) = � is the elasticity of substitution. Equation (4) can be interpreted 

as demand for the relative output in sector N. Higher values for the elasticity of sub-
stitution � imply that a higher relative price of output of sector N produces a higher 
decrease in relative output.

Bearing in mind (3) and (2), we have that:

In turn, from (3), we also have that PAYA = PYY
1

� �AY
�−1

�

A
 , which summing across sec-

tors results PYY = PRYR + PNYN.

2.2.2 � Tasks output

Each task producer must pick whether to undertake the productive activity in sec-
tor N or R, which means choosing between the Cobb–Douglas production functions 
below. For sector A = {N,R} ; i.e., non-routine sector N and routine sector R, we 
consider that:

where i∗ =
{
L,M1

}
 , i∗∗ =

{
H,M2

}
 , s∗ =

{
l,m1

}
 , s∗∗ =

{
h,m2

}
 , 𝛼N > 𝛼R (i.e., the 

labor share is higher in the non-routine sector); qA is size of each quality upgrade; k 
is the number of quality upgrades; s =

{
l, h,m1,m2

}
 is the absolute productivity of 

each type of labor, assessing its ability to generate value; j ∈
[
0, JA

]
 is an intermedi-

ate good, and JA is the number of intermediate goods in sector A; xi
vA
(k, j, t) is the 

demand for the top-quality of j from all the producers of the task vA that use technol-
ogy complementary with j; ivA , i =

{
L,H,M1,M2

}
 , is the number of workers per-

forming the task vi in each sector. Both choices imply different maximization prob-
lems, but since they are similar we exemplify for the case when the producer decides 
to produce in A = {N,R} , using labor i∗ =

{
L,M1

}
—and from now on 

i∗∗ =
{
H,M2

}2

(5)
[
��
R
P1−�
R

+ ��
N
P1−�
N

] 1

1−� = PY .

(6)Yi∗

vA
(t) =

[
∫

JA

0

(
q
k(j,t)

A
⋅xi

∗

vA
(k, j, t)

)1−�A
dj

]
⋅

[(
1 − vA(t)

)
⋅ s∗ ⋅ i∗

vA

]�A

(7)Yi∗∗

vA
(t) =

[
∫

JN

0

(
q
k(j,t)

A
⋅xi

∗∗

vA
(k, j, t)

)1−�N
dj

]
⋅

[
vA(t) ⋅ s

∗∗
⋅ i∗∗

vA

]�A
,

2  See “Appendix  1” for the case where the producer decides to produce in A = {N,R} : using labor 
i∗∗ =

{
H,M

2

}
 ; with this similar procedure we obtain the equivalent expressions for xi∗∗

A
(k, j, t) , Yi∗∗

vA
(t) , 

and wi∗∗.
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where Pi
vA
(t) is the price of a task performed by labor i∗ =

{
L,M1

}
 in A = {N,R} at 

time t; pi(k, j, t) denotes the price paid for the intermediate good j by a producer of a 
task vA ; wi(t) is the wage of each labor unit of type i at t in A = {N,R} . The FOC 
with respect to intermediate inputs is the following:

Replacing (9) in (8), we have that:

where QA represents the technological-knowledge level of sector A. From the FOC 
with respect to units of labor, we obtain the expressions for wages in the i∗-sector:

In turn, replacing Yi
vA

 by (10) in (11), we have that:

Hence, from the maximization problem with respect to units of labor, the expres-

sions for wages are: (1) for A = N , wL =
(
PL
vN

) 1

�N

[
(1−�N )

pL(k,j,t)

] 1−�N
�N

⋅ QN ⋅

(
1 − vN(t)

)
⋅ l and 

wH =
(
PH
vN

) 1

�N

[
(1−�N )

pH (k,j,t)

] 1−�N
�N

⋅ QN ⋅ vN (t) ⋅ h ; (2) for A = R , 

wM1 =
(
P
M1
vR

) 1

�R

[
(1−�R)

pM1 (k,j,t)

] 1−�R
�R

⋅ QR ⋅

(
1 − vR(t)

)
⋅ m

1 and wM2 =
(
P
M2

vR

) 1

�R

[
(1−�R)

pM2 (k,j,t)

] 1−�R
�R

⋅ QR ⋅ vR(t) ⋅ m2
.

We define the constants 
(
P
L

v
N

) 1

�N
⋅

(
1 − v

N
(t)
) ≡ (

P
L

N

) 1

�N  , 
(
PH
vN

) 1

�N
⋅ vN(t) ≡ (

PH
N

) 1

�N  , 
(
P
M1

vR

) 1

�R
⋅

(
1 − vR(t)

) ≡ (
P
M1

R

) 1

�R , 
(
P
M2

vR

) 1

�R
⋅ vR(t) ≡

(
P
M2

R

) 1

�R , which by rearrang-
ing in two separate expressions allows us to obtain the relative price in each sector, 
non-routine and routine, for each task, vN and vR:

(8)

max ΠvA
(t)

xi
∗
vA
(k,j,t),i∗

vA
(t)

= Pi∗

vA
(t) ⋅ Yi∗

vA
(t) − ∫

Ji∗

0

pi
∗

(k, j, t) ⋅ xi
∗

vA
(k, j, t)dj − wi∗ (t) ⋅ s ⋅ i∗

vA
(t),

s.t. Yi∗

vA
(t) =

[
∫

Ji∗

0

(
q
k(j,t)

A
⋅xi

∗

vA
(k, j, t)

)1−�A
dj

][(
1 − vA(t)

)
⋅ s ⋅ i∗

vA

]�A
,

(9)

�Πn

�xi
∗

vA
(k, j, t)

= 0 ⇔ xi
∗

vA
(k, j, t) =

[
Pi∗

vA
(1 − �A)

pi
∗
(k, j, t)

] 1

�A (
q
k(j,t)

A

) 1−�A
�A

(
1 − vA(t)

)
⋅ s ⋅ i∗

vA
.

(10)Yi∗

vA
(t) =

[
Pi∗

vA
(1 − �A)

pi
∗
(k, j, t)

] 1−�A
�A

⋅ QA ⋅

(
1 − vA(t)

)
⋅ s ⋅ i∗

vA
,

(11)
�ΠvA

�i∗
vA

= 0 ⇔ Pi∗

vA

�Yi∗

vA

�i∗
vA

= wi∗
⇔ wi∗ =

�AP
i∗

vA
Yi∗

vA

s ⋅ i∗
vA

.

(12)wi∗ =
(
Pi∗

vA

) 1

�A

[
(1 − �A)

pi
∗
(k, j, t)

] 1−�A
�A

⋅ QA ⋅

(
1 − vA(t)

)
⋅ s.
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Therefore, the relative prices of each task in both non-routine and routine sectors, 
Pi∗

vA

Pi∗∗
vA

, can be interpreted as being the result of a relative advantage of producing in i∗ 

specific to each task, represented by the term vA(t)

1−vA(t)
 , and a relative advantage that is 

common to all tasks produced in i∗ , represented by P
i∗

A

Pi∗∗

A

 , since a higher P
i∗

A

Pi∗∗

A

 causes the 
relative prices of all tasks in i∗∗ to be higher.

The product from the profit maximization problems of the producers of output 
in both non-routine, N, and routine, R, sectors, and task vA , PvA

YvA , allows to con-

clude that the relative price of each task in A, 
Pi∗

vA

Pi∗∗
vA

 , is a continuous and increasing 

function of vA , approaching 0 ( +∞) for values of vA closer to 0 (1) and being 1 for 
a threshold task vA . Hence, since perfectly competitive producers choose to pro-
duce each task in the sector that provides the lowest price, tasks vA < vA ( vA > vA ) 
will be produced in i∗ ( i∗∗ ). The expressions of the threshold task and the relative 
advantage are the following, respectively:

where i∗ =
{
L,M1

}
 , i∗∗ =

{
H,M2

}
 , s∗ =

{
l,m1

}
 , and s∗∗ =

{
h,m2

}
.

We can now state Proposition 1.

Proposition 1  The threshold task vA depends negatively on the relative price advan-
tage in i∗ , P

∗
A

P∗∗
A

 , which, in turn, depends positively on the relative abundance of labor 

units in i∗∗ , i
∗∗

i∗
 , and absolute productivity advantage in i∗∗ , s

∗∗

s∗
.

Proof  Derive (14) in order to P
∗
A

P∗∗
A

 and and (15) in order to i
∗∗

i∗
 . 	�  ◻

2.2.3 � Wages, wage differentials and polarization

Intra-sector wage inequality From the expression for wages obtained from the 
profit maximization problem of the producer of YvA and using the definition of 
price indexes, we have:

(13)
P∗
vA

P∗∗
vA

=

[
vA(t)

1 − vA(t)

]�N
⋅

P∗
A

P∗∗
A

, i∗ =
{
L,M1

}
and i∗∗ =

{
H,M2

}
.

(14)vA =

[
1 +

(
P∗
A

P∗∗
A

) 1

�A

]−1

,

(15)
P∗
A

P∗∗
A

=
(
s∗∗ ⋅ i∗∗

s∗ ⋅ i∗

) �A

2

,



100	 O. Afonso et al.

1 3

From the expression (16) and replacing Pi
A
 with the price index expressions, we can 

obtain inter-sector and intra-sector wage gap between proficiencies. The wage dif-
ferentials for the non-routine and routine sectors are as follows: 

wH
N

wL
N

=
(PH

N )
1
�N ⋅h

(PL
N)

1
�N ⋅l

=
(

l

h
⋅

H

L

)−
1

2 and w
M2
R

w
M1
R

=

(
P
M2
R

) 1
�R

⋅m2

(
P
M1
R

) 1
�R

⋅m1

=
(

1−vR

vR

)−1

=
(

m1

m2

⋅

M2

M1

)−
1

2 , 

respectively.
The relative advantage wage of i∗∗ =

{
H,M2

}
 workers in A = {N,R} depends 

negatively on the relative quantity of the same labor units, 
(

i∗∗

i∗

)−
1

2 , and depends 

positively on the relative absolute productivity, 
(

s∗∗

s∗

) 1

2 . Interestingly intra-secto-
ral wage gaps do not depend on the technological technological-knowledge level 
or on technological knowledge bias.

Inter-sector wage inequality and wage polarizationTo obtain the wage gap 
across sectors, we compared the relative wage advantage of both H and L, compo-
nents of N sector, against M1 and M2 components of R. For simplicity, from now on, 
we decided to assume the same value � for both sectors. Starting with the wage 

expression 16, we have for the unskilled levels, L and M1 , 
wL
N

w
M1
R

=

(
PL
N

P
M1
R

) 1

�
QN ⋅l

QR⋅m1

 and 

for the skilled levels, H and M2 , 
wH
N

w
M2
R

=

(
PH
N

P
M2
R

) 1

�
QN ⋅h

QR⋅m2

 . Using the definition of price 

indexes written above, we obtain the skill premium of the wage gap which repre-
sents the wage polarization in both sectors, as follows:

where Q =
QN

QR

 is the technological knowledge bias. An increase in the ratios written 
as (17) and (18) means to obtain wage polarization which can be due more to the 
increase in the skilled wage gap or more to the decrease in the unskilled wage gap or 
both. This also mean that intra-sectoral wage inequality and thus wage polarization 
depend both on the technological knowledge bias.

(16)

wi =
(
Pi
A

) 1

�A

[
(1 − �A)

pi(k, j, t)

] 1−�A
�A

⋅ QA ⋅ s, i =
{
L,H,M1,M2

}
and s =

{
l, h,m1,m2

}
.

(17)
wL
N

w
M1

R

=

(
PN

PR

) 1

�
(
vN

vR

)−1

Q
l

m1

,

(18)
wH
N

w
M2

R

=

(
PN

PR

) 1

�
(
vN

vR

)−1

Q
h

m2

.
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2.2.4 � Sectoral outputs and prices

From the profit maximization problem of the producer of Y and since in each sec-
tor, N and R, some part of the tasks are done by L, while others by H in N-sector, 
whereas in the R-sector some tasks are performed by M1 , while others by M2 , the 
final output for each sector is the following:

where i∗ =
{
L,M1

}
 , i∗∗ =

{
H,M2

}
 . Taking into account that Pi

vA
YvA is constant, the 

output of each sector generated by each proficiency of labor is given by:

Therefore, for the A-sector we have that PAYA = QA

[
(1−�)

q

] 1−�

�

⋅

(
PA

) 1

� exp (−1) ⋅MA , 
i.e.,

where Pi∗

A
= PA exp (−�)v

−�

A
 and Pi∗∗

A
= PA exp (−�)

(
1 − vA

)−� and, by replacing 
in 21 we get:

where MA =
[
(s∗ ⋅ i∗)

1

2 + (s∗∗ ⋅ i∗∗)
1

2

]2
 , A = {N,R} , is the market size for the pro-

ducer of intermediate goods complementary to i-type labor. Specifically: 

MN =
[
(l ⋅ L)

1

2 + (h ⋅ H)
1

2

]2
 , and MR =

[(
m1 ⋅M1

) 1

2 +
(
m2 ⋅M2

) 1

2

]2
.

The relative output within the A-sector is determined by dividing across the 
expressions (19) and (20):

since 1−vN
vN

=
(

h⋅H

l⋅L

) 1

2.

PAYA = ∫
1

0

PvA
YvAdvA = ∫

vA

0

Pi∗

vA
Yi∗

vA
dvA + ∫

1

vA

Pi∗∗

vA
Yi∗∗

vA
dvA = Pi∗

A
Yi∗

A
+ Pi∗∗

A
Yi∗∗

A
,

(19)PL
N
YL
N
=
(
PL
vN

) 1

�

[
(1 − �)

q

] 1−�

�

⋅ QN ⋅

(
1 − vN(t)

)
⋅ l ⋅ L,

(20)PH
N
YH
N
=
(
PH
vN

) 1

�

[
(1 − �)

q

] 1−�

�

⋅ QN ⋅ vN(t) ⋅ h ⋅ H.

(21)

PAYA = QA

[
(1 − �)

q

] 1−�

�

⋅

[ (
PA exp (−�)v

−�

A

(
1 − vA

)−�) 1

�
⋅

(
1 − vA(t)

)
⋅ s∗ ⋅ i∗+

+
(
PA exp (−�)

(
1 − vA

)−�
v−�
A

) 1

�
⋅ vA(t) ⋅ s

∗∗
⋅ i∗∗

]
,

(22)YA = QA

[
PA(1 − �)

q

] 1−�

�

⋅ exp (−1) ⋅MA.

(23)
Pi∗

A
Yi∗

A

Pi∗∗

A
Yi∗∗

A

=

(
1 − vA(t)

)
⋅ s∗ ⋅ i∗

vA(t) ⋅ s
∗∗

⋅ i∗∗
=
(

s∗ ⋅ i∗

s∗∗ ⋅ i∗∗

) 1

2

,
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The intra-sector relative prices of the A-sector, Pi∗

A
Yi∗

A

Pi∗∗

A
Yi∗∗

A

 , depend positively on the 

ratio between absolute labor productivities, s
∗

s∗∗
 , and between labor levels, i

∗

i∗∗
.

Since Pi∗

A
= PA exp (−�)v

−�

A
 , Pi∗∗

A
= PA exp (−�)

(
1 − vA

)−� and 1−vA
vA

=
(

s∗∗⋅i∗∗

s∗⋅i∗

) 1

2 , 
from (23) we have that:

From 22, dividing across sectors yields YN
YR

=
(

PN

PR

) 1−�

�

⋅Q ⋅

MN

MR

 , which is the relative 
supply of the output in the N-sector. Bearing in mind (4), it can be written as

where 1 +
1−�

�⋅�
=

��+1−�

��
=

1+�(�−1)

��
=

�

��
 where � ≡ 1 + �(� − 1) . Notice that 

𝜖 ≷ 1 ⇔ 𝜖 − 1 ≷ 0 ⇔ 𝛼(𝜖 − 1) ≷ 0 ⇔ 𝜎 ≡ 1 + 𝛼(𝜖 − 1) ≷ 1.3
This allows us to write Proposition 2:

Proposition 2  The inter-sector relative output of the non-routine sector, YN
YR

 , depend 
positively on the relative contribution of each sector to the final good, �N

�R
 , and rela-

tive market size, MN

MR

 , and crucially on the technological-knowledge bias, Q =
QN

QR

.

Proof  Derive (25) in order to YN
YR

 , �N
�R

 , MN

MR

and Q, respectively. 	�  ◻

Moreover, from (4) and (25) we obtain the equilibrium relative prices of output in 
the N-sector as:

where � ≡ 1 + �(� − 1) so that � − 1 + � = [1 + �(� − 1)] − 1 + � = �� . This 
expression demonstrates how the relative prices of non-routine task intensive sector 
rely positively on the relative share of production of this sector’s total output and 
negatively on the technological-knowledge bias, Q, and the relative size of this sec-
tor’s market size, MN.

In turn, from the maximization problem of the producer of Y, the country’s prices 
definition can be sorted to obtain a specific sector’s price. In this case, for the non-
routine sector we have:

(24)
Yi∗

A

Yi∗∗

A

=
(

s∗ ⋅ i∗

s∗∗ ⋅ i∗∗

) 1+�

2

.

(25)
YN

YR
=

(
�N

�R

)(1−�)
�

�

⋅

(
Q ⋅

MN

MR

)�
�

�

,

(26)PN

PR

=

(
�N

�R

) �

�
�

⋅

(
Q ⋅

MN

MR

)−�
1

�

,

3  This leads us to conclude that products from different sectors are only gross substitutes if factors are 
also gross substitutes (Acemoglu and Zilibotti 2001).
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which integrated in the relative price of the N-sector expression (26) gives us the 
routine sector’s final-good price:

In turn, replacing (28) in the above non-routine sector’s price expression (27), the 
non-routine sector’s final-good price is:

Proposition 3  The relative price in the non-routine (routine) sector decreases 
(increases) with the technological knowledge bias Q =

QN

QR

 towards the non-routine 
technology; The relative price in the non-routine (routine) sector depend positively 
on the relative contribution of each sector to the final good, �N

�R
 , and negatively on the 

relative market size, MN

MR

 ; the routine price increases with the technological knowl-
edge bias and the non-routine price decreases with the technological knowledge 
bias.

Proof  Derive (26), (29) and (28) towards �N
�R

 , MN

MR

 and Q and also (29) and (28) towards Q. 	
� ◻

This is an important proposition because it relates the evolution of prices with the 
ratio between technological progress in both sectors. So the recent decreasing trend in 
the prices in the routine sector documented by many authors (e.g. Brinca et al. 2022) 
may be associated with the high technological development in this sector ( QR).

2.3 � Intermediate‑goods sector

In the intermediate goods sector, the production of the top quality k of each j requires 
a start-up cost of R &D to reach the new design, which can only be recovered if profits 
at each date are positive for a certain time in the future. This is assured by a system of 
IPRs that protect the leader firm’s monopoly, while at the same time, disseminating, 
almost without costs, acquired technological knowledge to other firms. Hence, each 

(27)PN =

(
P1−�
Y

− ��
R
P1−�
R

��
N

) 1

1−�

,

(28)PR =

⎡
⎢⎢⎣

�
�∕��(1−�)

R
M

−
�

�
(1−�)

R

�
�+�(1−�)�∕�

N

�
MNQ

�− �

�
(1−�)

+ �
�+�(1−�)�∕�

R
M

−
�

�
(1−�)

R

⎤
⎥⎥⎦

1

1−�

PY .

(29)PN =

⎡
⎢⎢⎣

�
�∕��(1−�)

N

�
MNQ

�− �

�
(1−�)

�
�+�(1−�)�∕�

N

�
MNQ

�− �

�
(1−�)

+ �
�+�(1−�)�∕�

R
M

−
�

�
(1−�)

R

⎤
⎥⎥⎦

1

1−�

PY .
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firm that holds the patent for the top quality k of j at t supplies all respective tasks in 
each i =

{
L,H,M1,M2

}
 . If we consider that each unit of intermediate good j ∈

[
0, JA

]
 

in sector A requires one unit of final output Y, since its price is 1 to 1 and the producer 
of j gets the following profits:

where xA(k, j, t) is the demand for j from all the producers that use technology com-
plementary with j:

Assuming that the monopolist charges the same price for all these firms, i.e., 
pA(k, j, t) = p(k, j, t) we can find the optimal price by replacing xA(j, t, k) by the 
demand of the producer of a single task vA , i.e., either by xi∗

vA
(k, j, t) or by xi∗∗

vA
(k, j, t) 

and then maximizing with respect to pA(k, j, t):

where �i∗

vA
(k, j, t) and �i∗∗

vA
(k, j, t) are the profits of the producer of j for selling this 

intermediate good to the producer of task vA . Therefore, we find prices by solving 
the following maximization problems: maxp(k,j,t) �A(t) = [p(k, j, t) − 1]xi

∗

vA
(k, j, t) , 

i∗ = {L,M1} , s.t.xi
∗

vA
(k, j, t) =

[
Pi∗

vA
(1−�)

p(k,j,t)

] 1

� (
qk(j,t)

) 1−�

�
(
1 − vA(t)

)
⋅ s ⋅ i∗

vA
 , and maxp(k,j,t) �A(t)

[p(k, j, t) − 1]xi
∗∗

vA
(k, j, t) , i∗∗ = {H,M2} , s.t.xi

∗∗

vA
(k, j, t) =

[
Pi

∗∗

vA
(1−�)

p(k,j,t)

] 1

� (
qk(j,t)

) 1−�
� vA(t) ⋅ s ⋅ i

∗∗
vA

 . 

Results from this process that the monopoly optimal price is p(k, j, t) = p =
1

1−�
.

Since only the top quality rung of each intermediate input is used in the production, 
we generalize and consider that the intermediate input j used by the producer of final 
good vA is x̃vA (k, j, t) =

∑k(j,t)

0
q
k(j,t)

A
xvA (k, j, t) ; i.e., an input of quality k + 1 corresponds 

to q intermediate inputs of quality k. This implies that the price of an intermediate input 
of quality k, p(k, j, t), can be at most p(k+1,j,t)

q
 . Therefore, if the producer of the interme-

diate input with the top quality adopts a limit pricing strategy and sets the price to 
q − � , where � is an infinitesimal, than none of the inferior qualities would be able to 
survive since their profits would be negative. Assuming that the limit pricing strategy is 
binding we have:

Therefore, the total demand for j in sector A = {N,R} is:

(30)�A(k, j, t) = [pA(k, j, t) − 1]xA(k, j, t),

(31)xA(k, j, t) = ∫
vA

0

xi
∗

vA
(k, j, t)dvA + ∫

1

vA

xi
∗∗

vA
(k, j, t)dvA.

(32)�A(k, j, t) = ∫
1

0

�vA (k, j, t)dvA = ∫
vA

0

�i∗

vA
(k, j, t)dvA + ∫

1

vA

�i∗∗

vA
(k, j, t)dvA,

(33)p(k, j, t) = p =
1

1 − �
= q.
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We can, now, obtain an expression for intermediate goods produced for each sector.

2.4 � R &D sector

We consider that innovative R &D is performed in both sectors; however, there is 
no technological-knowledge transfer between sectors. Thus, N has no access to the 
technological knowledge produced in R, QM1

R
 and QM2

R
 , and vice-versa, R-sector does 

not have access to QL
N

 and QH
N

 . The value of the leading-edge patent relies on the 
profit-yields accruing during each time t to the monopolist, and on the duration of 
the monopoly power. The duration, in turn, depends on the probability of a new 
innovation, which creatively destroys the current leading-edge design (e.g., Aghion 
and Howitt 1992, Grossman and Helpman 1991, ch. 12). The probability of suc-
cessful innovation is, thus, at the heart of the R &D activity. Let IA(j, t) denote the 
instantaneous probability at time t in A = {N,R} —a Poisson arrival rate—of suc-
cessful innovation in the next higher quality 

[
k(j, t) + 1

]
 in intermediate good j,

where (e.g., Afonso 2012): (1) yA(k, j, t) is the flow of domestic final-good resources 
devoted to R &D in j belonging to A = {N,R} , which defines our framework as a 
lab-equipment model; (2) � qk(j,t) , 𝛽 > 0 , is the learning-by-past domestic R &D, as 
a positive learning effect of public knowledge accumulated from past successful R 
&D; (3) �−1q−�−1k(j,t) , 𝜁 > 0 , is the adverse effect—cost of complexity—caused by 
the increasing complexity of quality improvements;4 (4) M−�

A
 is the adverse effect of 

market size, capturing the idea that the difficulty of introducing new quality interme-
diate goods and replacing old ones is proportional to the market size measured by 
effective i-type labor units which are spread in sectors N and R. The parameter � ≥ 0 
determines the degree to which scale benefits on profits can partially ( 0 < 𝜉 < 1 ), 
totally ( � = 1 ) or over counterbalance ( 𝜉 > 1 ) and thus allows us to remove (explicit) 
scale effects on the economic growth rate. That is, for reasons of simplicity, we 
reflect in R &D the costs of scale increasing, due to coordination among agents, pro-
cessing of ideas, and informational, organizational, and marketing (e.g., Dinopoulos 
and Thompson 1999).

(34)xA(k, j, t) =

(
(1 − �)

q

) 1

�

q
k(j,t)

1−�

� ⋅

((
Pi∗

A

) 1

�
⋅ s∗ ⋅ i∗ +

(
Pi∗∗

A

) 1

�
⋅ s∗∗ ⋅ i∗∗

)
.

(35)

XA = ∫
JA

0

xA(k, j, t)dj =

(
(1 − �)

q

) 1

�

QA ∫
JA

0

((
Pi∗

A

) 1

�
⋅ s∗ ⋅ i∗ +

(
Pi∗∗

A

) 1

�
⋅ s∗∗ ⋅ i∗∗

)
dj.

(36)IA(k, j, t) = yA(k, j, t) ⋅ �q
k(j,t)

⋅ �−1q−�
−1k(j,t)

⋅M
−�

A
,

4  The complexity cost is modeled in such a way that, together with the positive learning effect (2), it 
exactly offsets the positive effect of the quality rung on profits of each leader intermediate-good firm; this 
is the reason for the presence of the production function parameter � in (36).
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An innovator that improves the quality of an intermediate good j from 
k to k + 1will receive monopoly profits during the time in which the pat-
ent is valid from time t to � . The present value of such profits at time t will 
be VA(k + 1, j, t, �) = ∫ �

t
�A(k + 1, j, v)e− ∫ v

t
r(w)dwdv . The expected Mar-

ket Value of a patent is a random variable that depends on the uncer-
tainty of the period of the next successful innovation � , which then is 
VA(k + 1, j, t) ≡ ��

[
VA(k + 1, j, t, �)

]
= ∫ +∞

t
b(�)VA(k + 1, j, t, �)d� , where b(�) is 

the probability density function of � , i.e., the probability that the patent lasts 
exactly until � , which occurs if at that period some entrepreneur is able to obtain 
a higher quality rung for the intermediate good j. Then b(�) is determined in the 
following way b(�) = [1 − B(�)] ⋅ IA(k, j, �) , where IA(k, j, �) is the probability of 
a successful quality upgrade at time � and B(�) is the cumulative density func-
tion of � . Therefore, the market value of a patent is:

3 � General equilibrium

We now move on to characterize the general equilibrium because the sectors’ eco-
nomic structures have been described for certain technological-knowledge levels 
represented by the indices QA . First, it is derived the equilibrium of achieving higher 
quality rungs, then we derive the aggregate resource constraint of the economy and 
show that all variables (including consumption) depend on the dynamics of techno-
logical indexes—see “Appendix 2” in which we find the R &D equilibrium prob-
ability and the aggregate resource constraint. Then, below, we proceed to character-
ize the transitional dynamics, where we start by deriving the law of motion of each 
index and the steady-state growth. Throughout this analysis we retain the assump-
tions that households and firms are rational and solve their problems, that free-entry 
R &D conditions are met and that markets clear.

3.1 � Law of motion of QA and transitional dynamics

If a new quality of intermediate good j is introduced the rate of change in the quality 
index in sector A will be ΔQA

QA

=
(
q

1−�

� − 1
)
 . Since the probability of this occurring 

per unit of time is given by IA(t) , we have that Q̇A

QA

= IA(t)
(
q

1−𝛼

𝛼 − 1
)
 ; i.e.,

From the law of motion of each index QA , we obtain the following expressions for 
the real interest rate:

(37)VA(k + 1, j, t) =
�A(k + 1, j, t)

r(t) + IA(k, j, �)

(38)
Q̇A

QA

=

(
𝛽

𝜁
⋅

q − 1

q
⋅ exp (−1)(1 − 𝛼)

1

𝛼 ⋅ P
1

𝛼

A
M

1−𝜉

A
− r(t)

)(
q

1−𝛼

𝛼 − 1
)
.
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That is, we obtain two expressions for the real interest rate. Since it is unique and 
Q̇

Q
=

Q̇R

QR

−
Q̇N

QN

 , we have:

3.2 � Steady‑state equilibrium

Since in steady state Q̇

Q
= 0 (implying thatP

1

�

R
M

1−�

R
− P

1

�

N
M

1−�

N
= 0 ) the long-run 

equilibrium value for the technological-knowledge bias expression ( Q∗ ) is obtained 
using Eqs. (28) and (29) and yields:

In turn, taking into account the skill-premium expressions (17) and (18) that com-
pare the wage gap between non-routine and routine sectors and replacing vN and vR 
from (14) using (15) and the definitions of MN and MR , replacing PN

PR

 from (26) and Q 
from (41) in the both expressions, we obtain the ratios that measure wage polariza-
tion from both sectors:

We expect that both ratios increase due to automation. In this paper we consider that 
there are three main features or consequences of automation. First, an increase in the 
production intensity of the non-routine sector, �N (Frey and Osborne 2017). Second, 
a decrease of efficiency rate of labor and its capacity to generating value of routine 
sector workers, m1 and m2 , due to a greater risk of routine tasks being replaced by 
more efficient machines and robots and, consequently, a reduced medium-skilled job 
demand. Third, an increase of efficiency rate of work and capacity to generate value 
of non-routine sector workers, l and h, due to the polarizing routine sector workers’ 
move to both ends of labor proficiency spectrum. Proposition 4 analyze theoretically 
those three effects.

(39)r(t) =

(
𝛽

𝜁
⋅

q − 1

q
⋅ exp (−1)(1 − 𝛼)

1

𝛼 ⋅ P
1

𝛼

A
M

1−𝜉

A

)
−

1

q
1−𝛼

𝛼 − 1

Q̇A

QA

.

(40)
Q̇

Q
=
[
q

1−𝛼

𝛼 − 1
][𝛽

𝜁
⋅

q − 1

q
⋅ exp (−1)(1 − 𝛼)

1

𝛼 ⋅

(
P

1

𝛼

R
M

1−𝜉

R
− P

1

𝛼

N
M

1−𝜉

N

)]
.

(41)Q
∗ =

(
�N

�R

)�(
MN

MR

)−1+�(1−�)

.

(42)

(
wH
N

w
M2

R

)∗

=

(
�N

�R

)�

⋅

(
MN

MR

)(�−1)(1−� )−1∕2

⋅

(
M2

H

) 1

2

⋅

(
h

m2

)
,

(43)

(
wL
N

w
M1

R

)∗

=

(
�N

�R

)�

⋅

(
MN

MR

)(�−1)(1−� )−1∕2

⋅

(
M1

L

) 1

2

⋅

(
l

m1

)
.
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Proposition 4  An increase in the production intensity of the non-routine sector, �N , 
a decrease of efficiency rate of medium-skilled labor m1 and m2 , and an increase of 
efficiency rate of raw labor and human capital all lead to wage polarization, i.e. an 
increase in the skilled and unskilled wages compared with medium skilled wages.

Proof  Derive (42) and (43) in order to �N , (42) in order to m1and h, respectively 
and (43) in order to m2and h, respectively and observe that all the derivatives are 
negative. 	�  ◻

The predictions of Proposition 4 will be quantified in the next section.
Finally, in order to define the steady-state economic growth rate we use (38) and and 

the fact that in the steady-state Ċ
C
=

r∗−𝜌

𝜃
= g∗ = g∗

R
= g∗

N
= g∗

QA
= g∗

QB
 we obtain that:

where A = {N,R} , PN and PR are given by (28) and (29).
Regarding the determinants of the economic growth rate at the steady-state the 

positive ones are the spillover effect ( � ), the markup ( 1∕� ), the intertemporal elastic-
ity of substitution ( 1∕� ) and negatively the complexity effect ( � ), size of each qual-
ity upgrade (q), the discount rate ( � ). A special note is deserved to the scale effect 
measured by MAand decreases as � → 1 and the price effect measured by PA . How-
ever the steady-state growth rate can be influenced both by increases in the value of 
the routine as well as of the non-routine sector as A = R,N given that in the steady-

state P
1

�

R
M

1−�

R
= P

1

�

N
M

1−�

N
 . Potential effects of automation related with labor produc-

tivity or the shares of sectors or production factors in the economy can affect eco-
nomic growth rates in the transitional dynamics (see Sect. 3.1) but not the long-run 
economic growth rate.

4 � Quantitative results

We will assess the quantitative impact of rising automation through a calibration 
exercise targeted at the most innovative economies. To that end, first we will quan-
tify the main variables in the steady state of some of the most innovative countries 
in the world: USA, Germany, France, Italy, Sweden and Finland, as these countries 
rank high in the 2021 Global Innovation Index Results Report (WIPO 2021).5 With 
this exercise we want to make clear that our model is flexible enough to feature dif-
ferent countries in their long-run equilibrium, approaching their data related to eco-
nomic growth as well as wage polarization.

(44)g∗ =

(
�

�
⋅

q−1

q
⋅ exp (−1)(1 − �)

1

� ⋅ P
1

�

A
M

1−�

A

)
− �

� + (q
1−�

� − 1)−1
,

5  Disclaimer from WIPO: “The Secretariat of WIPO assumes no liability or responsibility with regard to 
the transformation or translation of the original content”.
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4.1 � Model calibration and data

To test and validate the theoretical model, we first calibrated several parameters, 
taking into account the literature. Table 1 summarizes the values, description, and 
sources for each parameter. According to the model, we are able to determine the 
value of � = 1 + �(� − 1) and q =

1

1−�
 (considering � = 0.5 and � = 0.6 ), meaning 

that routine and non-routine goods are gross complements. The intensity parameters 
are set to �N = 0.6 and �R = 0.4 , as the non-routine sector is the human capital inten-
sive sector, hence has a bigger share in the country’s production. As usual in macro-
economic growth models we use � = 2 and � = 0.01 (e.g., Strulik 2007; Grossmann 
et al. 2013).

In line with Afonso (2006), Neves and Sequeira (2018), and Sequeira et al. (2018), 
we use high values for the learning-for-the-past R &D or spillover effect, � , high val-
ues of the complexity ( � ) and a low scale-effect governed by � . However, the spe-
cific values for these parameters will be different according to the different countries’ 
steady state we intend to characterize. In particular we consider that larger countries 
benefit more from scale effects than smaller countries ( � is 0.92 for the US, 0.94 for 
Germany, France and Italy, 0.96 for Sweden and 1 for Finland); spillovers are higher 
for more innovative countries ( � is 1.6 for Italy, 2.0 for the US, France, Germany, and 
Finland and 2.5 for Sweden); the complexity effect is higher for countries known to 
be bigger and thus more complex and with worse institutions ( � is 1.3 for Sweden and 
Finland, 1.5 for France, and Germany, 1.6 for the US and 1.7 for Italy).

We also search the exogenous parameters of number of workers per proficiency 
and per sector, in each country analyzed, L, H, M1 and M2 . The International Labour 
Organization (ILOSTAT) provides detailed information on employment in each 
region and country.6 This database compiles data from multiple job surveys and 
divides it into 11 categories: 10 ISCO-08 (The International Standard Classification 
of Occupations) classifications and “not classified.” For the purpose of this paper, 
we ignore the category “not classified” and the ISCO-08 classification 0-Armed 
Forces Occupations. As for the categories considered for the model, we attributed 
each ISCO-08 category to a labor proficiency: skilled, H, includes groups 1-Man-
agers, 2-Professionals and 3-Technicians and Associate Professionals; medium-
skilled type 2, M2 , includes groups 4-Clerical Support Workers, 5-Service and Sales 
Workers and 6-Skilled Agricultural, Forestry and Fishery Workers; medium-skilled 
type 1, M1 , includes groups 7-Craft and Related Trades Workers and 8-Plant and 
Machine Operators, and Assemblers; and unskilled, L, includes group 9-Elementary 
Occupations.

As for s, for unskilled workforce we set a normalization of l = 1 is used. Medium-
skilled workforce productivities m1 = 1.01 and m2 = 5 and h = 30 are such that the 
model steady-state approaches the growth rate of per capita GDP of each country 
between 2010 and 2019 (Feenstra et  al. 2015) as well as the wage ratios. As an 

6  ILOSTAT. Employment by sex and occupation (thousands)—Annual, updated on May 23rd 2022. 
Retrieved on May 29th 2022 https://​www.​ilo.​org/​shiny​apps/​bulke​xplor​er35/?​lang=​en &​segme​nt=​indic​
ator &​id=​EMP_​TEMP_​SEX_​OCU_​NB_A.

https://www.ilo.org/shinyapps/bulkexplorer35/?lang=en%20&segment=indicator%20&id=EMP_TEMP_SEX_OCU_NB_A
https://www.ilo.org/shinyapps/bulkexplorer35/?lang=en%20&segment=indicator%20&id=EMP_TEMP_SEX_OCU_NB_A
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example, for the US we were able to replicate the data growth rate of GDP per cap-
ita of 1.51% (Feenstra et  al. 2015) as well as the pattern of wage polarization, 
wH
N

w
M2
R

= 1.65 and w
L
N

w
M1
R

= 0.47 , roughly consistent with the US current values (Timmer 

et al. 2015).
As a general conclusion it can be said that the model steady state is able to repli-

cate a diversity of country different data characteristics, as the next subsection will 
show.

4.2 � Steady‑state results

To determine the economic consequences of the above-mentioned shocks, steady-
state values must first be determined. For the analyzed R &D frontier countries, we 
identify that the average technological-knowledge bias towards the non-routine sec-
tor level is, approximately, 0.20, being the Italy that holds the highest value with 
0.29 and Sweden the lowest with 0.15. Regarding skill premium of steady-state level 
wages, we observe a country average of 2.01 on high-skill premia and, 0.75 low-
skill premia. Italy shows the largest wage gap in the upper skill premium, 3.05, and 
in the lower skill premia the largest gap is in the US, 0.47. Regarding the output 
level, the average for the relative output Y

∗
N

Y∗
R

 is 1.26, being routine sector smaller than 
the non-routine sector in every country and the largest in Sweden. All countries 
show positive economic growth in the steady state, with the average being 0.97% 
(which compares with 0.96% in data).

In order to evaluate the fit of the model steady-state for other countries than the 
US (for which we replicated three variables, growth and wage ratios), we compare 
the steady-state value of the economic growth rate and the real growth rate from 

Table 2   Steady-state results

Q
∗—technological-knowledge bias, Y

N
—non-routine sector output, 

Y
R
—routine sector output, YR

Y
N

—Relative output, w
H

N

w
M2

R

—skill premium, 
w
L

N

w
M1

R

—unskill premium, g
N

—economic Growth (%), g
2021

—Real 
2010–2019 per capita GDP growth rate (Source: PWT 10.1)

Country Q
∗ Y

N

Y
R

w
H

N

w
M2

R

w
L

N

w
M1

R

g
∗
N
(%) g

2010−2019(%)

United States 
of America

0.17 1.29 1.65 0.47 1.50 1.50

Sweden 0.15 1.26 1.52 0.79 1.21 1.25
Finland 0.28 1.22 2.02 0.84 0.43 0.33
Italy 0.29 1.26 3.05 0.79 0.61 0.53
Germany 0.21 1.27 2.17 0.75 1.05 1.20
France 0.18 1.27 1.77 0.62 1.01 0.93
Minimum 0.15 1.22 1.52 0.47 0.43 0.33
Maximum 0.29 1.29 3.05 0.84 1.50 1.50
Average 0.20 1.26 2.03 0.71 0.97 0.96
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2010 to 2019, which show a correlation of 98% . This means that even though the 
calibration was made mostly to fit the data of the US, the outcomes also fit well the 
most innovative countries per capita real GDP growth. It is worth noting that the 
model replicates both the minimum (Finland) and the maximum growth rate (US) 
and the model average is just 1.066 above the data value for this variable. Table 2 
summarizes the main steady-state results.

Next, we will assess three different comparative static exercises that are thought 
to be linked with the expected further automating the production process in the years 
to come. First due to the decreasing prices of automation and that the increasing rou-
tinable tasks (Jungmittag 2021) may have a limit above which some tasks cannot be 
routinable without huge costs—tasks where sensitive dextricity is essential, where 
creative and social intelligence are at their core are very difficult to be routinable 

Fig. 1   Effects of the shocks performed in Sects. 4.2.1 to 4.2.3
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(Frey and Osborne 2017; Feng and Graetz 2020). This means that the share of the 
routine sector may decrease in the future as prices decrease and the economy reach 
the supposedly existing limit above which tasks cannot be routinable. Thus, as a first 
exercise, we assume that production share �R may decrease in the future (regardless 
of some increase in the production of this sector). Second, we assume that auto-
mation will impact even further the already existing gap of medium-skilled routine 
employment and respective flux of medium-skilled workers and, growing polariza-
tion with increasing skilled cognitive employment and unskilled manual employ-
ment. Therefore, due to an increase in the supply of the non-routine labor markets, 
a more competitive labor market and lack of experience and capacity to adjust, we 
predict to lead to a decrease of routine sector workers’ efficiency rate (Goos et al. 
2014; Lemieux 2006), m1 and m2 . Third, and also according to the previous argu-
ment the growing polarization with increasing skilled cognitive employment and 
unskilled manual employment will imply an increased supply in the non-routine 
labor markets, a more competitive labor market, and lead to an increase of non-rou-
tine sector workers’ efficiency rate, l and h. Figure 1 summarizes all the effects of 
these shocks which we will detail in the following Sects. 4.2.1 to 4.2.3. The baseline 
will be the results for the US as these were the country that we were able to better 
approach the data.

4.2.1 � Impact of non‑routine sector’s production intensity increase

Now, we expect that further automation will lead to an increase in the intensity of 
the non-routine sector in production ( �N ) and, therefore, a decrease in the intensity 
of the routine sector in production ( �R ). As the effects in all countries are qualita-
tively identical, we focus on the calibration for the US. First, Fig.  1a shows the 

effects on w
H
N

w
M2
R

 and w
L
N

w
M1
R

 and on a ratio of polarization measured by 

wH
N

w
M2
R

w
M1
R

wL
N

 from increasing 

�N from 0.6 to 0.8. We can observe that there is an increase in both ratios, but the 
upper skilled wage inequality rises more and because of that more polarization is 
expected. The effect on growth of this change is positive but taking the whole possi-
ble values for the weights of the routine and the non-routine sectors in production 
( �R , �N ) we can observe that an initial increase in the non-routine sector share would 
decrease growth until nearly �N = 0.45 and then further increases would contribute 
to increase economic growth. Thus growth is maximized for small (high) values of 
�N ( �R ) and for high (small) values of �N ( �R ). This happens because the sectoral 
shares affect growth mainly through the price effect (as the scale-effect is small)—
see the above Eq. (44). Thus observing Eqs. (28) and (29) we note that higher values 
for either �N or �R are relevant.
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4.2.2 � Impact of routine sector workers’ labor productivity decrease

Now, based on the previous arguments, we observe the effects of decreasing m1 and 
m2 in Fig. 1b and c, respectively.

A decrease in the productivity of lower productivity workers in the routine sec-
tor ( m1 ) directly implies a increase in wL

N

w
M1
R

 . However in equilibrium through the 

negative effect on whole value of the workers in the routine sector together with 
the fact that (𝜎 − 1)(1 − 𝜁) −

1

2
< 0 (low elasticity of substitution between routine 

and non-routine goods in the production of the final good), it also decreases the 
upper wage inequality ratio w

H
N

w
M2
R

 . As the sub-figure shows, both effects contribute 

to an increase in wage polarization, measured by 

wH
N

w
M2
R

w
M1
R

wL
N

 . On the other hand, a 

decrease in the productivity of higher productivity workers in the routine sector 
( m2 ) directly implies a increase in w

H
N

w
M2
R

 . However in equilibrium through the nega-

tive effect on whole value of the workers in the routine sector together with the 
fact that (𝜎 − 1)(1 − 𝜁) −

1

2
< 0 (low elasticity of substitution between routine and 

non-routine goods in the production of the final good), it also decreases the lower 
wage inequality ratio wH

N

w
M2
R

 . As the figure shows, both effects contribute to an 

increase in wage polarization, measured by 

wH
N

w
M2
R

w
M1
R

wL
N

.

The effects on economic growth are negative but very small: departing from an 
initial economic growth rate of 1.50 it decreases steadily towards 1.497 (with the 
change in m1 ) and 1.476 (with the change in m2).

4.2.3 � Impact of non‑routine sector workers’ labor productivity increase

In this subsection, based on the previous arguments, we increase l and h, which 
effects can be observed in Fig.  1d and e. An increase in the productivity of 
unskilled workers employed in the non-routine sector (l) directly implies a 
increase in wL

N

w
M1
R

 . However in equilibrium through the positive effect on whole 

value of the workers in the non-routine sector together with the fact that 
(𝜎 − 1)(1 − 𝜁) −

1

2
< 0 (low elasticity of substitution between routine and non-

routine goods in the production of the final good), it also decreases the upper 
wage inequality ratio wH

N

w
M2
R

 . As the figure shows both effects contribute to an 

increase in wage polarization, measured by 

wH
N

w
M2
R

w
M1
R

wL
N

 . On the other hand, an increase in 
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the productivity of skilled workers in the non-routine sector (h) directly implies 
an increase in w

H
N

w
M2
R

 . Also, as previously, through the positive effect on whole value 

of the workers in the non-routine sector together with the fact that 
(𝜎 − 1)(1 − 𝜁) −

1

2
< 0 (low elasticity of substitution between routine and non-

routine goods in the production of the final good), it also decreases the lower 
wage inequality ratio wL

N

w
M1
R

 , contributing again to an increase wage polarization, 

measured by 

wH
N

w
M2
R

w
M1
R

wL
N

.

The effects on economic growth are positive but again very small: departing from 
an initial economic growth rate of 1.50 it decreases steadily towards 1.502 (with the 
change in l) and 1.505 (with the change in h).

5 � Conclusions

The rise of automation is a controversial topic that has been discussed in economic 
fora and scientific literature, with the predicted implications dividing economists. 
The dominant group of economists claims that the process of innovation has more 
positive than negative effects (e.g., Acemoglu and Restrepo 2018) meaning that the 
productivity effects lead by automation overcome the negative substitution effects. 
However, several have noted that the productivity gains may not be sufficient enough 
to compensate for the employment losses (e.g., Acemoglu et al. 2020).

In this paper, we examine how automation affects the technological-knowledge 
progress, production, wage polarization, and economic growth rates. For this pur-
pose, we developed a theoretical model, using a task-based directed technical change 
setup. Specifically, an increase in the production intensity of the non-routine sector 
a decrease of efficiency rate of medium-skilled labor, and an increase of efficiency 
rate of raw labor and human capital all lead to wage polarization, i.e., an increase 
in the skilled and unskilled wages compared with medium skilled wages. We then 
proceed with a calibration exercise that intends to fit the relevant growth rate and 
wage inequality ratios in the US. We extend the exercise for other technologically 
advanced countries using as inputs specific labor units for each country. We obtain 
a correlation of 98% between the model economic growth rate and the data growth 
rate for these countries. Finally, we study the effects of increasing the production 
intensity of the non-routine sector, decreasing the efficiency rate of medium-skilled 
labor, and increasing of efficiency rate of raw labor and human capital quantitatively 
confirming the theoretical results and identifying the exact sources (upper or lower 
wage inequality) of wage polarization. We have also quantified the effects of these 
changes on economic growth, which were very low. In fact, this implication of the 
model matches the recent literature according to which robotization has low growth 
effects—as e.g., Acemoglu and Restrepo (2019) and Acemoglu et al. (2020) pointed 
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out about the ‘so-so’ robotic technological improvements, which mainly substitutes 
labor in the production process without significantly increasing labor productivity.

The most relevant conclusion of this study is that further wage polarization 
should also be expected, worsening the situation of workers operating in the routine 
sector, who are assumed to have average skills. Thus, a crucial policy implication of 
our analysis points to support the occupational transition of medium-skilled workers 
towards less routinable tasks, through e.g. reskilling and/or re-training.

We believe this paper highlights some ideas for future research through, e.g., the 
analysis of the transitional dynamics of the model provoked by automation shocks 
and/or the analysis of possible effects of policies for the reskilling of medium-skilled 
workers both on economic growth and wage polarization, taking into account a gen-
eral equilibrium approach with government.

Appendix 1

Similarly, for the case when the producer decides to produce in A = {N,R} using 
labor i∗∗ =

{
H,M2

}
:

where Pi∗∗

vA
(t) is the price of a task performed by labor i =

{
H,M2

}
 in sector 

A = {N,R} at time t; wi∗∗ (t) is the wage of each unit labor of type i∗∗ at time t in sec-
tor A. The FOC with respect to intermediate inputs is:

Hence, replacing (46) in (45), we have that:

From the FOC, it also results:

(45)

max ΠvA
(t)

xi
∗∗
vA

(k,j,t),i∗∗
vA
(t)

= Pi∗∗

vA
(t) ⋅ Yi∗∗

vA
(t) − ∫

Ji∗∗

0

pi
∗∗

(k, j, t) ⋅ xi
∗∗

vA
(k, j, t)dj − wi∗∗ (t) ⋅ s ⋅ i∗∗

vA
(t),

s.t. Yi∗∗

vA
(t) =

[
∫

Ji∗∗

0

(
q
k(j,t)

A
⋅xi

∗∗

vA
(k, j, t)

)1−�A
dj

][
vA(t) ⋅ s ⋅ i

∗∗
vA

]�A
,

(46)

�ΠvA

�xi
∗∗

vA
(k, j, t)

= 0 ⇔ xi
∗∗

A
(k, j, t) =

[
Pi∗∗

vA
(1 − �A)

pi
∗∗
(k, j, t)

] 1

�A (
q
k(j,t)

A

) 1−�A
�A vA(t) ⋅ s ⋅ i

∗∗
vA
.

(47)Yi∗∗

vA
(t) =

[
Pi∗∗

vA
(1 − �A)

pi
∗∗
(k, j, t)

] 1−�A
�A

⋅ QA ⋅ vA(t) ⋅ s ⋅ i
∗∗
vA
.

(48)
�ΠvA

�i∗∗
vA

= 0 ⇔ wi∗∗ =
(
Pi∗∗

vA

) 1

�A

[
(1 − �A)

pi
∗∗
(k, j, t)

] 1−�A
�A

⋅ QA ⋅ vA(t) ⋅ s.
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Appendix 2

R &D equilibrium probability and aggregate resources constraint

From the free-entry condition we can determine the equilibrium probability, from 
it we can see that IA(k + 1, j, t) is independent of the quality level k, which implies 
that:

Aggregate resources constraint

Let aA = ∫ Ji
0
�
[
VA(k, j, t)

]
dj be the total market value of all the firms that produce 

intermediate goods j at time t. From the definition of market value of a firm and taking 
into account that in equilibrium we have that IA(k, j, t) = IA(j, t),∀k ∈ ℕ , we have 
�
[
VA(k, j, t)

]
=

�A(k,j,t)

r(t)+IA(k−1,j,t)
 ; i.e., r(t)�

[
VA(k, j, t)

]
=
[
q − 1

]
XA(k, j, t) − IA(j, t)

�
[
VA(k, j, t)

]
. From the free-entry condition we have 

IA(j, t)�
[
VA(k + 1, j, t)

]
= yA(k, j, t) ; i.e., yA(k − 1, j, t) = IA(j, t)�

[
VA(k, j, t)

]
. From 

the definition of R &D expenditures and also taking into account that in equilibrium 

IA(k, j, t) = IA(j, t),∀k ∈ ℕ from (49) results y(k − 1, j, t) = IA(j)
�

�
q
(k(j,t)−1)

(
1−�

�

)
i� ; 

i.e.,

Using (50) and integrating over j we have ∫ Ji
0
r(t)�

[
VA(k, j, t)

]
dj = ∫ Ji

0

[
q − 1

]

XA(k, j, t)dj − ∫ Ji
0
y(k − 1, j, t)dj ; i.e., r(t)aA =

(
qXA − XA

)
− q

�−1

� RA . Notice from the 
nominal output expressions for both N and R sectors we have:

Therefore, we have r(t)aA = (1 − �)PAYA − XA − q
�−1

� RA and the global asset 
earnings,

From (11) and the definition of output in each sector we have for L and M1 , 

wi∗

A
=

�Pi∗

A
Yi∗

vA

si∗
A

 and for H and M2 , wi∗∗

A
=

�Pi∗∗

A
Yi∗∗

vA

si∗∗
A

. Hence,

which by replacing (53) and (52) in the flow budget constraint we have:

(49)IA(k, j, t) = IA(j, t),∀k ∈ ℕ.

(50)y(k − 1, j, t) = q
�−1

� y(k, j, t).

(51)
XA

PAYA
=

(
PA

) 1

� exp (−1)
[
1−�

q

] 1

�

QA ⋅MA

(
PA

) 1

� exp (−1)
[
1−�

q

] 1−�

�

QA ⋅MA

⇒ qAXA = (1 − �)PAYA.

(52)r(t)a = (1 − �)Y − X − q
�−1

� R.

(53)wL
N
⋅ lL + wH

N
⋅ hH + w

M1

R
⋅ m1M1 + w

M2

R
⋅ m2M2 = � ⋅ Y ,
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Moreover, from the definition of market value of firms we have 
�
[
V(k, j, t)

]
=

�

�
q

�−1

� q
k(j,t)

1−�

� ⋅M
�

A
 . Therefore, the time derivative assets of producers of inter-

mediate goods used in sector A are the following ȧA = �
[
V(k, j, t)

]
⇔ ȧA =

𝜁

𝛽
⋅ q

𝛼−1
𝛼 M

𝜉

A
⋅ Q̇A

 . 
Hence, the time variation of total assets is as follows ȧ = ȧR + ȧN,

Replacing (55) in the flow budget constraint (54) from the households we have (
1 − q

�−1

�

)
⋅ R = Y − X − q

�−1

� R − C and thus Y = C + X + R.
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