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Abstract

Mealybugs (Hemiptera, Coccomorpha: Pseudococcidae) are plant sap-sucking insects which require close association with nutri-
tional microorganisms for their proper development and reproduction. Here, we present the results of histological, ultrastructural,
and molecular analyses of symbiotic systems of six mealybugs belonging to the Phenacoccinae subfamily: Phenacoccus aceris,
Rhodania porifera, Coccura comari, Mirococcus clarus, Peliococcus calluneti, and Ceroputo pilosellae. Molecular analyses based
on bacterial 16S rRNA genes have revealed that all the investigated species of Phenacoccinae are host to only one type of symbiotic
bacteria—a large pleomorphic betaproteobacteria—Tremblaya phenacola. In all the species examined, bacteria are localized in the
specialized cells of the host-insect termed bacteriocytes and are transovarially transmitted between generations. The mode of
transovarial transmission is similar in all of the species investigated. Infection takes place in the neck region of the ovariole,
between the tropharium and vitellarium. The co-phylogeny between mealybugs and bacteria Tremblaya has been also analyzed.
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Introduction

The existence of many organisms depends on the presence of
obligatory symbionts. This association is usually nutritional in
character. The symbionts of hemipterans which feed on phlo-
em or xylem sap provide them amino acids absent in their diet
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which they cannot synthesize de novo (Douglas 1998; Dale
and Moran 2006; McCutcheon and Moran 2007; Douglas
2016). In turn, blood-feeding insects, such as lice and
Hippoboscoidae flies receive B vitamins which are lacking
in vertebrate blood from their symbiotic partner (Chen et al.
1981; Akman et al. 2002; Moriyama et al. 2015; Meseguer
et al. 2017). In some insects, symbionts may also be engaged
in the production of enzymes and co-factors, as well as play an
important role in the recycling of uric acid (Chen et al. 1981;
Sasaki et al. 1996; Patifio-Navarrete et al. 2014).

Some hemipterans require multi-partner association, in
which all members of symbiotic consortium contribute to
the synthesis of all nutrients necessary for the host-insect (re-
view: Douglas 2016). Symbionts which supplement each oth-
er with respect to provisioning amino acids to the host-insect,
as well as other elements missing in their diet, were termed
“co-primary symbionts” (Takiya et al. 2006). The term “co-
primary symbionts” was first used by Takiya et al. (2006) for
the symbiotic systems of Hemiptera: Auchenorrhyncha (cica-
das, leathoppers, treehoppers, spittlebugs, and planthoppers)
which usually harbor two obligate symbionts: bacterium
Sulcia and one type of proteobacteria, e.g.,
alphaproteobacterium Hodgkinia in cicadas,
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betaproteobacterium Nasuia in Deltocephalinae leathoppers,
and gammaproteobacterium Baumannia in some Cicadellinae
leathoppers (Bennett and Moran 2013; Ishii et al. 2013;
Bennett et al. 2014; Campbell et al. 2015; Kobiatka et al.
2016, 2018; Lukasik et al. 2018). A symbiotic system
consisting of two microorganisms also occurs in many repre-
sentatives of Sternorrhyncha such as aphids, psyllids, and
whiteflies (Baumann 2005). These insects usually possess
one type of obligate symbiont (e.g., Buchnera in aphids,
Portiera in whiteflies, Carsonella in psyllids) which is asso-
ciated with an additional symbiotic microorganism (Baumann
2005). Within symbiotic associates of Sternorrhyncha,
Buchner (1965) distinguished primary symbionts (later
termed P-symbionts) and accessory symbionts (later termed
secondary symbionts, S-symbionts, facultative symbionts).
Since recent genomic analyses indicate that, similarly to the
co-primary symbionts in Auchenorrhyncha, the primary and
secondary symbionts of Sternorrhyncha complement one an-
other in synthesis of nutrients, they may be regarded as co-
primary symbionts (Pérez-Brocal et al. 2006; Gosalbes et al.
2008; Luan et al. 2015). In contrast to aphids, whiteflies, and
psyllids, scale insects are characterized by a great diversity of
symbionts (Fukatsu and Nikoh 2000; von Dohlen et al. 2001;
Thao et al. 2002; Baumann and Baumann 2005; Szklarzewicz
et al. 2006, 2018; Gruwell et al. 2007, 2010; Niznik and
Szklarzewicz 2007; Matsuura et al. 2009; Rosenblueth et al.
2012; Husnik and McCutcheon 2016; Michalik et al. 2016;
Michalik et al. 2018a). They may be host to two types of
microorganisms which may exist as co-primary symbionts
(Husnik and McCutcheon 2016; Szabo et al. 2017), or possess
only one obligate symbiont (Gruwell et al. 2010, 2012;
Michalik et al. 2016).

The neococcoid family Pseudococcidae (mealybugs) is the
second most species-rich family within the infraorder
Coccomorpha. It has been estimated to include over 1990 de-
scribed species in 259 genera (Garcia Morales et al. 2016).
Pseudococcidae species feed on a wide variety of woody and
herbaceous plants and are often restricted to a specific part of
their host. Many of them are agricultural pests which have a
damaging effect on the environment. They destroy plants not
only by sucking their sap, but also by contaminating them with
honeydew that serves as a substrate for sooty molds which
impair photosynthesis. Additionally, scale insects may transmit
plant viruses (Gullan and Cranston 2014).

The classification of the Pseudococcidae has been changed
many times (Koteja 1974; Hardy et al. 2008), but at present,
two subfamilies are recognized within this family:
Phenacoccinae and Pseudococcinae (Hardy et al. 2008;
Kaydan et al. 2015).

The symbionts of Pseudococcidae were first described by
Walczuch (1932) and Buchner (1957, 1965). Buchner (1957,
1965) studied symbiosis in several mealybugs of the genera
Pseudococcus, Ferrisia, Trionymus, and Antonina (all
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currently recognized as Pseudococcinae). Based on histolog-
ical observations, Buchner (1957, 1965) stated that all the
Pseudococcinae examined possess the same symbiosis type;
however, the symbionts may differ in shape, both in various
species and even within one bacteriocyte of the same
individual. Walczuch (1932) and Buchner (1957, 1965) ob-
served significant differences in the organization of the sym-
biotic systems in Pseudococcinae mealybugs and members of
the genera Phenacoccus and Rastrococcus (both currently
recognized as Phenacoccinae). More recent molecular analy-
ses, including genome sequencing allowed for the determina-
tion of the systematic affinity and function of microorganisms
associated with mealybugs (von Dohlen et al. 2001; Gruwell
et al. 2010; McCutcheon and von Dohlen 2011; Koga et al.
2013; Lopez-Madrigal et al. 2014, 2015; Husnik and
McCutcheon 2016; Szabo et al. 2017; Gil et al. 2018). Most
of' these studies concerned symbionts of representatives of the
Pseudococcinae subfamily. As a rule, these mealybugs pos-
sess two types of bacterial symbiont: betaproteobacterium
Tremblaya princeps and gammaproteobacterium. Both sym-
bionts create a nested symbiotic consortium due to the fact
that gammaproteobacterium always occurs in the cytoplasm
of the T princeps cells (von Dohlen et al. 2001; McCutcheon
and von Dohlen 2011; Husnik et al. 2013; Husnik and
McCutcheon 2016; Szabo et al. 2017). Molecular investiga-
tions involving the genome sequencing of the symbiotic sys-
tems of several Pseudococcinae mealybugs have revealed that
the “Tremblaya-gammaproteobacterium” consortia function
as a “metabolic patchwork.” Similarly to other long-term-
associated co-primary symbionts, the bacterium 7. princeps
has an extremely reduced genome and does not possess com-
plete pathways for essential amino acid biosynthesis
(McCutcheon and von Dohlen 2011; Husnik and
McCutcheon 2016). The genomes of gammaproteobacteria
(related to the bacteria Sodalis) residing inside its cells are 3
to 4 times larger than the genome of 7. princeps. In conse-
quence, these bacteria complement 7. princeps with respect to
the products of the genes missing in its genome (McCutcheon
and von Dohlen 2011; Husnik and McCutcheon 2016).

Symbiotic systems in the mealybugs belonging to the
Phenacoccinae subfamily are less known. Gruwell et al.
(2010) analyzed using molecular methods symbionts of 23
species of Phenacoccinae. Based on 16S rRNA gene se-
quences of their symbionts, these authors revealed that
Phenacoccinae mealybugs (except genus Rastrococcus) are
associated with betaproteobacterium Tremblaya phenacola.
So far, the only genomic data available are for two
T. phenacola genomes: T. phenacola—symbiont of
Phenacoccus peruvianus and T. phenacola of Phenacoccus
avenae (Husnik et al. 2013; Gil et al. 2018). These studies
indicate that 7. phenacola, as a single symbiont of
Phenacoccinae mealybugs, provides all essential amino acids
and vitamins to its host-insect.
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Interestingly, Gil et al. (2018) have shown the chimeric
nature of 7. phenacola from Phenacoccus peruvianus—they
found both beta—and gammaproteobacterial DNA in its ge-
nome. According to Lopez-Madrigal et al. (2014), the pres-
ence of gammaproteobacterial DNA in 7. phenacola genome
is a result of horizontal gene transfer between symbionts (i.e.,
betaproteobacteria and gammaproteobacteria) during the evo-
lutionary history of this mealybug. Genome annotation and
functional analysis allowed to state that chimeric genome of
T. phenacola functions as a metabolic patchwork similar to
that described for the dual symbioses in Pseudococcinae (Gil
et al. 2018).

Taking into consideration the aforementioned data, the aim
of the present paper was to describe the symbiotic systems of
six representatives of the Phenacoccinae subfamily using mo-
lecular, histological, and ultrastructural approaches. Since
there are only fragmentary data available on the morphology
of T. phenacola, we described its distribution, ultrastructure,
and mode of transovarial transmission. Additionally, the phy-
logenetic relationships of symbionts of mealybugs as well as
the co-phylogeny between symbionts and their host-insects
have been analyzed.

Material and methods
Insects

The symbiotic systems of six representatives of the
Phenacoccinae subfamily were investigated: Ceroputo pilosellae
Sulc, 1898, Coccura comari (Kiinow, 1880), Mirococcus clarus
(Borchsenius, 1949), Phenacoccus aceris (Signoret, 1875),
Rhodania porifera Goux, 1935, and Peliococcus calluneti
(Lindinger, 1912). The larvae and adult females of species ex-
amined were collected in Poland between the years 2012 and
2017. Localities, collection dates, and host plants of the investi-
gated species have been summarized in Table 1.

Light and transmission electron microscopy

The larvae and adult females of each of the species investigat-
ed, destined for detailed histological and ultrastructural anal-
yses, were fixed in 2.5% glutaraldehyde in 0.05 M phosphate
buffer (pH 7.4), rinsed in the buffer with the sucrose (5.8 g/
100 ml), postfixed in buffered 1% osmium tetroxide,
dehydrated in an ethanol series (30%, 50%, 70%, 90%,
100%) and acetone, and finally embedded in epoxy resin
Epon 812 (Serva, Germany). Semithin sections (1 pm thick)
were stained in 1% methylene blue in 1% borax and
photographed under a Nikon Eclipse 80i light microscope.
The ultrathin sections (90 nm thick) were doubly contrasted
with uranyl acetate and lead citrate and then examined and
photographed under a Jeol JEM 2100 transmission electron
microscope at 80 kV.

Molecular analyses

The examined adult females and larvae of mealybugs destined
for molecular analysis were fixed in 100% ethanol. DNA was
then extracted separately from three individuals of each spe-
cies using the Sherlock AX DNA extraction kit (A&A
Biotechnology) following manufacturer’s protocol and subse-
quently stored at 4 °C for further analyses.

The 1.5 kb fragment of bacterial 16S rRNA gene sequence
was amplified using universal, eubacterial primers: 10F and
1507R (Sandstrom et al. 2001) under the following condi-
tions: an initial denaturation step at 94 °C for 3 min, followed
by 33 cycles at 94 °C for 30 s, 55 °C for 40 s, 70 °C for 1 min
40 s, and a final extension step of 5 min at 72 °C. The PCR
product was made visible by electrophoresis in 1.5% agarose
gel stained with Simply Safe (Eurx) and following this, the
PCR product was purified using a Clean-up purification kit
(A&A Biotechnology). The purified PCR product was cloned
into the pJET 1.2/blunt plasmid vector using Clone JET PCR
Cloning Kit (Thermo Scientific). The ligated mixture was then
transformed into competent Escherichia coli TOP10F cells

Table 1 Localities, collection dates, and host plants of the investigated species
Species name Date of collection Host plant Place of collection
Coccura comari (Kiinow, 1880) 06.2012 Rubus sp. Ruda Slqska

06.2014 Rudy Wielkie

07.2017 Olsztyn near Czgstochowa

Ceroputo pilosellae Sulc, 1898 05.2015; 07.2017

Rhodania porifera Goux, 1935
04.2016; 05.2017

08.2017
08.2014

Phenacoccus aceris (Signoret, 1875)
Mirococcus clarus (Borchsenius, 1949)
Peliococcus calluneti (Lindinger, 1912)

10.2013; 09.2015; 04.2016; 05.2017; 09. 2017;
06.2017; 062017; 09.2017; 01.2018

Twardowice
Olsztyn near Czgstochowa

Hieracium pilosella L.

Jaroszowiec Olkuski
Olsztyn near Czgstochowa
Dabrowa Goérnicza, Sikorka

Roots of Festuca ovina L.

Malus sp. Katowice
Festuca ovina L. Mikoszewo
Calluna vulgaris (L.) Hull Kalety
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which were subsequently prepared using the E. coli
Transformer Kit (A&A Biotechnology). After 16 h, the occur-
rence of plasmid with bacterial 16S TRNA genes was con-
firmed by diagnostic colony PCR with the primers pJET1.2
Forward and pJET1.2 Reverse. The PCR reactions were per-
formed according to the manufacturer’s protocol (https://
www.thermofisher.com/order/catalog/product/K1231). Fifty
positive colonies of each species examined were subjected
to restrictive analysis using a Mspl restrictive enzyme. The
plasmids from the selected colonies were isolated using a
Plasmid Mini AX kit (A&A Biotechnology) and following
this, the representatives of each RFLP genotype were
sequenced. The sequences obtained were then compared
with other 16S rRNA gene sequences deposited in the
GenBank database using BLAST.

Amplifications of COI genes of mealybugs analyzed were
performed using PCR reactions with primers: PCoF1 and
HCO (Hardy et al. 2008), under the following conditions: an
initial denaturation step was performed at 94 °C for 3 min,
followed by 35 cycles at 94 °C for 30 s, 51 °C for 40 s, 70 °C
for 1 min 30 s, and a final extension step for 5 min at 72 °C.

PCR reactions of four additional genes encoding enzymes
involved in the biosynthesis of essential amino acids in sym-
biotic systems of mealybugs: trpB (encoding the beta subunit
of tryptophan synthase, involved in tryptophan biosynthesis),
argH (encoding argininosuccinate lyase, involved in arginine
biosynthesis), leuB (encoding 3-isopropylmalate dehydroge-
nase, involved in leucine biosynthesis), and metE (encoding
cobalamin-independent homocysteine transmethylase, in-
volved in methionine biosynthesis) were performed according
to protocols provided by Lopez-Madrigal et al. (2014).
Various PCR conditions including temperature gradient, dif-
ferent concentration of DNA template, and number of cycles
have been tested.

The nucleotide sequences obtained were deposited in the
GenBank database under the accession numbers MK159695-
MK159700 and MK193743- MK193748.

Fluorescence in situ hybridization

Fluorescence in situ hybridization (FISH) was conducted with
a probe designed specifically for the 16S rRNA gene of
Betaproteobacteria—BET940R: Cy5-TTAATCCACATCAT
CCACCG (Demaneche et al. 2008). Two individuals of each
species preserved in 100% ethanol were rehydrated, fixed in
4% formaldehyde for 2 h, and dehydrated through incubation
in 80%, 90%, and 100% ethanol and acetone. The material
was then embedded in Technovit 8100 resin and subsequently
cut into sections. Hybridization was performed using a hybrid-
ization buffer containing 1 ml 1 M Tris-HCI (pH 8.0), 9 ml
5M NaCl, 25 ul 20% SDS, 15 ml 30% formamide, and about
15 ml of distilled water. The slides were incubated in 200 pl of
hybridization solution (hybridization buffer + probe)
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overnight at room temperature (Lukasik et al. 2017). Next,
the slides were washed in PBS three times for 10 min, then
dried and covered with a ProLong Gold Antifade Reagent
(Life Technologies). The hybridized slides were then exam-
ined using a confocal laser scanning microscope Zeiss Axio
Observer LSM 710.

Phylogenetic and co-phylogenetic analyses

Multiple alignments for COI sequences were made using the
program CodonCode Aligner (CodonCode Corporation,
www.codoncode.com, 2009) and coding regions were
translated into amino acids in order to check for the presence
of internal stop codons. Alignments for the bacterial 16S
rRNA gene sequences were generated using Clustal X
(Thompson et al. 1997). The genetic diversity (the number
of polymorphic sites) was calculated using DnaSP v. 6
(Rozas et al. 2017). The phylogenetic signal was determined
using PAUP* v. 4.0b10 (Swofford 2011). MrModeltest v. 2.2
(Nylander 2004) was used to perform a hierarchical likelihood
ratio test and calculate the approximate AIC values of the
nucleotide substitution models for each gene fragment.
Bayesian inference (BI) was executed in MrBayes v. 3.2.6
(Ronquist et al. 2012), applying the parameters for the substi-
tution model suggested by MrModeltest in each gene parti-
tion. Four Markov chains were run simultaneously for 10
million generations with sampling every 100 generations to
ensure the independence of the samples. Two independent
runs were performed to ensure that convergence on the same
posterior distribution was reached and if final trees converged
on the same topology. The statistical confidence in the nodes
was evaluated using posterior probabilities. A maximum like-
lihood (ML) analysis was conducted under IQTree (Nguyen
et al. 2015). Bootstrap percentages (BP) were computed after
1000 replicates.

Thirteen host species and their symbiotic bacteria Tremblaya
were used for co-phylogeny. The sequences of the COI and 16S
rRNA gene were employed in the analysis of the congruence of
the symbiont and host phylogenies using the Jane v.4 (Conow
et al. 2010). This software is a genetic algorithm which com-
pares the two tree topologies by mapping the symbiont tree onto
the host tree. The analysis was run with a default cost regime.

Results

Mealybugs of Phenacoccinae subfamily harbor one
type of bacteriocyte-associated
symbiont—betaproteobacterium Tremblaya
phenacola

Histological, ultrastructural, and molecular analyses have re-
vealed that all of the species investigated are host to only one
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type of symbiotic microorganism (Figs. 1, 2, and S1). A com-
parison of 16S rRNA gene sequences of symbionts of mealy-
bugs examined with data deposited in the GenBank database
as well as phylogenetic analysis (Fig. 2) has shown that all of
them harbor the betaproteobacterium 7. phenacola. Since Gil
et al. (2018) have shown the chimeric nature of 7' phenacola
associated with Phenacoccus peruvianus as well as Lopez-
Madrigal et al. (2014) have found gammaproteobacterial
DNA in the genome of T. phenacola of Phenacoccus
madeirensis, we tried to amplify the following genes: trpB,
argH, leuB, metE of T. phenacola from all Phenacoccinae
species investigated. For this reason, we conducted PCR re-
actions with primers specific for genes mentioned above ac-
cording to Lopez-Madrigal et al. (2014). Unfortunately, am-
plifications were unsuccessful for all genes despite numerous
modifications of the protocols. Thus, to resolve the questions
concerning the chimeric nature of 7. phenacola of
Phenacoccinae mealybugs examined in present study, the ge-
nome sequencing is needed.

In all the examined species of Phenacoccinae, symbiotic
bacteria are localized in the specific insect cells termed
bacteriocytes (Fig. la, b, and S1). Bacteriocytes are large,
predominantly spherical cells which assemble into two large
bacteriomes (Fig. 1a). The central part of each bacteriocyte is
occupied by a large nucleus around which symbiotic bacteria
are arranged (Fig. 1a, b). Ultrastructural observations have
shown that like in other hemipterans in the bacteriocyte cyto-
plasm, numerous mitochondria are present (Fig. 1c, d). In all
the species examined, bacteria Tremblaya are pleomorphic
(Fig. lc, d) and are surrounded by three membranes (not
shown).

The systematic affiliation of bacterial symbionts residing in
bacteriocytes in the examined species to Betaproteobacteria
was confirmed by fluorescence in situ hybridization with a
specific probe to betaproteobacterial symbionts (Fig. le, ).

Bacteria Tremblaya phenacola constitute
the monophyletic clade

The final DNA sequence dataset was comprised of 645 bp for
COI and 1438 bp for 16S rRNA genes. The subfamily
Phenacoccinae had around 38% of variable sites and 11%
parsimony, informative for the COI and for 16S rRNA genes,
the values were 36% and 27%, respectively. Every subset of
molecular data revealed a strong phylogenetic signal (gl <—
0.4, p<0.001). MrModeltest identified the Sym + G model of
substitution as the most appropriate for the COI and 16S
rRNA gene dataset. The shapes of the phylogenies trees were
roughly concordant among methods of reconstruction, al-
though nodal support for ML outputs was typically lower than
for BL.

A molecular phylogenetic comparison between the species
of two Pseudococcidae subfamilies, along with their

T princeps and T. phenacola symbionts resulting from the
Bayesian Inference (BI) analysis, is shown in Fig. 2. The
maximum likelihood (ML) analysis yielded an almost identi-
cal topology (not shown). Within 7. phenacola, the clade as-
sociated with Phenacoccinae hosts was recognized as mono-
phyletic. 16S rRNA gene sequences of symbionts from the
Phenacoccinae were sister to the 16S rRNA gene sequences
of T. princes lineage.

The Jane event-based reconstruction recovered seven po-
tential co-speciation events between the host-insect and the
symbiont—bacteria Tremblaya (Fig. 3). The reconstruction
also recovered three host-switching events, two duplications
followed by a host switch and three losses, for a total cost of
13.

The mode of transovarial transmission of Tremblaya
phenacola is identical in all species examined

Histological analyses have shown that the 7. phenacola of the
insects examined is transovarially transmitted between gener-
ations (Fig. 4a—f). We observed that, in larvae and young
females, bacteriocytes build large, compact bacteriomes
(Fig. 1a), whereas in adult females these organs undergo dis-
integration (Fig. 1b). In consequence, individual bacteriocytes
occur in the body cavity (Fig. 1b). In females that possess
oocytes in the stage of late choriogenesis bacteria,
T, phenacola leave the bacteriocytes (Fig. 4a) and migrate
towards the ovaries. We observed that during the migration,
bacteria stain more intensively with methylene blue and
change shape from irregular to almost spherical (Fig. 4a).
The infection takes place in the neck region of the ovariole
(i.e., in the region between the tropharium and vitellarium—
for further details concerning the organization of the ovariole
of mealybugs, see (Szklarzewicz 1998)) and begins at the time
that the tropharium is still connected with the oocyte develop-
ing in the vitellarium via the nutritive cord (Fig. 4b). At the
beginning of transmission, symbionts migrate via spaces be-
tween neighboring follicular cells to the space between the
follicular epithelium and the nutritive cord (Fig. 4b—d).
During the next step of the transmission, bacteria Tremblaya
move along the nutritive cord into the perivitelline space (the
space between the oolemma and follicular epithelium) (Fig.
4e) where they gather to form a “symbiont ball” in the deep
depression of the oolemma (Fig. 4f).

Discussion

Mealybugs, like other phloem-feeding hemipterans, have
established mutualistic relationships with bacteria (Buchner
1965; von Dohlen et al. 2001; Thao et al. 2002; Baumann
and Baumann 2005; Gruwell et al. 2010; Gatehouse et al.
2011; Husnik et al. 2013; Koga et al. 2013; Lopez-Madrigal
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bn

Fig. 1 Distribution of symbionts in the body of Phenacoccinae
mealybugs. a Coccura comari. Fragment of the bacteriome consisting
of several bacteriocytes (encircled in black dotted line) filled with
symbiotic bacteria in the body cavity of young female. Bacteriocyte
nucleus (bn). LM, scale bar=20 um. b C. comari. Separated
bacteriocytes in the body cavity of adult female. Bacteriocyte nucleus
(bn); fat body (fb). LM, scale bar=20 pum. ¢, d Fragment of the

et al. 2015; Husnik and McCutcheon 2016; Szabo et al. 2017;
Gil et al. 2018), which supplement their diet with essential

@ Springer

bacteriocyte with bacteria 7. phenacola (TP). Note numerous
mitochondria (m) in the cytoplasm of the bacteriocytes. Bacteriocyte
nucleus (bn). ¢ Phenacoccus aceris, d Rhodania porifera. TEM, scale
bar=2 um. e, f Fluorescence in situ identification (FISH) of the bacteria
T. phenacola. Bacteriocyte nucleus (bn). e P. aceris, f Peliococcus
calunetti. Confocal microscope, scale bar =20 pm

amino acids and vitamins (Husnik et al. 2013; Husnik and
McCutcheon 2016; Gil et al. 2018). Our molecular
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Fig. 2 Phylogenetic relationships
between bacteria Tremblaya
based on the Bayesian analysis of
their 16S rRNA gene sequences.
The values on each branch
represent the Bayesian posterior
probability

Tremblaya phenacola of Coccura comari [MK193743]
Tremblaya phenacola of Ceroputo pilosellae [MK193744]
Tremblaya ph la of Ph aceris [MK193747]
Tremblaya ph: la of Mir clarus [MK193745]
Tremblaya phenacola of Heterococcus nudus [HM449976]

Tremblaya phenacola of Phenacoccus avenae [CP003982]

Tremblaya phenacola of Rhodania porifera [MK193748]

Tremblaya phenacola of Oxyacanthus sp. [HM449972]
Tremblaya phenacola of Peliococcus turanicus [HM449974]

Tr ya p of Pelic lluneti [MK193746]

11— Tremblaya phenacola of Phenacoccus solenopsis [KJ437505]
41‘:ETremb/aya phenacola of Phenacoccus solani [HM449980]

1

0.99

Tremblaya phenacola of Phenacoccus peruvianus [MKGN01000020]
——Tremblaya phenacola of Phenacoccus madeirensis [KF444180]

0.80 [ Tremblaya princeps of Pseudococcus viburni [JN182336]
Tremblaya princeps of Vryburgia amaryllidis [AF476097]
Tremblaya princeps of Dysmicoccus boninsis [KF911099]
Tremblaya princeps of Pseudococcus longispinus [JN182336]
Tremblaya princeps of Planococcus citri [AF476091]
Tremblaya princeps of Planococcus kraunhiae [B374415]

Tremblaya princeps of Crisicoccus azaleae [AB627027]

investigations have revealed that the Phenacoccinae mealy-
bugs examined Rhodania porifera, Phenacoccus aceris,
Mirococcus clarus, Peliococcus calluneti, Ceroputo
pilosellae, and Coccura comari harbor betaproteobacterium
Tremblaya phenacola. These results correspond with the pre-
vious studies concerning the symbiotic companions of
Phenacoccinae mealybugs (Gruwell et al. 2010; Koga et al.
2013; Husnik and McCutcheon 2016; Gil et al. 2018). The
bacteria 7 phenacola were detected in almost all the represen-
tatives of the Phenacoccinae subfamily thus far examined,
except mealybugs belonging to the genus Rastrococcus
(Gruwell et al. 2010; Husnik et al. 2013). It should be stressed
that the results of the molecular analyses of symbiotic systems
of mealybugs confirmed the earlier observations of Buchner
(1957) (see the “Introduction” section). Buchner (1957) inves-
tigated five species of the genus Rastrococcus from the island
of Java and revealed that these mealybugs may be host to rod-

Cospeciation

Escherichia coli [NR_024570]

shaped bacteria (Rastrococcus spinosus), yeast-like microor-
ganisms (Rastrococcus franseni), or both (Rastrococcus
iceryoides). More recently, Gruwell et al. (2010), using mo-
lecular approaches, revealed that bacteria which reside in
mealybugs from the genus Rastrococcus belong to the phylum
Bacteroidetes. Until now, there has been no information
concerning the systematic affiliation of yeast-like microorgan-
isms occurring in Rastrococcus species. In contrast to the
members of Phenacoccinae subfamily, almost all the mealy-
bugs from the Pseudococcinae subfamily live in symbiotic
relationships with bacteria 7. princeps and intra-Tremblaya
various species of gammaproteobacteria (von Dohlen et al.
2001; Thao et al. 2002; Baumann and Baumann 2005; Koga
et al. 2013; Lopez-Madrigal et al. 2015; Husnik and
McCutcheon 2016; Szabo et al. 2017). Husnik and
McCutcheon (2016) analyzed symbiotic systems of six spe-
cies of Pseudococcinae mealybugs and revealed that in each

Fig. 3 One of the 81 possible co- e
phylogenetic scenarios between ,
the Tremblaya tree and their

hosts’ tree from Jane software.
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Fig. 4 Transovarial transmission of bacteria Tremblaya phenacola
between generations. a Coccura comari. Bacteria T. phenacola (white
arrows) leave the bacteriocytes during the initial stage of symbiont
transmission. Bacteriocyte nucleus (bn); trachea (zr). LM, scale bar=
20 um. b Phenacoccus aceris. Longitudinal section through the
ovariole. Symbiotic bacteria invade the neck region of the ovariole.
Nutritive cord (nc); follicular cell (f); trophocyte (7); trophocyte nucleus
(tn); oocyte (oc); bacterium 7. phenacola (white arrow); egg envelopes
(white arrowhead). LM, scale bar=20 pum. ¢ P. aceris. Cross-section
through the neck region of the ovariole. Note the bacteria 7. phenacola
(white arrows) migrating between follicular cells (f). Nutritive cord (nc).

of them, the cells of bacteria Tremblaya are colonized by dif-
ferent gammaproteobacteria. Due to the fact that these
gammaproteobacterial symbionts exhibit large differences in
genome size, these authors suggested that (1) the ancestor of

@ Springer

LM, scale bar =20 pm. d Ceroputo pilosellae. Fragment of the follicular
epithelium surrounding the neck region of the ovariole. Symbionts mi-
grate through the spaces between neighboring follicular cells (f).
Bacterium 7. phenacola (TP); nucleus of the follicular cell (fir). TEM,
scale bar=2 pm. e P, aceris. The migration of symbiotic bacteria along
the nutritive cord (nc) to the perivitelline space. Bacteria 7. phenacola
(white arrows); oocyte (oc); egg envelopes (white arrowhead);
degenerating tropharium (df). LM, scale bar=20 pum. f C. pilosellae.
“Symbiont ball” (encircled in white dotted line) in the perivitelline space.
Oocyte (oc); egg envelopes (white arrowhead). LM, scale bar =20 pm

extant Pseudococcinae was infected by a single
gammaproteobacterium and (2) the observed diversity is the
result of symbiont replacement. To our knowledge, there is
only one exception to this rule—in myrmecophilous
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mealybugs from the genus Hippeococcus symbiotic microor-
ganisms have not been detected despite the fact that they pos-
sess bacteriocytes (Buchner 1957). It is worth noting that in
Hippeococcus, ovaries and embryos may begin to develop
only when females have reached the nest of ants where they
are then fed on a special juice rich in vitamins by the ants
(Buchner 1957). This example clearly indicates that in a situ-
ation where mealybugs have unlimited access to nutritive
feed, they may lose their symbionts.

In all the species analyzed, bacteria 7° phenacola are local-
ized in the insect’s cells—bacteriocytes. Such localization is
characteristic for the long-term association between an insect
and its symbiont, and it has been observed in the majority of
scale insects (Buchner 1965; Szklarzewicz et al. 2006, 2018;
Michalik et al. 2018a). However, some scale insects associat-
ed with bacteria (e.g., eriococcids Acanthococcus aceris and
Gossyparia spuria) have not yet developed bacteriocytes, and,
as a result, their symbionts occur in the fat body cells
(Michalik et al. 2016). According to Michalik et al. (2016),
the lack of bacteriocytes and occurrence of symbionts in the
fat body cells may be an indication of the initial stage of
symbiosis.

Taking into account the fact that symbionts are necessary
for their proper growth and reproduction, insects have devel-
oped various modes of their transmission between generations
(Buchner 1965; Kikuchi 2009; Szklarzewicz and Michalik
2017). In the majority of insects (e.g., hemipterans belonging
to Sternorrhyncha and Auchenorrhyncha), symbionts are
transovarially transmitted from mother to the offspring (see
Buchner 1965; Szklarzewicz and Michalik 2017 for further
details); however, in some, they may be transferred via milk-
gland (tsetse fly), egg capsules, egg smearing, or acquisition
from the environment in each generation (stinkbugs) (Kikuchi
2009). In all the examined Phenacoccinae mealybugs, bacteria
Tremblaya invade the ovarioles in their neck region migrating
to the perivitelline space via neighboring follicular cells. A
similar mechanism of symbiont transmission was observed
by Buchner (1957) in representatives of Phenacoccinae
mealybugs of the genus Rastrococcus. In C. pilosellae,
C. comari, M. clarus, P. aceris, R. porifera, and P. calluneti
(this study), as well as in Rastrococcus (Buchner 1957), bac-
teria and/or yeast-like microorganisms penetrate the follicular
epithelium around the nutritive cord and then move to the
perivitelline space where they assemble. The only difference
is the form in which symbionts gather in the perivitelline
space. In the forementioned Phenacoccinae (this study), they
shape into a characteristic symbiont ball, whereas in
Rastrococcus, they gather in the cap-shaped aggregation
(Buchner 1957). Infection at the anterior pole of the oocyte
(which is rather unique among insects) was also observed in
Pseudococcidae mealybugs (von Dohlen et al. 2001), in the
eriococcids Greenisca brachypodii, A. aceris, G. spuria, and
in Puto superbus (Putoidae) (Michalik et al. 2016; Michalik

etal. 2018a; Szklarzewicz et al. 2018). We observed that in the
species examined, migrating symbionts change shape as well
as stain more intensively in methylene blue than those in the
bacteriocytes. The changes in shape and intensity of symbiont
staining during migration towards the ovarioles have been
described in several insect species, e.g., in scale insects from
the Monophlebidae family (Szklarzewicz et al. 2006; Niznik
and Szklarzewicz 2007), in Deltocephalinae leafthoppers
(Kobiatka et al. 2018), and in planthoppers (Michalik et al.
2018b). Michalik et al. (2018b) showed the unique transfor-
mation of the bacteria Vidania in the planthopper
Ommatidiotus dissimilis (Fulgoromorpha), which drastically
change shape from lobated in the bacteriome to almost spher-
ical during migration.

Phylogenetic analysis based on sequences of the 16S rRNA
gene of bacteria belonging to the genus Tremblaya has shown
that bacteria 7. phenacola of various species of
Phenacoccinae, as well as bacteria 7. princeps associated with
Pseudococcinae, in relation to each other, constitute sister
monophyletic groups (see Fig. 2). According to Gruwell
et al. (2010), the infection of the ancestor of mealybugs by
the bacteria Tremblaya took place before the splitting of
Pseudococcidae family into two subfamilies and, from that
time, they have co-evolved with their host insects indepen-
dently. In Pseudococcinae, gammaproteobacteria have settled
in bacteria T. princeps (von Dohlen et al. 2001; Lopez-
Madrigal et al. 2015; Husnik and McCutcheon 2016; Szabo
etal. 2017; Gil etal. 2018), whereas in some representatives of
Phenacoccinae, bacteria 7. phenacola have been replaced by
other bacteria and/or yeast-like microorganisms, or even lost
(Buchner 1957; Gruwell et al. 2010). The independent evolu-
tion of bacteria T. princeps and T. phenacola in the
Pseudococcinae and Phenacoccinae subfamilies
(respectively) was confirmed by Koga et al. (2013), who an-
alyzed the symbiotic systems of two representatives of mealy-
bugs residing on the same host plant—Rhododendron
pulchrum (Ericaceae): Crisicoccus azalea (Pseudococcinae)
and Phenacoccus azalea (Phenacoccinae). In spite of the fact
that the insects examined have the same source of nutrients,
they possess different symbionts—characteristic of
Pseudococcinae and Phenacoccinae, respectively.

So far, co-speciation between scale insects and their sym-
bionts was confirmed only in Pseudococcinae mealybugs
(Thao et al. 2002; Baumann and Baumann 2005; Downie
and Gullan 2005). Thao et al. (2002) have indicated that rela-
tionships among obligatory symbiont 7. princeps may be use-
ful in inferring the phylogeny of their hosts. Based on
Tremblaya (16S-23S rRNA) and insect’s (18S-23S rRNA,
cytB, EF-1x) genes, Baumann and Baumann (2005), as well
as Downie and Gullan (2005), supported the previous conclu-
sion that Pseudococcinae mealybugs co-evolved with bacteria
T. princeps. However, in analyses carried out by Downie and
Gullan (2005), the relationships between symbionts reflect the
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phylogeny of their host-insects only in 75%. A co-
phylogenetic analysis on the basis of COI genes of mealybugs
from the subfamily Phenacoccinae and 16S rRNA genes of
their bacterial symbionts 7" phenacola revealed their possible
co-speciation relationships. Furthermore, more evolutionary
events, i.e., host switching, loss, and duplication contributed
to the evolution of Phenacoccinae species and their obligatory
symbiont. However, in the case of certain species, the phylo-
genetic tree of symbionts is not concordant with the host phy-
logeny, most likely due to the fact that only one insect gene
was used for the analysis. Our results, as well as the results of
previous studies (Baumann and Baumann 2005; Downie and
Gullan 2005), indicate that more detailed co-phylogenetic
analyses, including a greater variety of the species of scale
insects, as well as more insect genes, are needed.
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