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Abstract Alkaline intrusions in the eastern Shandong Prov-
ince consist of quartz monzonite and granite. U-Pb zircon
ages, geochemical data, and Sr-Nd-Pb isotopic data for these
rocks are reported in the present paper. Laser ablation
inductively coupled plasma mass spectrometry (LA-ICP-
MS) U-Pb zircon analyses yielded consistent ages ranging
from 114.3±0.3 to 122.3±0.4 Ma for six samples of the
felsic rocks. The felsic rocks are characterised by a wide
range of chemical compositions (SiO2=55.14–77.63 wt. %,

MgO=0.09–4.64 wt. %, Fe2O3=0.56–7.6 wt. %, CaO=
0.40–5.2 wt. %), light rare earth elements (LREEs) and large
ion lithophile elements (LILEs) (i.e., Rb, Pb, U) enrichment,
as well as significant rare earth elements (HREEs) and heavy
field strength (HFSEs) (Nb, Ta, P and Ti) depletion, various
and high (87Sr/86Sr) i ranging from 0.7066 to 0.7087, low ε Nd

(t) values from −14.1 to −17.1, high neodymium model ages
(TDM1=1.56–2.38Ga, TDM2=2.02–2.25Ga),

206Pb/204Pb=
17.12–17.16, 207Pb/204Pb=15.44–15.51, and 208Pb/204Pb=
37.55–37.72. The results suggested that these rocks were
derived from an enriched crustal source. In addition, the
alkaline rocks also evolved as the result of the fractionation
of potassium feldspar, plagioclase, +/− ilmenite or rutile and
apatite. However, the alkaline rocks were not affected by
crustal contamination. Moreover, the generation of the alka-
line rocks can be attributed to the structural collapse of the
Sulu organic belt due to various processes.

Introduction

In the vicinities of Rizhao, Qingdao, and Weihai occur a
wide range of lithologies that include volcanic, intrusive and
metamorphic rocks (Ye et al. 1996; Cong 1996; Jahn et al.
1996; Zhao et al. 1997; Zhou and Lu 2000; Fan et al. 2001;
Hong et al. 2003; Zheng et al. 2003; Guo et al. 2004; Huang
et al. 2005; Yang et al. 2005a, b).

The intrusive rocks are represented by gabbro, granitoids,
diorite, alkaline rocks, mafic dykes (Guo et al. 2004; Yang et
al. 2005a, b; Liu et al. 2008a, b), as well as adakites (Guo et
al. 2006), that are widely distributed throughout eastern
Shandong Province. These rocks, and in particular, the
alkaline rocks (Guo et al. 2005; Yang et al. 2005a, b; Liu
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et al. 2008a, b), contain valuable information concerning
deep geodynamic processes and, as such, can be used to
study the orogenic processes of continental subduction and
the role of crust-mantle interaction in this part of China
(Menzies and Kyle 1972; Jahn et al. 1996; Ye et al. 2000;
Fan et al. 2001; Guo et al. 2004).

Alkaline rocks are generally thought to have their origins
within the upper mantle (Ren 2003). These rocks are com-
mon in anorogenic, intraplate extensional, and/or rift-related
tectonic settings (Currie 1970; Coulson 2003; Goodenough
et al. 2003). However, alkaline rocks may also be generated
during late to post-orogenic stages of magmatism (Coulson
et al. 1999), such as in the Permian-Triassic Western Medi-
terranean Province (Bonin et al. 1987), the Pan-African
Arabian Shield (Harris 1985), the Himalayas (Turner et al.
1996; Miller et al. 1999; Williams et al. 2004), Sulu belts
(Yang et al. 2005a, b; Liu et al. 2008a, b), and others
(Sylvester 1989; Guo et al. 2005). Felsic alkaline rocks (e.g.,
monzonite, syenite, and A-type granite) are also commonly
intimately associated with alkaline mafic rocks (e.g., mafic
dykes), especially alkali to transitional basalts (Upton et al.
2003; Yang et al. 2005a, b). As such, alkaline rocks require
detailed investigation, particularly the alkaline associations
within the eastern Shandong Province that are poorly under-
stood. At present, only two alkaline associations have been
reported upon in this part of China, namely, the Jiazishan and
Junan-Wulian complexes, which are exposed in the eastern
Shandong Province (Jiaodong) (Lin et al. 1992; Yang et al.
2005a, b; Liu et al. 2008a, b). The origin of these rocks
remains controversial (i.e., they are formed as the result of
slab break-off, post-orogenic extension, and foundering of
lower crust) (Yang et al. 2005a, b; Xie et al. 2006; Liu et al.
2008a, b). The work of our group on ~110–120 Ma alkaline
intrusions may provide further constraints in this debate, and
as a result aid in determining the petrogenetic processes that
occurred at a late evolutionary stage. Laser ablation inductive-
ly coupled plasma mass spectrometry (LA-ICP-MS) U-Pb
geochronology, major and trace element geochemistry, as well
as Sr-Nd-Pb isotope data from the younger alkaline associa-
tions of quartz-monzonite-A-type granite that formed in an
extensional setting (Fig. 1) in the eastern Shandong Province
are presented in this study. These data have been used to
discuss the petrogenesis of the investigated alkaline
associations.

Geological setting and petrography

Jiaodong is generally divided into two metamorphic terrains
along the east northeast-trending Wulian-Qingdao-Rongcheng
Fault. The south terrain is a high-pressure, blueschist unit, and
the north one is an associated unit consisting of ultra-high
pressure (UHP) metamorphic granitic gneiss, granulite and

subordinate eclogite, schist, amphibolite, marble, as well as
quartzite (Cao et al. 1990; Zhai et al. 2000; Guo et al. 2004).
Mesozoic igneous rocks are widely distributed in Jiaodong, and
mainly formed between 225 Ma and 114 Ma (Zhao et al. 1997;
Zhou and Lu 2000; Fan et al. 2001; Zhou et al. 2003; Guo et al.
2004, 2006, 2005; Huang et al. 2005;Meng et al. 2005; Yang et
al. 2005a, b). The study area dealt within the present paper is
located in the eastern section of Shandong Province near to the
city of Jiaonan (Fig. 1). Alkaline associations of quartz-
monzonite (JS-1 and 2, DGZ1-1, 2, and 3) and syenogranite
(ZZS1, 4; DCZ-1, 2, and 4; CQY1-1 and 5; CQY2-2 and 7;
CQY3-2 and 3; as well as YZS-1 and 4) from this area were
investigated (Fig. 1). Some mafic dykes appear within these
felsic intrusions. Each suite is described in the following
subsections.

Quartz-monzonite

Quartz-monzonite intrudes into Archaean or Lower Protero-
zoic gneiss (Fig. 1). The light grey-coloured monzonite is
medium-to coarse-grained with granular and porphyritic tex-
tures. It has a composition of 36–45 % subhedral orthoclase
and 8–15 % quartz, 30–35 % euhedral andesine, as well as 8–
12 % diopside and 3.0–5.0 % biotite and amphibole. Acces-
sory minerals include apatite, zircon, magnetite, and titanite.

Syenogranite

Syenogranite also mainly intrudes into the Archaean or
Lower Proterozoic gneiss (Fig. 1). It is commonly light
grey to pink, with a composition of 30–35 % quartz, 25–
40 % perthite, 16–20 % albite (An0-5.0), and minor mus-
covite. Accessory minerals include zircon, magnetite, and
apatite.

Analytical procedures

U-Pb dating by the LA-ICP-MS method

Zircon was separated from six samples (JS01, DGZ01,
ZZS02, DCZ01, CQY01, and YZS01) using conventional
heavy liquid and magnetic techniques at the Langfang Re-
gional Geological Survey, Hebei Province, China. Zircon
separates were examined under transmitted and reflected
light, as well as by cathodoluminescence petrography at
the State Key Laboratory of Continental Dynamics, North-
west University, China to observe their external and internal
structures. Laser-ablation techniques were employed for
zircon age determinations (Table 1; Figs. 2 and 3) using an
Agilent 7500a ICP-MS instrument equipped with a 193 nm
excimer laser at the State Key Laboratory of Geological
Processes and Mineral Resources, China University of
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Geoscience, Wuhan, China. Zircon # 91500 was used as a
standard, and NIST 610 was used to optimise the results. A
spot diameter of 24 μm was used. Prior to LA-ICP-MS
zircon U-Pb dating, the surfaces of the grain mounts were
washed in dilute HNO3 and pure alcohol to remove any
potential lead contamination. The analytical methodology
has been described in detail by Yuan et al. (2004) and Liu et
al. (2010). Correction for common Pb was performed fol-
lowing Andersen (2002). Data were processed using the
GLITTER and ISOPLOT programs (Ludwig 2003) (Table 1;
Fig. 3). Errors for individual analyses by LA-ICP-MS were
quoted at the 95 % (1σ) confidence level.

Major elemental, trace elemental and isotopic analyses

Nineteen samples were collected to carry out major and
trace element determinations as well as Sr-Nd-Pb isotopic
analyses. Whole-rock samples were trimmed to remove
altered surfaces, cleaned with deionised water, and then
crushed and powdered using an agate mill. Major elements
were analysed using a PANalytical Axios-advance (Axios
PW4400) X-ray fluorescence spectrometer (XRF) at the
State Key Laboratory of Ore Deposit Geochemistry, Insti-
tute of Geochemistry, Chinese Academy of Sciences. Fused
glass discs were used and the analytical precision was better
than 5 %, as determined based on the Chinese National

standards: GSR-1 and GSR-3 (Table 2). Loss on ignition
(LOI) was obtained using 1 g of powder heated to 1,100 °C
for 1 h. Trace elements were analysed by plasma optical
emission MS and ICP-MS at the National Research Center
of Geo-analysis, Chinese Academy of Geosciences follow-
ing procedures described by Qi et al. (2000). The discrep-
ancy among triplicates was less than 5 % for all elements.
Analysis results of the international standards OU-6 and
GBPG-1 were in agreement with the recommended values
(Table 3).

For the analyses of Rb-Sr and Sm-Nd isotopes, sample
powders were spiked with mixed isotope tracers, dissolved
in Teflon capsules with HF+HNO3 acids, and separated by
conventional cation-exchange techniques. Isotopic measure-
ments were performed using a Finnigan Triton Ti thermal
ionization mass spectrometer at the State Key Laboratory of
Geological Processes and Mineral Resources, China Uni-
versity of Geosciences, Wuhan, China. Procedural blanks
were <200 pg for Sm and Nd, as well as <500 pg for Rb and
Sr. Mass fractionation corrections for Sr and Nd isotopic
ratios were based on 86Sr/88Sr=0.1194 and 146Nd/144Nd=
0.7219, respectively. Analyses of standards yielded the fol-
lowing results: NBS987 gave 87Sr/86Sr=0.710246±16 (2σ)
and La Jolla gave 143Nd/144Nd=0.511863±8 (2σ). Pb was
separated and purified by conventional cation-exchange
technique (AG1×8, 200–400 resin) with diluted HBr as

Fig. 1 a Simplified tectonic
map of the Sulu Belt, eastern
China (modified after Guo et al.
2004). b Geological map of the
study areas showing the
distributions of the alkaline
intrusions (modified after
BGMRS 1991)
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eluant. Procedural blanks were <50 pg for Pb. Analyses
of NBS981 during the period of analysis yielded
204Pb/206Pb=0.0896±15, 207Pb/206Pb=0.9145±8, and
208Pb/206Pb=2.162±2. Total procedural Pb blanks were
in the range of 0.1–0.3 ng. The analytical results for Sr-
Nd-Pb isotopes are presented in Table 4.

Results

Zircon U-Pb ages

Euhedral zircon grains in samples JS01, DGZ01, ZZS02,
DCZ01, CQY01, and YZS01 are clean and prismatic, with
magmatic oscillatory zoning (Fig. 3). A total of 11 grains
have a weighted mean 206Pb/238U age of 121±0.5 Ma (1σ)
(95 % confidence interval) for JS01 (Table 1; Fig. 3a), 9
grains have a weighted mean 206Pb/238U age of 118±0.4 Ma
(1σ) (95 % confidence interval) for DGZ01 (Table 1;
Fig. 3b), 13 grains have a weighted mean 206Pb/238U age
of 114±0.3 Ma (1σ) (95 % confidence interval) for ZZS02
(Table 1; Fig. 3c), 12 grains have a weighted mean
206Pb/238U age of 118±0.8 Ma (1σ) (95 % confidence
interval) for DCZ01 (Table 1; Fig. 3d), 9 grains have a
weighted mean 206Pb/238U age of 122±0.4 Ma (1σ) (95 %
confidence interval) for CQY01 (Table 1; Fig. 3e), and 14
grains have a weighted mean 206Pb/238U age of 122±0.5 Ma
(1σ) (95 % confidence interval) for YZS01 (Table 1;
Fig. 3f). These determinations are the best estimates of the
crystallisation ages of the alkaline rocks. There was also no
inherited zircon characteristic observed.T
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Fig. 2 Selected zircon cathodoluminescenc CL images of alkaline
rocks in the eastern Shandong Province
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Major and trace elements

Geochemical data of the quartz monzonite and syenogranite
intrusions in the study area are listed in Tables 2 and 3.

The quartz monzonite and granite samples have a wide
range of chemical compositions, with SiO2=55.14–77.63
wt.%, Al2O3=12.13–19.78 wt.%, MgO=0.09–4.64 wt. %,
Fe2O3=0.56–7.61 wt. %, and CaO=0.40–4.84 wt. %. They
are relatively high in total alkalis, with K2O=3.74–4.85 wt. %
and Na2O=3.71–4.64 wt. %, and total K2O+Na2O ranging
from 8.21 to 8.99wt. %. All felsic rocks lie in the alkaline field
when plotted on the total alkali-silica (TAS) diagram (Fig. 4a).
All samples also straddle the shoshonitic series in the Na2O
vs. K2O plot (Fig. 4b). In a plot of the molar ratios of Al2O3/
(Na2O+K2O) versus Al2O3/ (CaO+Na2O+K2O), the rocks are
mostly metaluminous, except for some samples falling along

the boundary of the metaluminous and peralkaline fields
(Fig. 4c). The analysed quartz monzonite and syenogranite
samples display regular trends of decreasing TiO2, Al2O3,
Fe2O3, MgO, CaO, Na2O, P2O5, Sr, Zr, Ba, Cr, and Ni,
increasing SiO2, as well as positive correlations between
K2O, Rb, and SiO2 (Fig. 5 and the figures not shown). The
10,000×Ga/Al ratios of the monzonite and granite samples
range from 1.84 to 3.04. In the Ga/Al vs. Zr discrimination
diagram of Whalen et al. (1987), the alkaline rocks are all
classified as A-type granite.

The quartz monzonite and syenogranite intrusions are
characterised by LREE enrichment and HREE depletion,
with a wide range in (La/Yb) N values (6.36–43.6) and
Eu/Eu* (0.2–1.4) (Table 3 and Fig. 6a). On average, quartz
monzonite has a higher Eu/Eu*(1.1–1.4) than the granite
(0.2–0.98). In primitive mantle-normalised trace element

Fig. 3 LA-ICP-MS zircon U-
Pb concordia diagrams for the
investigated quartz monzonite,
monzonite, and granite
intrusions in the eastern
Shandong Province
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diagrams, quartz-monzonite and syenogranite samples show
enrichment in LILEs (i.e., Rb, Pb, U, and sometimes Ba)
and depletion in some Ba, Sr, and HFSEs (i.e., Nb, Ta, P,
and Ti) (Fig. 6b).

Sr-Nd and Pb isotopes

Sr-Nd and Pb isotopic data have been obtained from
(nineteen) representative quartz monzonite and syenogranite
samples (Table 4). The alkaline rocks show very different
(87Sr/86Sr)i values ranging from 0.7066 to 0.7087, a rela-
tively large variation in εNd (t) values from −14.1 to −17.1,
and high neodymium model ages (TDM1=1.56–2.38Ga,
TDM2=2.02–2.25Ga). These results suggest an enriched
source region. The Sr-Nd isotopic compositions (Fig. 7)
are also comparable to those of late Mesozoic volcanic
rocks, alkaline rocks, granites granites and diorites, as well
as adakites in Jiaodong (Zhao et al. 1997; Zhou and Lu
2000; Guo et al. 2006; Huang et al. 2005; Yang et al. 2005a,
b; Liu et al. 2008a, b) (Fig. 7). The Pb isotopic ratios in the
alkaline rocks are 206Pb/204Pb=17.12–17.16, 207Pb/204Pb=
15.44–15.52 and 208Pb/204Pb=37.55–37.72, respectively.
These ratios significantly differ from those from the Yangtze
lithospheric mantle (Yan et al. 2003), and are identical to
those of Jiaodong alkaline rocks, Jiazishan alkaline complex
and mafic rocks from the central North China Craton, as
well as to the Dabie Orogen (Zhang et al. 2004; Yan et al.
2003; Xie et al. 2006; Liu et al. 2008a, b), having a clear
EM-1 affinity (Zindler and Hart 1986; Fig. 8a, b).

Discussion

Crustal contamination

Continued assimilation and fractional crystallisation (AFC),
or magma mixing is usually postulated to explain the occur-
rence of co-magmatic felsic rocks (e.g., DePaolo 1981;
Devey and Cox 1987; Marsh 1989; Mingram et al. 2000).
AFC and magma mixing would result in a negative corre-
lation between SiO2 and ε Nd (t) values, as well as a positive
correlation between SiO2 and (87Sr/86Sr) i ratios (Fig. 9).
The absence of these characteristic features in the studied
Jiaodong alkaline rocks,indicates that magma evolution was
not significantly affected by crustal contamination or mag-
ma mixing. Further support for this is provided in the high
and consistent neodymium model ages (TDM1=1.56–2.
38 Ga, TDM2=2.02–2.25 Ga) (Table 4). The geochemical
and Sr-Nd-Pb isotopic signatures of the studied Jiaodong
alkaline rocks are, therefore, interpreted to be mainly
inherited from an enriched crusted source, as was shown
in the Sr-Nd and Pb isotopic data.T
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Fractional crystallisation

For the studied felsic samples, SiO2 shows a negative cor-
relation with TiO2, Al2O3, Fe2O3, MgO, CaO, Na2O, and
P2O5 (Fig. 5a–f and h). This may relate to the fractionation
of clinopyroxene, hornblende, plagioclase, Ti-bearing
phases (ilmenite, titanite, etc.), and apatite. The negative
Nb, Ta, and Ti anomalies exhibited in all the investigated
alkaline rocks (Fig. 6a) also agree with the fractionation of

Fe-Ti oxides, such as ilmenite and titanite. However, parallel
rare earth elements (REEs) distribution patterns, coupled
with high SiO2 contents in some of the investigated samples
(e.g., ZZS-1, ZZS-4, CQY1-1, CQY1-5, CQY2-2, CQY2-7,
CQY3-2, and CQY3-3) require alternative explanations.
Nevertheless, the negative Ba, Sr, and Eu anomalies shown
by many rocks (Fig. 6a and b) imply the fractionation of
potassium feldspar and plagioclase.

Jiaodong alkaline rocks exhibit continuously decreasing
Zr with increasing SiO2. This result indicates that zircon was
saturated in the magma, which was also controlled by frac-
tional crystallisation (Li et al. 2007). Zircon saturation ther-
mometry (Watson and Harrison 1983) provides a simple and
robust means of estimating magma temperatures from bulk-
rock compositions. The calculated effects of fractional
crystallisation are shown in the mineral vector diagrams
presented as Fig. 10a and b. The alkaline rocks (the granite
samples, in particular) display a combined vector of potas-
sium feldspar and plagioclase fractionation in Fig. 10a. On
the other hand, Fig. 10b shows that potassium feldspar
fractionation is more important than plagioclase in controlling
Ba abundance. The calculated zircon saturation temperatures
(T Zr) of the alkaline rocks lie in the range 751–892 °C
(Table 2), which represents the crystallisation temperature of
the magma. The syenogranite samples (CQY type) show
much lower T Zr values (751–794 °C) than the other rocks
(819–892 °C) (Table 2).

Petrogenesis

Above all, the geochemical signatures of the alkaline rocks
favor their derivation from silicic- rather than basaltic
magmas. In other words, the studied rocks were derived
from an enriched crustal source (Liu and Xu 2011). Addi-
tional support for this explanation comes from high-pressure
experimental work that has demonstrated that granite and
quartz monzonite cannot result directly from the partial
melting of mantle peridotite (Colling 1982; Pitcher 1984).

A Proterozoic stratum in the Jiaodong peninsula is com-
posed dominantly of biotite schist, biotite plagioclase
gneiss, amphibolite, granulite, and minor slate and marble.
In addition, the alkaline rocks are characterized by negative
Eu anomalies and low HREE concentrations (Fig. 6a, b),
which could indicate a garnet-bearing source. The Sr-Nd
and Pb isotopic compositions of the alkaline rocks differ
from those of the North China and Yangtze Cratons (Jahn et
al. 1999; Li 2007), implying that the source of the studied
rocks was neither the North China nor the Yangtze Craton
alone. One possibility is that the source may have been a
mixture of materials from both cratons. We use the whole-
rock two-stage Nd model ages to infer the possible age of the
source. The two-stage Nd model ages (TDM2=2.02–2.25 Ga)

Fig. 4 Classification of the monzonite and granite intrusions from
eastern Shandong Province based on three diagrams. a TAS diagram.
All major elemental data have been recalculated to 100 % on a LOI-
free basis (after Middlemost 1994; Le Maitre 2002). b K2O vs. Na2O
diagram. The alkaline association is shown to be shoshonitic (after
Middlemost 1990). c Al2O3/(Na2O+K2O) molar vs. Al2O3/
(CaO+Na2O+K2O) molar plot. Most samples fall in the metaluminous
field, but some samples straddle the metaluminous and peralkaline
field boundary
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suggest the presence of an Early Proterozoic crustal compo-
nent in the source of the studied rocks.

At present, there compete various petrogenetic models for
the generation of alkaline felsic rocks (e.g., syenite and A-type
granite) (Yang et al. 2005a, b; Zhong et al. 2007; Liu et al.
2008a, b), such as (1) partial melting of lower-crustal rocks
under the fluxing of volatiles, (2) fractionation of mantle-
derived magmas with or without crustal contamination, (3)
mixing of basic and silicic melts and their differentiates, as
well as, (4) partial melting of an enriched lithospheric mantle
beneath an orogenic belt, due to hybridisation of melts derived

from foundered lower crustal eclogite. Among them, the
insignificant variations in Sr-Nd isotopes with SiO2 for the
alkaline rocks (Fig. 9a, b) preclude the possibility of assimi-
lation process in their genesis. Fractionation of mantle-derived
magma without the interaction of crustal rocks, therefore, is
proposed as the best model to explain the origin of the studied
quartz monzonite and syenogranite intrusions. However,
high-pressure experiments have demonstrated that granite
cannot be formed through the partial melting of mantle peri-
dotite. Hence, an alternative explanation must be sought for
the generation of the investigated alkaline lithologies.

Fig. 5 Selected variation
diagrams of major elemental
oxides vs. SiO2 plots for the
alkaline felsic rocks in eastern
Shandong Province
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Field geology and petrographic observations can provide
direct evidence in the recognition of magma mixing and,
therefore, important clues for mantle-crust mixing (Mo et al.
2002; Wang et al. 2002; Shao et al. 2006). Generally, in the
case of alkaline rocks, evidence for magma mixing includes
bimodal plagioclase phenocryst populations, quenched en-
claves, reverse zoning in clinopyroxene occurring within
xenocrysts, gabbroic and dioritic dyke swarms, etc. These
features, however, are lacking in the studied rocks. More-
over, there are no visible linear relationships identified be-
tween SiO2, K2O, Na2O, CaO, Fe2O3 and MgO, in addition,
the compositional variation in MgO and FeO lie off the
magma mixing trend line (not shown). Collectively, this
evidence clearly demonstrates that magma mixing did not
play a role in the formation of the alkaline rocks (Zorpi et al.
1989). Additional support for this is provided in the

Fig. 8 208Pb/204Pb and 207Pb/204Pb vs. 206Pb/204Pb diagrams for the
studied alkaline felsic rocks, compared with Early Cretaceous mafic
rocks from the North China and Yangtze Craton as well as alkaline
rocks in eastern Shandong Province. Fields for Indian MORB and
Pacific and North Atlantic MORB, OIB, NHRL, as well as 4.55 Ga
geochron are from Barry and Kent (1988), Zou et al. (2000), and Hart
(1984), respectively. Data on North China Craton are from Zhang et al.
2004 and Xie et al. (2006), Yangtze mafic rocks are from Yan et al.
(2003); the alkaline rocks in eastern Shandong Province are from Liu et
al. (2008a, b)

Fig. 7 Initial 87Sr/ 86Sr vs. ε Nd (t) diagram for the felsic rocks in
eastern Shandong Province. Other igneous rocks from the Sulu Belt are
also plotted for comparison: volcanic rocks from Fan et al. (2001) and
Guo et al. (2004), Jiazishan alkaline Complex from Yang et al. (2005a),
granites from Yang et al. (2005b), granite and diorite from Huang et al.
(2005), adakites from Guo et al. (2006), I-type granitoids from Zhao et
al. (1997) and Zhou and Lu (2000), as well as alkaline rocks in eastern
Shandong Province from Liu et al. (2008a, b)

Fig. 6 Chondrite-normalised rare earth elements (REEs) diagrams and
primitive mantle-normalised incompatible element distribution dia-
grams for the quartz monzonite, monzonite and granite intrusions in
eastern Shandong Province. The normalisation values are from Sun
and McDonough (1989)
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consistent Nb/Ta ratios of our studied samples. In summary,
the alkaline rocks studied in this paper were not derived
through the mixing of mafic and silicic melts.

In the primitive mantle normalised diagrams illustrated in
Fig. 6b, all the investigated rocks show very distinctive
negative anomalies for HFSEs (e.g., Nb, Ta and Ti),
suggesting involvement of components from ancient conti-
nental crust (Zhang et al. 2005). This reasoning is further
supported by the low εNd (t) values (−15.3 to −17.1) and
high (87Sr/86Sr)i (0.7074–0.7088) of the studied rocks
(Table 4; Fig. 7). Moreover, the fractional crystallization of
minerals (principally plagioclase) suggests that the primary
magma is hardly a mafic one. Hence, we still need to
understand the petrogenetic process responsible for the gen-
eration of the eastern Shandong Province alkaline rocks.

Alkaline rocks are usually generated in post-collision ex-
tensional settings (Bonin et al. 1998; Yang et al. 2005a, b;
Oyhantçabal et al. 2007), intra-plate rifts or deep faults (Burke
et al. 2003; Ridolfi et al. 2006; Jung et al. 2007; Shellnutt and
Zhou 2008), or by mantle plumes (Mchone 1996; Karmalkar
et al. 2005; Srivastava et al. 2005). Based upon the discussion
of source and the geological setting, we propose that the
studied alkaline rocks were formed in an extensional / collapse
tectonic setting.

The high-ultra high pressure metamorphic rocks of the
Dabie-Sulu orogenic belt formed in response to the subduc-
tion, collision and exhumation of the Yangtze Craton

relative to the North China Craton (NCC) (Wang et al.
1995; Cong 1996). In Early Triassic times (200–230 Ma),
the collision of the Yangtze Craton under the NCC resulted
in the formation of the Sulu orogenic. Susequent exhuma-
tion of Yangtze continental crust helped to form the Sulu
Mélange zone; the resulting high- to ultra high-pressure
lithotectonic assemblages (eclogite, garnet peridotite and
granulite, etc.) and a deep-seated ductile deformation zone
occurs right across the Jiaodong and Shandong province of
China (Han 2000). After a prolonged period of sustainable
and balanced stress, during the Late Jurassic, the stress field
transformed into an extensional state; a piedmont depression
developed as the Jiao-Lai basin with deposition of sedi-
ments (Lai-yang sediments, Han 2000). Late in the Early
Cretaceous, the intensity of crustal extension increased
resulting in the development of peculiar NE-trending
shoshonitic dykes within the Jiaodong Peninsula, eastern
Shandong Province, China. In the Late Cretaceous, as a
result of continued extension of the basin (e.g., the Jiao-
Lai basin), the subduction of the Pacific plate (Chen et al.
2004; Qiu et al. 2008; Yang et al. 2012) led to structural
collapse of the Sulu organic belt (Zhao and Zheng 2009). As
a result of this collapse, the lower part of the Sulu Mélange
zone underwent partial melting, leading to the emplacement
of the multiple and diverse magmas, that are represented in
the study area as alkaline rocks (Han 2000).

Fig. 9 Plots of: a initial 87Sr/86Sr ratio and b ε Nd (t) value versus SiO2

for the alkaline rocks from eastern Shandong Province, indicating
crystal fractionation trends. FC fractional crystallisation; AFC assimi-
lation and fractional crystallisation

Fig. 10 Plots of Eu/Eu* vs.: a Sr and b Ba for the alkaline rocks.
Mineral fractionation vectors were calculated using partition coeffi-
cients from Philpotts and Schnetzler (1970) and Bacon and Druit
(1988). Tick marks indicate percentage of mineral phase removed in
10 % intervals; Pl-plagioclase, Kf-potassium feldspar
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Conclusions

Based upon geochronological, geochemical, and Sr-Nd and
Pb isotopic studies, the following conclusions can be drawn:

(1) LA-ICP-MS U-Pb zircon dating results indicates that
the studied alkaline quartz monzonite and syenogranite
intrusions formed between 114.3±0.3 and 122.3±0.
4 Ma.

(2) The investigated alkaline rocks derived from an
enriched source. The parental magma originated
through partial melting of an enriched crust beneath
the eastern Shandong Province. The possible fraction-
ation of potassium feldspar and plagioclase resulted in
an alkaline association with negligible crustal contam-
ination. Zircon saturation temperatures (TZr) of the
felsic rocks lie in the range 751–892 °C, which ap-
proximately represents the crystallisation temperatures
of the magma.

(3) The alkaline rocks were produced due to partial melt-
ing of an enriched crust source due to the collapse of
Sulu organic belt in response to the action of various
processes such as extension of the Jiao-Lai basin, sub-
duction of the Pacific plate and the exhumation of
Yangtze Craton.
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