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Abstract
Feathers are the most complex skin appendages of vertebrates. Mature feathers consist of interconnected dead keratinocytes that
are filled with heavily cross-linked proteins. Although the molecular architecture determines essential functions of feathers, only
few feather proteins have been characterized with regard to their amino acid sequences and evolution. Here, we identify
Epidermal Differentiation protein containing DPCC Motifs (EDDM) as a cysteine-rich protein that has co-evolved with other
feather proteins. The EDDM gene is located within the avian epidermal differentiation complex (EDC), a cluster of genes that has
originated and diversified in amniotes. EDDM shares the exon-intron organization with EDC genes of other amniotes, including
humans, and a gene encoding an EDDM-like protein is present in crocodilians, suggesting that avian EDDM arose by sequence
modification of an epidermal differentiation gene present in a common ancestor of archosaurs. The EDDM protein contains
multiple sequence repeats and a higher number of cysteine residues than any other protein encoded in the EDC.
Immunohistochemical analysis of chicken skin and skin appendages showed expression of EDDM in barb and barbules of
feathers as well as in the subperiderm on embryonic scutate scales. These results suggest that the diversification and differential
expression of EDDM, besides other EDC genes, was instrumental in facilitating the evolution of the most complex molecular
architecture of feathers.
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Introduction

Feathers are the characteristic for birds and more complex
than any other skin appendages of vertebrates. They are
also diverse in shape in order to accomplish different

functions, including thermal insulation, communication,
and flight. Pennaceous feathers, i.e., the main type of
feathers in adult birds, are comprised of a shaft (rachis)
and two levels of branches that are called barbs and bar-
bules. This hierarchical organization is established in a
process of differential growth, cell death, and cornifica-
tion of epithelial cells, as described in extensive reviews
(Chuong 1993; Prum and Dyck 2003; Prum 2005;
Maderson et al. 2009; Chen et al. 2015; Alibardi 2017).

The evolutionary origin of feathers has been traced
back to extinct members of the clade Dinosauria. The
only extant representatives of Dinosauria are the birds
and their closest modern relatives are crocodilians.
Various models for the modification of ancestral develop-
ment and differentiation programs of skin cells have been
proposed to explain the evolution of feathers (Yu et al.
2002; Ng et al. 2015; Wu et al. 2015; Mlitz et al. 2014).
Importantly, feather barbs and barbules and the
subperiderm, a layer of the embryonic epidermis present
not only in birds but also in crocodilians, share the same
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differentiation markers. Together with topological consid-
erations, this shared gene expression signature has led to
the hypothesis that the evolution of feather growth and
regeneration depended on the modification of an embry-
onic development program of archosaurian skin for new
purposes (Sawyer and Knapp 2003; Sawyer et al. 2005;
Strasser et al . 2015; Alibardi et al . 2016), thus
representing an example of evolutionary co-option (True
and Carroll 2002; Prum 2005).

The mechanical stability and stress resistance of
feathers are facilitated by their microarchitecture and bio-
chemical composition. Besides a minor content of lipids,
proteins constitute more than 90% of the feather mass
(Bolliger and Varga 1961). The major protein components
of feathers are Corneous Beta Proteins (CBPs), tradition-
ally referred to as beta-keratins (Gregg and Rogers 1986;
Fraser and Parry 2008; Greenwold and Sawyer 2011,
2013; Greenwold et al. 2014; Alibardi 2017; Holthaus
et al. 2018a). CBPs are not related to keratin intermediate
filament proteins (Eckhart and Ehrlich 2018; Holthaus
et al. 2018a) but to proteins encoded in the Epidermal
Differentiation Complex (EDC), a cluster of genes for
protein components of cornifying keratinocytes of amni-
otes (Strasser et al. 2014). Many CBP genes are located in
a sub-cluster of the EDC (Strasser et al. 2014). Recent
reports have, however, shown that, besides CBPs, other
EDC-encoded proteins and also intermediate filament ker-
atins which are encoded by genes outside the EDC are
present in different regions of feathers (Ng et al. 2014;
Ng et al. 2015; Wu et al. 2015; Alibardi 2013). Most
notably epidermal differentiation cysteine-rich protein
(EDCRP) (Strasser et al. 2015) and epidermal differentia-
tion proteins starting with MTF motif, Met-Thre-Phe, and
rich in Histidine (EDMTFH) (Alibardi et al. 2016) are
important feather components. While the mechanism by
which EDMTFH may contribute to feather stabilization is
unclear, EDCRP is likely to form multiple intermolecular
disulfide bonds and thereby to enhance protein cross-
linking in feathers (Strasser et al. 2015). The analysis of
proteome data of chicken skin appendages has suggested
that further proteins encoded by EDC genes are present in
feathers (Rice et al. 2013; Strasser et al. 2014). Epidermal
Differentiation protein containing DPCC (Asp-Pro-Cys-
Cys) amino acid Motifs (EDDM) was one of these EDC
proteins abundant in the proteome of chicken feathers but
its expression pattern in feather cells and the possible role
of EDDM in the evolution of feathers have remained
unknown.

The aims of the present study were to determine the
expression pattern of EDDM in chicken tissues, to iden-
tify avian and non-avian orthologs of EDDM and to
develop a model for the evolutionary history of the
EDDM gene.

Materials and methods

Comparative genomics and sequence analysis

Using the amino acid sequence of chicken (Gallus gallus)
EDDM protein as query in tBLASTn searches (Altschul
et al. 1990) at the NCBI GenBank website (http://www.
ncbi.nlm.nih.gov/), EDDM orthologs were identified in
the genome sequences of duck (Anas platyrhynchos),
pigeon (Columba livia), falcon (Falco cherrug), Adélie
penguin (Pygoscel is adel iae ) , emperor penguin
(Aptenodytes forsteri), loon (Gavia stellata), flycatcher
(Ficedula albicollis), canary (Serinus canaria), cuckoo
roller (Leptosomus discolor), ostrich (Struthio camelus),
greater rhea (Pterocnemia pennata), and great spotted
kiwi (Apteryx haastii) (Jarvis et al. 2014); sequences of
crocodilian EDDML were identified in the genome se-
quence s o f t he Amer i c an a l l i g a to r (Al l i ga to r
mississippiensis), the gharial (Gavialis gangeticus), and
the saltwater crocodile (Crocodylus porosus) (Green
et al. 2014; Holthaus et al. 2018b) (Suppl. Table S1).
Amino acid sequences were obtained by translation of
the coding region present in exon 2 of these genes. The
amino acid sequences were aligned using Multalin (http://
multalin.toulouse.inra.fr/multalin/) (Corpet 1988) with
manual adjustment. Sequence logos were generated online
with the Weblogo software (Crooks et al. 2004).
Orthologs of the non-coding exon 1 of chicken EDDM
were identified by BLASTn search of nucleotide se-
quences on the 5′-side of EDDM and EDDML genes.

Preparation of chicken tissues

Chickens were maintained and eggs were incubated according
to published protocols (Eresheim et al. 2014). At Hamburger-
Hamilton (HH) stages 35, 39, and 44 (Hamburger and
Hamilton 1992), tissues were prepared from chicken embryos
that were euthanized by decapitation. The tissue samples were
fixed with 7.5% formaldehyde and embedded in paraffin as
described previously (Mlitz et al. 2014). RNA was prepared
with the Trifast reagent (VWR) according to a published pro-
tocol (Mlitz et al. 2014).

Quantitative reverse-transcription polymerase chain
reaction

RNA was reverse-transcribed to cDNA with iScript cDNA
Synthesis Kit (Bio-Rad, Hercules, CA) and the quantitative
PCR was performed using the Lightcycler 480 DNA SYBR
Green I master kit on a Roche LightCycler® (LC480) accord-
ing to the manufacturer’s protocol. EDDMmRNAwas ampli-
fied with the intron-spanning primer pair EDDM-f (5′-CGGC
ATTACTCCATCAGCTG-3′) and EDDM-r (5′-AACA
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TCGGAGGGCTCAAGAA-3′). As a control transcript,
Casp3mRNAwas amplified with primers reported previously
(Strasser et al. 2015).

Generation of an antibody against EDDM

The peptide CYYARVPQGTTTYLKL, corresponding to
amino acid residues 49–64 of chicken EDDM (Suppl. Fig.
S1) was synthesized and coupled to keyhole limpet hemocy-
anin (KLH) by GeneCust, Ellange, Luxembourg. Six injec-
tions of 100 μg KLH-coupled peptide were performed to gen-
erate an antiserum in mice according to a published protocol
(Eckhart et al. 2008).

Immunohistochemistry

Immunohistochemical stainings were performed according to
published protocols (Mlitz et al. 2014; Alibardi et al. 2016). In
brief, tissues were sectioned at 4-μm thickness and antigens
were demasked with citrate buffer, pH 6 (Dako). Endogenous
peroxidase was blocked with hydrogen peroxide. Mouse anti-
EDDM antiserum at a dilution of 1:200 was used as primary
antibody. Biotinylated sheep anti-mouse immunoglobulin
(RPN1001V, lot 9793564, GE Healthcare, Chalfont, UK) at
a dilution of 1:200 was used as secondary antibody, and sheep
serum (10%) was added to prevent unspecific binding. In
control experiments, the primary antibody was replaced with
preimmune serum. The samples were incubated with

streptavidin-biotin-horseradish peroxidase (HRP) complex
and 3-amino-9-ethylcarbazole (DakoCytomation, Glostrup,
Denmark) to develop red color. Nuclei were counterstained
with hematoxylin.

Results

The EDDM gene encodes the protein with the highest
number of cysteine residues among chicken EDC
proteins

The EDDM gene is located in the EDC and has two exons. As
the entire coding sequence is located in exon 2, it belongs to
the Single-coding exon EDC (SEDC) genes (Strasser et al.
2014), which are located on the 5′-side of the evolutionarily
conserved Cornulin (Crnn) gene in both chicken and human
(Fig. 1). EDDM does not have an ortholog in humans.
Cysteine residues that allow cross-linking via disulfide bonds
are present in different numbers in SEDC proteins both in
chicken and humans. EDCRP has 140 cysteine residues in a
total of 385 amino acid residues which represents the highest
relative content of cysteine (36%) among chicken EDC pro-
teins (Strasser et al. 2015). However, the highest absolute
number cysteine residues (n = 152) is present in EDDM (total
number amino acid residues, n = 657) (Fig. 1; Suppl.
Table S1), suggesting that this protein is capable of serving a
role as a cross-linkable structural protein.
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Values above bars indicate the number of cysteine residues in the proteins.
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EDDM is expressed in feather barbs
and in the subperiderm

To determine the distribution of EDDM in chicken tissues, we
generated a mouse antiserum against a unique internal peptide
of EDDM (Suppl. Fig. S1), and used this antibody for immu-
nohistochemical studies. The studies of gene expression were
carried out on embryonic tissues to compare different growth
stages of skin appendages and to investigate embryo-specific
epithelial cells of the periderm and subperiderm. Feather buds
at development stages HH35 (Suppl. Fig. S2a) and HH39
(Suppl. Fig. S2b) and the pulp and sheath of feathers at
HH44 (Fig. 2a) were immunonegative. By contrast, EDDM
was detected at highest signal intensity in barbs and barbules
of feathers (Fig. 2a; Suppl. Fig. S2c). EDDM was also detect-
ed in the subperiderm layer on scutate scales at stage HH44
(Fig. 2c). The staining intensities in the epidermis, the peri-
derm (Fig. 2c), and the epithelium of the tongue (Suppl. Fig.

S2e) were low or absent. Negative control stainings in which
the EDDM antiserumwas replaced by preimmune serum (Fig.
2b, d; Suppl. Fig. S2d) showed no signals in feathers and
subperiderm. The intensity of immunostaining of EDDM pro-
tein correlated with EDDM mRNA abundance in feathers
during embryonic development (Suppl. Fig. S2f). In summa-
ry, immunohistochemical and RT-PCR analysis demonstrated
that EDDM is abundantly expressed in feathers and, at lower
levels, in the subperiderm of embryonic scutate scales.

Avian EDDM and crocodilian EDDM-like proteins
contain multiple cysteine-rich sequence repeats

To determine conserved and variable parts of the EDDM pro-
tein, we identified EDDM orthologs in genome sequences of
vertebrates and compared nucleotide sequences of the genes
and amino acid sequences of the encoded proteins. EDDM is
conserved among birds and an EDDM-like (EDDML) gene is
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Fig. 2 Immunohistochemial analysis of EDDM in the chicken. EDDM
was detected by immunohistochemistry (red) in chicken feathers (a) and
scutate scales (c) at stage HH44. In control experiments, the primary

antibody was replaced by the preimmune serum (b, d). Nuclei were
counterstainedwith hematoxylin (blue). Bars: 50μm (a, b), 100μm (c, d)
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present in crocodilians but not in any other species of verte-
brates investigated (Fig. 3a). In addition to the EDDML genes
of the American alligator and the saltwater crocodile reported
previously (Holthaus et al. 2018b), we could also identify
EDDML of the gharial (Suppl. Table S1; Fig. 3a). The non-
coding exon 1 and the proximal promoter was identified in
EDDM genes of birds and in EDDML genes of crocodilians
(Fig. 3b; Suppl. Fig. S3). Interestingly, the promoters of avian
EDDM genes contained a canonical TATA box, whereas this
important element of transcriptional control was modified in
sequence in the promoters of crocodilian EDDML genes
(Suppl. Fig. S3).

Amino acid sequences, obtained by in silico translation of
EDDM and EDDML coding sequences, were aligned to de-
fine common and divergent sequence features. EDDM and
EDDML proteins contain 3 domains, all of which are char-
acterized by high cysteine content. The amino- and carboxy-
terminal domains are only partially conserved between birds
and crocodilians whereas the central domain consists of at
least 18 repeats of a sequence motif in both clades (Fig. 4a–
c). Crocodilian EDDML proteins have 19–21 imperfect re-
peats of a 16-residue sequence and avian EDDM proteins
have 18–54 imperfect repeats of a 15-residue sequence (Fig.
4b). In birds, the repeat sequence includes the DPCC motif,
that is referred to in the protein name BEDDM.^ The
carboxy-terminal cysteine of this motif is not present in
EDDML proteins of crocodilians, but cysteine is conserved
at two other positions in birds and crocodilians (Fig. 4c).

Another cysteine residue is present in the repeat of crocodil-
ians, so that the average number of cysteine residues per
repeat is 4 in all archosaurs. The sequence comparisons led
to the evolutionary model depicted in Fig. 4d, which sug-
gests that an EDDM-like gene originated in a common an-
cestor of archosaurs after the divergence from the turtle lin-
eage, a central sequence motif underwent amplification in
stem archosaurs, and further sequence changes both within
and outside of the repeats led to divergent features of EDDM
and EDDML in modern archosaurs. The number of central
sequence repeats varied between the subclades of birds
without an obvious correlation with an integumentary fea-
ture or lifestyle trait (Suppl. Fig. S4). Importantly, both the
high cysteine content and the repetitive central domain are
suggested to have emerged prior to the split of the avian and
crocodilian lineages. Thus, our data point to an evolutionary
origin of an epidermal differentiation protein with EDDM-
like features in a common ancestor of birds and crocodilians,
and this protein was subsequently co-opted for a new role as
a component of feathers evolving in birds.

Discussion

The present study extends previous investigations on avian
epidermal differentiation by determining the expression pat-
tern and evolution of a gene that encodes the cysteine-rich
protein EDDM in the chicken. Our immunolocalization of
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EDDM in feather barbs and barbules contributes to ongoing
characterization of the complex molecular architecture that
makes feathers mechanically resistant, yet elastic skin append-
ages, and the results of comparative genomics provide new
insights into the molecular evolution of feathers.

The high cysteine content of EDDM is comparable to that
of avian EDCRP, another cysteine-rich protein component of
feathers (Strasser et al. 2015), and mammalian cysteine-rich
keratin-associated proteins (KRTAPs), which are components
of hair and nails (Rogers et al. 2001; Deb-Choudhury 2018;
Plowman 2018; Wu and Irwin 2018). While KRTAPs are
encoded by genes outside of the EDC, the EDCRP gene is
located in the EDC but within a different region than EDDM

(Fig. 1). While the avian EDC segment localized between
S100A9/S100A12 and Loricrin lacks a counterpart in the
mammalian EDC (Henry et al. 2012; Poterlowicz et al.
2017), the EDC segment containing EDDM in birds is
syntenic with the human cluster of Late cornified envelope
(LCE) , Cysteine-rich C-terminal 1 (CRCT1), and
Keratinocyte proline–rich protein (KPRP) genes (Fig. 1).
Among human EDC proteins, KPRP has the highest number
of cysteine residues. KPRP was detected by proteomics, in
human and mouse nails (Rice et al. 2010; Jaeger et al. 2019)
and, by immunohistochemistry, also in the granular layer of
human epidermis (Lee et al. 2005). Thus, proteins competent
in the formation of disulfide bonds via multiple cysteine
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Fig. 4 Amino acid sequence features and evolution of EDDM. The
amino acid sequences of the amino-terminus (a), the central repeats (b),
and the carboxy-terminus (c) of avian EDDM and crocodilian EDDML
proteins were aligned. Colored fonts indicate the amino acid residues C,
K, P, Q, and R. The symbol B:^ below the sequence alignments in a and c
mark positions of amino acid residues that are conserved in representa-
tives of both EDDM and EDDML. (b) The conservation of residues in the
sequence repeats in the central region of EDDM and EDDML is indicated
by sequence logos. Species: chicken (Gallus gallus), duck (Anas

platyrhynchos), pigeon (Columba livia), falcon (Falco cherrug), penguin
(Pygoscelis adeliae), canary (Serinus canaria), ostrich (Struthio
camelus), American alligator (Alligator mississippiensis), saltwater croc-
odile (Crocodylus porosus), gharial (Gavialis gangeticus). (d) Schematic
model of the evolution of EDDM and EDDML. The boxes represent the
organization of EDDM and EDDML proteins whereby repeat units in the
central domain are indicated by red boxes. n, number of central sequence
repeats

1262 J. Lachner et al.



residues likely contribute to the mechanical and chemical re-
sistance of cornified skin derivatives in diverse amniotes.

Our immunostainings detected EDDM in the cornifying
cells of barb and barbules as well as in the embryonic
subperiderm. This pattern is similar to that of feather CBPs
(Sawyer et al. 2003), EDCRP (Strasser et al. 2015), and
EDMTFH (Alibardi et al. 2016), and suggests commonmech-
anisms of gene regulation for the concerted synthesis of these
proteins. The most mature portions of feathers were
immunonegative for EDDM and despite testing several condi-
tions of protein extraction under reducing conditions, we could
not detect EDDM by western blot analysis. Most likely heavy
intermolecular cross-linking of EDDM to other structural pro-
teins in differentiated cells of feathers prevents access to anti-
bodies and extraction of EDDM for detection as a soluble
protein. As EDDM was previously detected in a proteomic
analysis of feathers, which involved proteolytic digestion and
mass spectrometry of peptides (Rice et al. 2013; Strasser et al.
2014), the immunohistochemical detection of EDDM in
feathers is supported by amechanistically independent method.

The identification of EDDM orthologs in crocodilians,
which represent the closest phylogenetic relatives of birds,
and the detection of EDDM in the subperiderm of scutate
scales of chicken embryos suggest that EDDM has not specif-
ically evolved as a feather protein. The crocodilian orthologs
of EDDM share many sequence features, including the repeat-
rich central domain and the high cysteine content, with avian
EDDM. Therefore, these features have most likely been
inherited from the last common ancestor of birds and croco-
dilians which lived around 240million years ago (Kumar et al.
2017) and according to current knowledge, did not have
feathers. Interestingly, the evolutionary origin of another
feather protein, EDCRP, could also be traced back to the last
common ancestor of extant archosaurs (Holthaus et al.
2018b). Therefore, the co-option of epidermal differentiation
for new roles as components of feathers appears to be an
important theme, comparable to the co-option of claw keratins
as structural proteins of hair in mammals (Eckhart et al. 2008).

Taken together, our data add EDDM to the catalog of
feather proteins, also including feather CBPs (feather be-
ta-keratins), EDCRP, and EDMTFH, which are encoded
by single-coding exon genes within the EDC, also known
as SEDC genes (Strasser et al. 2014). It is thus remarkable
that the diversification of SEDC proteins within the EDC
of archosaurs provided the molecular substrates for the
evolution of feathers.
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