
ORIGINAL ARTICLE

Microstructural and histochemical characteristics of Lycium barbarum
L. fruits used in folk herbal medicine and as functional food

Agata Konarska1

Received: 21 March 2018 /Accepted: 4 June 2018 /Published online: 15 June 2018
# The Author(s) 2018

Abstract
Lycium barbarum L. fruits, referred to as functional food, have long been used in traditional and folk herbal medicine due to their
therapeutic properties. The fruit microstructure was analysed using light, scanning and transmission electron microscopes. The
distribution of bioactive compounds in drupe tissues was assessed with histochemical and fluorescence assays. The analysis of
the microstructure has shown that the fruit is covered by a skin with an amorphous cuticle and a layer of amorphous epicuticular
waxes on the surface. The skin is composed of a single-layered epidermis with thickened walls and one layer of hypodermis with
slightly thickened periclinal walls. The pericarp cells contain different types of chromoplasts, which most often contained
exhibited reticulotubules/fibrils of carotenoid pigments and phytoferritine deposits. The results of the histochemical assays
demonstrated that the secondary metabolites with high phytotherapeutic importance were located in all layers of the pericarp
and seeds and, specifically, in the drupe exocarp and endocarp. The phytochemicals were represented by polysaccharides (LBP),
lipid compounds (carotenoids, essential oils, sesquiterpenes, steroids), polyphenols (tannins and flavonoids), and alkaloids. This
study, which is the first report of the microstructure and localisation of bioactive compounds in wolfberries, is a valuable
complement of phytochemical analyses and can be helpful for enhancement of the therapeutic effect of the fruit as well as
preliminary assessment of the medicinal potential in the search for new pharmaceuticals. Detailed anatomical studies are crucial
for exploration of determinants of fruit quality and useful for identification of diagnostic taxonomic traits.
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Introduction

The increase in public awareness and the frequent ineffectiveness
of conventional medicine have contributed to rapid development
of phytotherapy. Plants containing biologically active com-
pounds with health-enhancing properties known for hundreds
or thousands of years are experiencing a renaissance and have
aroused interest in the world of science. Lycium barbarum L. (L.
halimicifolium Mill.) is a small or large shrub from the family
Solanaceae, subfamily Solanoideae, tribe Lycieae growing natu-
rally in northwest and central China. This species is widespread
in the Mediterranean area as well as South-West and Central

Asian regions; it also occurs in the south-east of Europe
(Bensky and Gamble 1993; Zhu 1998). Seventeen Lycium spe-
cies have been reported from southern Africa, and 50–60 species
can be found in the western hemisphere (Joubert 1981).

In Poland, L. barbarum is a domesticated and often
wild-living shrub with a low decorative value (Seneta and
Dolatowski 2004). Since it grows successfully on dry, in-
fertile soils and is very resistant to frost and air pollution, it
is often used for strengthening steep and dry slopes, in
schemes of wasteland management, and for uncut hedges
(Szweykowska and Szweykowski 2003). Additionally, L.
barbarum has a great beekeeping value as a polleniferous
and nectariferous species; it is characterised by a long
flowering period (from May to September) and is willingly
visited by pollinating entomofauna (Bing et al. 2010; Wang
et al. 2011). L. barbarum are functionally dioecious plants
producing male-sterile (i.e. female) and hermaphroditic
plants. Fruits are produced exclusively by female speci-
mens, whereas hermaphroditic plants function essentially
as male plants (Miller and Venable 2002, 2003).
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The fruit in the genus Lycium is a berry or drupe with a
sclerenchymatous endocarp (Bernardello 1983, 1986a;
Olmstead et al. 1999, 2008; Miller 2002). L. barbarum drupes
are known as ‘Goji berries’, which is a common name for the
fruits of two species, i.e. L. barbarum and L. chinense. These
taxa are very closely related and the tradition of the use of their
fruits in Asian countries (China, Japan, Korea, Vietnam,
Thailand, and Tibet) dates back several thousand years (Jin
et al. 2013). L. barbarum drupes are sweet, two-seeded, and
quite large, whereas the smaller and slightly bitter fruits of L.
chinense contain several seeds (Górnicka 2015). ‘Goji berries’
are regarded as functional food and are often eaten raw (fresh
or dried), added to soups, processed into juices, wines, tinc-
tures, or teas, and used as supplements in the form of powder
or pills (Potterat 2010; Kulczyński and Gramza-Michałowska
2014). For a long time, consumption of L. barbarum fruit was
assumed to cause poisoning due to the content of the atropine
alkaloid (Szafer et al. 1953; Harsh 1989; Rutkowski 2006).
Investigations conducted by Adams et al. (2006) and Wang
(2006) have shown variable levels of atropine in wolfberry
fruits but the investigators have questioned its toxic
concentration.

L. barbarum is considered a medicinal plant used in tradi-
tional and folk herbal medicine (Bensky and Gamble 1993;
Chang and But 2001; Wang 2006). Its fruit (fructus Lycii) and
bark (cortex Lycii radicis) are the herbal rawmaterial (Jin et al.
2013), although the therapeutic compounds are also contained
in the seeds and leaves (Szafer et al. 1953; Wyk van andWink
2008). L. barbarum fruits are characterised by a number of
therapeutic properties, e.g. antiaging, protective,
immunostimulant, energising, adaptogenic, anticancer, and
antioxidant activity (Potterat 2010; Amagase and Farnsworth
2011) and are rich in many biologically active compounds
such as specific polysaccharides, carotenoids, flavonoids, ter-
penoids, vitamins B and C, and the element germanium
(Altintas et al. 2006; Li and Zhou 2007; Lin et al. 2009;
Wang et al. 2010). Additionally, there are various triterpenes
and steroids in the seeds, polyamines and peptides in the bark,
and steroids in the leaves (Kremer 2011; Górnicka 2015). The
most valuable components of wolfberry fruits are proteogly-
cans (glycoconjugates) forming a polysaccharide complex re-
ferred to as LBP (Lycium barbarum polysaccharides) and
characterised by strong antioxidant, antiaging, neuroprotec-
tive, cytoprotective, anti-atherosclerotic, anti-fatigue,
antitumour, and antidiabetic properties. They also contribute
to biological endurance, increased metabolism, glucose con-
trol in diabetics, glaucoma control, and immunomodulation
(Yi et al. 2013; Qiu et al. 2014; Zhang et al. 2014).

Although there are many reports of the content and
chemical composition of phytochemicals contained in
Lycium barbarum fruits, there is little scientific information
about the fruit micromorphology, anatomy, and ultrastructure,
as well as the location of bioactive compounds in the fruit cells

and tissues. A study conducted by Bernardello (1986a) and
Miller (2002) is the only report showing the layers in the
pericarp structure and the number of seeds in L. barbarum
drupes. In turn, Aguilar and Bernardello (2001) provided in-
formation on the size and weight of the fruit as well as the size
and number of seeds in L. cestroides. Bernardello (1983,
1986b) described some aspects of the anatomical structure of
the fruits of other Lycium species, i.e. L. americanum, L.
ameghinoi, and L. californicum, in particular the structure of
the hypodermis and the presence of the endocarp as well as the
number of layers in the drupe pericarp.

Given the growing consumption and the wide spectrum of
their health-enhancing properties, the aim of the study was to
analyse the micromorphology, anatomy, and ultrastructure of
L. barbarum fruits using histochemical and fluorescence tech-
niques and to demonstrate which parts of the pericarp and/or
seed accumulate several groups of biologically active com-
pounds, in particular the health-promoting components.
Knowledge of the distribution of secondary compounds can
be helpful in enhancement of the therapeutic effect of these
fruits and in preliminary assessment of their medicinal poten-
tial in the search for new pharmaceuticals. In addition, detailed
anatomical studies are crucial for exploration of the determi-
nants of fruit quality and can be useful for identification of
diagnostic taxonomic traits (Ronse De Craene et al. 2000; Pak
et al. 2001; Liu et al. 2010).

Material and methods

2017. The species was identified using the classical Flora of
China determination key for morphological validation, and
the individuals were carefully investigated in terms of their
floral and vegetative traits (Zheng-Yi and Raven 1994).

The fruits were examined with the use of light stereoscopic
(SM), bright-field (LM), and fluorescence (FM) microscopes
and under scanning (SEM) and transmission (TEM) electron
microscopes.

Stereoscopic and light bright microscopy

Preliminary observations and measurements of the length and
width of fresh L. barbarum fruits and seeds were carried out
using a SM equipped with a Nikon Coolpix 4500 camera.

For the LM analyses, 3 × 3 × 3 mm fragments of fruits with
the skin (n = 5) were fixed, embedded in acrylic resin using
the standard method applied for transmission electron micros-
copy (see below), and cut into 0.7-μm-thick semi-thin
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Fully coloured and well-developed Lycium barbarum L. fruits
were collected in the Botanical Garden of Maria
Curie-Sklodowska University in Lublin, Poland (51° 15.629′
N 22° 30.975′ E) in the first decade of September 2016 and



sections with glass knives in the Reichert Ultracut S micro-
tome. For general histology examinations, the sections were
stained with a 1% aqueous methylene blue-azure II solution
(O’Brien and McCully 1981). Each fruit was analysed for the
size of the epidermis and hypodermis cells, the thickness of
the epidermis and hypodermis layers, the thickness of the
cuticle layer and hypodermis walls, and the number of layers
in the pericarp-forming parenchyma. The measurements were
performed with the use of a light microscope Nikon 115
equipped with a calibrated ocular micrometre.

Histochemistry and fluorescence

Hand-cut sections from fresh fruits and seeds were sampled
using razor blades and viewed in water. Histochemical assays
were applied to determine the content of primary and second-
ary metabolites in fruit and seed tissue (Table 1 and references
wherein). Standard control procedures suggested by the dif-
ferent authors were applied simultaneously. All sections were
observed under a Nikon Eclipse E200 light microscope
(Nikon, Japan).

The fresh samples of fruits were also observed in FM to
detect autofluorescence of polyphenols and the presence of

lipids, flavonoids, and steroids with the use of different fluo-
rochromes (Table 1 and references wherein) and filter sets;
these included a Cy5 filter set (excitation light 590–650 nm
and a barrier filter—wavelength 663–738 nm), a TRITC filter
set (excitation light 525–565 nm and a barrier filter—wave-
length 555–600 nm), a FITC filter set (excitation light 465–
495 nm and a barrier filter—wavelength 515–555 nm), and a
DAPI (excitation light 340–380, a barrier filter—wavelength
435–485). The observations were carried out under a Nikon
90i fluorescence microscope equipped with a digital camera
(Nikon Fi1) and NIS-Elements Br 2 software.

Scanning electron microscopy

The 3 × 3 × 2 mm fresh fruit samples with skin (n = 5) were
not dried prior to the scanning electron microscopy (SEM)
analyses, as the conventional fixation of material submitted
to such observations can alter or remove lipids from the wax
coating on the fruit surface (Konarska 2013a). After collection
of the fruits from the bushes, the samples were cut out from
the equatorial area perpendicular to the main axis of the fruit
flesh and mounted carefully onto aluminium stubs with a
double-sided carbon tape. The samples (3 × 3 × 2 mm) were

Table 1 Primary and secondary metabolites identified in the pericarp and seeds of Lycium barbarum by histochemical and fluorescence tests

Staining Target compounds Reference Egzocarp Mezocarp Endocarp Seed

Sudan III Total lipids Johansen 1940; Lison 1960 + + + +

Sudan Red B Total lipids Brundrett et al. 1991 + + + +

Sudan Black B Total lipids Pearse 1985 + + + +

Nile Blue Acidic lipids (oleoresins)
Neutral lipids (essential oils)

Jensen 1962 +
−

+
−

+
−

+
+

Nadi reagent Terpenoids (essential oils) David and Carde 1964 + − + −
Concentrated sulphuric acid Sesquiterpenes Geissmann and Griffin 1971;

Cappelletti et al. 1986
+ − + −

Ruthenium Red Acidic polysaccharides
(mucilage, pectins)

Johansen 1940; Jensen 1962 + + + +

Periodic acid - Schiff’s reagent (PAS) Neutral polysaccharides O’Brien and McCully 1981 + + + +

Iodine iodide solution (IKI) Starch
Proteins

Johansen 1940 −
+

−
−

−
+

+
+

Ferric chloride Polyphenols Johansen 1940 + – –

Potassium dichromate Tannins Gabe 1968 + – +

Phloroglucinol-HCl Lignin Johansen 1940 – – + –

Wagner reagent Alkaloids Furr and Mahlberg 1981 + +

Dragendorff reagent Alkaloids Svendsen and Verpoorte 1983 + +

Neutral Red under UV Lipids and essentials oils Conn 1977; Lulai and Morgan 1992 − + + +

Aluminium chloride under UV Flavonoids Charrière-Ladreix 1976 + + + +

Magnesium acetate under UV Flavonoids Charrière-Ladreix 1976 + + + +

Antimony trichloride under UV Terpens contain steroids Hardman and Sofowora 1972;
Mace et al. 1974

+ − + +

UV (autofluorescence) Polyphenols Mabry et al. 1970 + − − −

−, negative; +, positive
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coated with a 15-nm-thick layer of gold and examined under a
TESCAN/VEGA LMU scanning electron microscope at an
accelerating voltage of 10 kV.

Transmission electron microscopy

Small sections (2 × 2 × 2 mm) of L. barbarum fruits (n = 5)
were fixed in a mixture of 3.5% glutaraldehyde in 0.1 M phos-
phate buffer, pH 7.2, for 12 h at a temperature of 4 °C. Next,
the sections for LM were washed three times in phosphate
buffer and dehydrated in an ethanol series. For TEM, the per-
manent samples were additionally fixed in 1% OsO4 for 1.5 h
and washed three times in distilled water. Next, the samples
were rinsed in distilled water and dehydrated in a graded eth-
anol series. Then, the samples were embedded in LR white
resin (LRWhite acrylic resin, medium grade, Sigma-Aldrich)
and polymerised at 60 °C. Ultra-thin (70–80 nm) sections were
cut with glass knives using a Reichert Ultracut S ultramicro-
tome and stained in a 0.5% aqueous solution of uranyl acetate
in 0.5% acetic acid and lead citrate (Reynolds 1963). The ul-
trastructure was analysed under a Tesla BS 500 transmission
electron microscope at an accelerating voltage of 120 kV.

Results

The elongated Lycium barbarum drupes were characterised
by a varied length (0.7–1.5 cm) and width (3.5–7.5 mm)
(Fig. 1a, b). The pericarp wall was composed of an exocarp
(skin), mesocarp (flesh), and lignified endocarp surrounding
two seeds. The yellowish seeds with a diameter of approx.
2.5–4 mm were oval and strongly flattened (Fig. 1c). During
maturation, the fruits quickly became soft and susceptible to
bruising. The 41–71.6-μm-thick fruit skin composed of one
epidermis and one hypodermis layer was covered by a thin,
delicately striated cuticle with a thickness of approx. 400–
600 nm and amorphous structure (Table 2, Fig. 1 d, e, g, h).
The epidermis exhibited sporadic stomata located slightly
above the epidermis layer cells (Fig. 1f). TEM revealed a
continuous 1/5-μm-thick film of amorphous epicuticular
waxes on the surface of the cuticle (Fig. 1g, h). The epidermis
cells exhibited large vacuoles and a thin layer of parietal cy-
toplasm with very small plastids containing numerous merg-
ing, irregularly shaped, and different-sized vesicles (not
shown). The cross-sections of the epidermis cells visualised
by LM were rectangular in the outline and exhibited a varied
width (from 25.6 to 51.6 μm) and an almost uniform height
(from 20.5 to 25.6 μm) (Fig. 2a, b). The outer and inner walls
were thickened and had an average thickness of 5.6 and
4.5 μm, respectively. The hypodermis cells were characterised
by a slightly thickened parietal cell wall adjacent to the epi-
dermis and a periclinal wall adjacent to the mesocarp

parenchyma (Fig. 2a, b) with an average thickness of 450
and 280 nm, respectively (Table 2). The size of the hypoder-
mis cells varied; their width ranged from 28.1 to 84.4 μm and
the height was in the range from 20.5 to 46 μm. The hypoder-
mis cells visualised by LM and TEM contained large vacu-
oles, and cell nuclei and oval chromoplasts in various stages of
development were visible in the cytoplasm. The initial stage of
transformation of chloroplasts into chromoplasts was visible
in some plastids. Such plastids were characterised by a lens
shape and a largely preserved thylakoid system (not shown).
Another type of chromoplasts, i.e. the so-called vesicular
chromoplasts, exhibited many different-sized vesicles usually
with electron-transparent content (Fig. 2d). The largest group
of plastids comprised oval-shaped chromoplasts containing
reticulotubular/fibrillar carotenoid pigments (Fig. 2e). There
were no thylakoids in this type of plastids, but phytoferritine
deposits were frequently visible as granular osmiophilic bod-
ies (Fig. 2e). Degraded protoplast components, usually rem-
nants of plasmatic membranes, were frequently observed in
the hypodermis cells. The multi-layer mesocarp located under
the skin was composed of relatively large, oval or radially
elongated parenchyma cells with thin walls (Fig. 2a–c).
Intercellular spaces were visible between the cells. The meso-
carp cells contained many chromoplasts similar to those ob-
served in the hypodermis (Fig. 2c).

The single-layered endocarp surrounding endosperm seeds
was composed of stone cells with undulated, unevenly thick-
ened, lignified secondary walls forming specific ‘cavernulous’
reticulate-puzzle architecture on the seed surface (Fig. 3a–c).
LM visualised lignin thickenings with intensive pink stain as a
result of the reaction with phloroglucinol with hydrochloric
acid in the periclinal walls adjacent to the seed testa and partly
in anticlinal walls, where they were usually triangular or trap-
ezoidal (Fig. 3d–j). Their structure exhibited successive layers
formed by adcrustation. The periclinal endocarp walls adja-
cent to the mesocarp were much thinner and devoid of lignin
(Fig. 3e–h). Despite the considerable lignification of the walls,
the endocarp cells had living protoplasts. In turn, cells forming

The results of the histochemical assays showed the pres-
ence of lipid, terpenoids, polysaccharides, and polyphenols in
the cuticle and epicuticular waxes covering the wolfberry
fruits (Table 2). Lipids contained in the epidermis and hypo-
dermis cell walls were stained blue in the presence of Nile
Blue, whereas lipids present in the cuticle were turquoise
(Fig. 4a). After the reaction with Sudan III, Sudan Red B,
and Sudan Black B, cuticle, large lipid droplets and/or small
globoids present in the epidermis, hypodermis, and parenchy-
ma cells were stained orange, orange-red, and black, respec-
tively (Fig. 4b–d). The blue colour of the cuticle after
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the seed endosperm were oval and had thickened
cellulose-pectin walls (Fig. 3j). Calcium oxalate crystals with
the shape of truncated pyramids were observed in the endo-
sperm cells (not shown).



application of the Nadi reagent indicated the presence of ter-
penoids (Fig. 4e, f). In the presence of concentrated sulphuric
acid, sesquiterpenes located in the pericarp, and mainly in the
epidermis and hypodermis cell walls, were stained yellow
(Fig. 4g, h). The epidermis and hypodermis cells of the drupes
exhibited spherical deposits of tannins and phenolic com-
pounds with various sizes and structures; they were stained
brown when treated with potassium dichromate and ferric
chloride (Fig. 5a, b). The use of Ruthenium Red confirmed
the presence of polysaccharides in the skin cells and in the cell

walls of the pericarp layers (Fig. 5c). In turn, in the reaction
with Schiff’s reagent, polysaccharides present in the cell pro-
toplasts in all parts of the pericarp exhibited an intense cycla-
men colour while cell wall polysaccharides were purple (Fig.
5d). The Wagner and Dragendorff reagents produced dark
brown stain of alkaloids contained in the epidermis and in
the cells of the parenchyma, especially in its deeper layers
(Fig. 5e, f). After application of the Lugol’s iodine solution,
the chromoplasts located in the pericarp cells were stained
dark turquoise (Fig. 5g, h).

Fig. 1 Morphology of Lycium
barbarum drupes and drupelets as
well as the ultrastructure of drupe
epidermis cells. a Orange and
elongated drupes. b Cross-section
of wolfberry fruit. Visible two-
seed chambers and a seed (arrow)
in one of the chambers. c
Flattened drupelets with a
reticular surface. d, e Epidermis
surface with numerous cuticular
striae. f Stoma (arrow) located
above the epidermis level. g, h
Fragments of the epidermis cell
wall with an amorphous cuticle
and a layer of epicuticular waxes
(arrows); Cw cell wall, Cu cuticle

Table 2 Comparison of the anatomical characteristics of the skin of Lycium barbarum and other fruit species

Species Thickness
of cuticle
layer (μm)

Thickness
of hypodermis
layer (μm)

Thickness
of hypodermis
cell wall (μm)

Thickness of skin
(μm) (epidermis
+ hypodermis)

Reference

Lycium barbarum 0.6 35.0 0.28–0.45 59.6 This study

Vaccinium corymbosum 3.3 38.7–56.7 4.4–5.2 54.6–77.5 Konarska 2015a, b

Pyrus communis 8.9–11.5 46.8–61.3 7.5–26.0 57.7–74.7 Konarska 2013b

Viburnum opulus 5.3 80.0 17.8 109.6 Konarska and
Domaciuk 2018Viburnum lantana 6.5 72.7 6.7 113.5

Prunus domestica 4.6–4.9 76.0–110.0 7.6–8.4 109.0–129.0 Konarska 2015c

Malus domestica 12.3–17.2 75.4–95.6 14–17 116.8–125.4 Konarska 2013a, 2014
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The endocarp and seeds of the wolfberry drupes contained
lipids, terpenoids, polysaccharides, polyphenols, flavonoids,
starch, proteins, and alkaloids (Table 1). The numerous lipid
droplets visible in the endocarp and endosperm cells were
orange-red after the treatment with Sudan III and Red B, where-
as the application of Sudan Black B revealed tiny, black lipid
globoids in the endocarp, endosperm, and embryo cells
(Fig. 6a–d). Nile blue stained essential oils present in the endo-
sperm cells intensely pink, whereas acidic lipids in the walls and
protoplasts of the endocarp and endosperm cells had a navy blue
colour (Fig. 6e, f). In turn, essential oils contained in the lignified
endocarp walls were cyclamen pink after staining with the Nadi
reagent (Fig. 6g, h). Sesquiterpenes accumulated in the endocarp
cell walls were stained yellow in the presence of concentrated
sulphuric acid (Fig. 6i, j). Ruthenium Red showed the presence
of pink and red stained polysaccharides in the walls and proto-
plasts of the endocarp cells, seed testa, and endosperm cell walls
(Fig. 7a, b). Similarly, the PAS reaction confirmed the presence
of polysaccharides in the protoplasts and lignified endocarp cell
walls as well as endosperm cells (Fig. 7c). Additionally, the
endosperm cells exhibited large, oval aleurone grains filled with
amorphous protein, which stained yellow in the presence of the
IKI solution (Fig. 7d). The treatment with Lugol’s liquid resulted
in dark blue staining of starch grains present in the embryo cells
(Fig. 7e). Brown-stained tannins were localised in the endocarp
and endosperm cells in the reaction with potassium dichromate
(Fig. 7i). The Wagner and Dragendorff reagents showed the
presence of alkaloids in the brown-stained protoplasts in the
endosperm cells (Fig. 7g, h).

The fluorescence microscopy observations under the treat-
ment with the antimony trichloride fluorochrome in the Cy5
filter set confirmed the presence of steroid-containing terpenes
(light blue fluorescence) in the drupe skin (especially in the
cuticle and cell walls) and in the endocarp and endosperm cell
walls (Table 1, Fig. 8a, b). Moreover, in the presence of the
aluminium chloride and magnesium acetate fluoro-
chromes, there was visible light yellow (in the Cy5 and
DAPI filter sets) and light red (in the TRITC filter set)
fluorescence of flavonoids accumulated in the skin and
mesocarp cells and in the endocarp and endosperm cells
of the wolfberry fruits (Fig. 8c–e). In turn, neutral red in-
duced light blue (in the Cy5 filter set) or light green (in the
FITC filter set) secondary fluorescence of essentials oils
contained in the cuticle and endocarp cell walls as well as
lipid droplets in the endosperm cells (Fig. 8f–i) .
Additionally, strong light blue (in the Cy5 filter set) auto-
fluorescence of the skin cells and light orange (in the
TRITC filter set) autofluorescence of the lignified endo-
carp cell wall was observed, indicating the presence of
some phenolic compounds (Fig. 8j, k).

Discussion

Based on the microscopic observations (reaction of
phloroglucinol with hydrochloric acid), the author of this pa-
per has shown that the Lycium barbarum fruit is a two-seeded
drupe with lignified cell walls of the seed-surrounding

Fig. 2 Anatomy and
ultrastructure of the L. barbarum
fruit pericarp. a–c Fragments of
the fruit pericarp. Numerous
chromoplasts visible in
hypodermis and mesocarp cells
(c). d, e Different types of
chromoplasts in the hypodermis
cells; vesicular chromoplast (d)
and reticulotubular/fibrillar
chromoplast with phytoferritine
deposit (arrow) (e);Cu cuticle,Ep
epidermis, Hy hypodermis, Me
mesocarp
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Lycium barbarum shrubs produced an evidently lower num-
ber of fruits in the dry and hot summer of 2017 than in the less
hot and dry summer of 2016.

During the investigations, it was noted that ripe wolfberry
fruits quickly lost their attractiveness: their surface was wrin-
kled and damaged by indentation and bruises. Such symptoms
may be associated with the thin and delicate skin covering the
drupe. Its thickness was approximately twofold lower than
that of apple, plum, or viburnum skin and similar to the skin
of blueberries and pears (Table 2 and reference wherein). The
fruits of blueberry and early pear varieties represent short shelf
life fruits sensitive to mechanical damage. Wyk van andWink
(2008) and Górnicka (2015) have confirmed that ripe L.
barbarum fruits are prone to mechanical damage and are
non-durable; therefore, they are not picked by hand but gently
shaken off. The surface of the L. barbarum fruits was covered
by a thin striated cuticle with amorphous structure. As shown
by Knoche et al. (2000), the thickness of the cuticle is not
correlated with cuticular water permeability, in contrast to its
ultrastructure, which can accelerate or limit transpiration and

Fig. 3 Micromorphology and anatomy of a L. barbarum drupelet. a–c
Drupelet surface with reticulate-puzzle architecture. dCross-section of an
endocarp and seed. e–g Fragments of cross-sections of an endocarp and

seed. Notice the thickened and lignified cell walls of the endocarp
(asterisks). h, i Cross-section of a drupelet stained with phloroglucinol
with HCl. j Endosperm cells; En endocarp, End endosperm
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endocarp. Researchers have contrasting opinions on whether
the fruit of the analysed species is a drupe or a berry.
Bernardello (1983, 1986a) and Olmstead et al. (2008) also
argue that the fruit of many Lycium species are drupes with
a sclerenchymatic endocarp, whereas Miller (2002) claims
that the representatives of the genus Lycium have a
berry-like fruit differing in the degree of endocarp induration
and the number of seeds. The analysed L. barbarum fruits
have 2 seeds, whereas Bernardello (1986a) and Aguilar and
Bernardello (2001) have shown that fruits of other Lycium
species (L. ciliatum, L. chilense, and L. cestroides) are
multi-ovuled and multi-seeded. As reported by various re-
searchers, the number of seeds in the genus Lycium can be
varied: it is usually 2 or 4 and, less frequently, 8, 10 or more
(Miller 2002; Levin and Miller 2005). The number of seeds
may be an important taxonomic trait, although the seed num-
ber can be determined by not only the genetic factor but also
unfavourable weather conditions prevailing during the period
of flowering and flower visiting by pollinating entomofauna.
The author of this work have observed that the analysed



fruit wilting. Various researchers have reported that an amor-
phous cuticle promotes water evaporation from the fruit inte-
rior and contributes to rapid wilting. In turn, a cuticle with a
lamellar structure, which is characteristic for e.g. apple fruits,
limits transpiration to the greatest extent (Peschel et al. 2003;
Jeffree 2006). Chiarini and Barboza (2007) and Pabón-Mora
and Litt (2011) have shown that the cuticle thickness in the
berries or drupes of other representatives of the family
Solanaceae may vary from a relatively thick cuticle in
Lycopersicon to that in Iochroma, which is immeasurable by
light microscopy.

A great role in fruit life is assigned to the thickness of
the wax layer and the type of epicuticular waxes present on
the fruit surface. A relatively thin layer of amorphous
waxes was observed in the L. barbarum fruits, but no form
of crystalline wax was detected, which undoubtedly accel-
erates transpiration of the fruits and shortens their shelf
life. Many researchers have also reported that wax crystal-
lites present on the fruit surface extensively limit water
evaporation and protect fruits against adverse biotic and

abiotic factors (Veraverbeke et al. 2001; Solovchenko and
Merzyak 2003; Knoche 2015). In contrast, the amorphous
wax form, similar to the amorphous cuticle, is the most
permeable type of wax contributing to rapid water loss.
This type of epicuticular waxes has been observed on the
fruit surface of such taxa as Capsicum annuum, Prunus
avium, or Viburnum opulus (Lownds et al. 1993; Hunsche
and Noga 2011; Konarska and Domaciuk 2018).

The hypodermis in the L. barbarum drupes is composed of
one layer of collenchyma cells with slightly thickened
periclinal walls. The inconsiderable thickness of the hypoder-
mis wall and its relatively thin layer are the other features that
make the fruits delicate and soft. The author of the present
study has demonstrated that the hypodermis walls in the
Lycium barbarum drupes are several times thinner than in
the Vaccinium corymbosum berries, which are similarly con-
sidered delicate and short-lived, and several tenfold thinner
than in the fruits of Malus domestica or Viburnum opulus,
which are characterised by substantial shelf life (Table 2 and
reference wherein). In investigations of fruits of several other

Fig. 4 Fresh cross-sections across
the L. barbarum pericarp
subjected to histochemical tests. a
Staining with Nile Blue. b
Staining with Sudan III. c
Staining with Sudan Red B (top
view). d Staining with Sudan
Black B. e, f Staining with Nadi
reagent. f Top view. g, h Staining
with conc. sulphuric acid. h Top
view; Cu cuticle, Ep epidermis,
Hy hypodermis, Me mesocarp,
arrows: lipid droplets
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Lycium species, Bernardello (1983) did not distinguish a hy-
podermis layer in any of the species. The author did not mea-
sure and compare the thickness of the cell walls in the pericarp
tissues in the examined Lycium drupes. However, the presence
of a collenchyma layer under the fruit epidermis has been
reported in many other Solanaceae species, e.g. in Capsicum
and Athenaea (Filippa and Bernardello 1992), Iochroma
(Pabón-Mora and Litt 2011), and many Solanum species
(Dottori and Cosa 1999, 2007; Charini and Barboza 2007,
2009). Various authors suggest that the textural characteristics
of skin cells (e.g. the thickness of the skin and the presence of
mechanical tissue as well as the thickness of the cell walls and

the degree of cell to cell contact) determine fruit susceptibility
to mechanical damage, which reduces consumer value and
shortens their shelf life (Allan-Wojtas et al. 2001; Klima
Johnson et al. 2011).

The author of the present paper has distinguished several
layers of parenchyma forming the mesocarp and one layer of a
lignified endocarp surrounding the seeds in the Lycium fruit.
Bernardello (1983) reported that the pericarp wall in the fruits
of other Lycium species (L. americanum, L. ameghinoi, L.
californicum), similar to the ovary wall, was always com-
posed of eight layers and the endocarp was made of scleren-

Fig. 5 Fresh cross-sections across
the L. barbarum pericarp
subjected to histochemical tests. a
Staining with potassium
dichromate (top view). b Staining
with ferric chloride. c Staining
with Ruthenium Red. d Staining
with Schiff’s reagent. e Staining
with Wagner reagent. f Staining
with Dragendorff reagent. g, h
Staining with IKI solution; Cu
cuticle, Ep epidermis, Hy
hypodermis, Me mesocarp,
arrow: phenolic deposits
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barbarum endocarp exhibited a specific ‘cavernulous’
reticulate-puzzle sculpture, which was probably related to
the heterogeneous chemical structure of the cell walls in this

Fig. 6 Fresh cross-sections across
L. barbarum drupelets subjected
to histochemical tests. a, b
Staining with Sudan Red B. c, d
Staining with Sudan Black B. e, f
Staining with Nile Blue. g, h
Staining with Nadi reagent. i, j
Staining with conc. sulphuric
acid; En endocarp, End
endosperm, Em embryo, arrows:
droplets of essential oils,
arrowheads: oil droplets
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Chiang-Cabrera (1981), who showed the presence of an indu-
rated endocarp in the fruits of four other Lycium species: L.
cooperi, L. macrodon, L. piiherulum, and L. schaffneri. The L.



layer. The anticlinal walls of the endocarp were formed of
lignin, which ensured their stiffness, whereas the elastic
periclinal walls adjacent to the mesocarp contained cellulose
and pectins. The author of the study observed that such struc-
ture of the endocarp cell walls ensures their stiffness, but does
not lead to the death of protoplast, in which metabolites
(lipids, polysaccharides) can accumulate. A similar ornamen-
tation of the seed surface was described in several other

Solanaceae species (Tubocapsicum, Aureliana, Withania,
Hyoscyamus) by D’Arcy et al. (2001) and Kaya et al.
(2016). The structure of endocarp cells and/or seed testa can
be an important taxonomic characteristics, as proved by Gunn
and Gaffney (1974) and Axelius (1992) in various represen-
tatives of the family Solanaceae.

The intense orange colour of L. barbarum fruits was associ-
ated with the presence of numerous carotenoid-containing

Fig. 7 Fresh cross-sections across
L. barbarum drupelets subjected
to histochemical tests. a–b
Staining with Ruthenium Red. c
Staining with Schiff’s reagent. d,
e Staining with IKI solution. f
Staining with potassium
dichromate. g Staining with
Wagner reagent. h Staining with
Dragendorff reagent; En
endocarp, End endosperm, Em
embryo, arrowheads: aleurone
grains, circle: cells with starch
grains
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Fig. 8 Fresh cross-sections across
the L. barbarum pericarp and
drupelets under a fluorescence
microscope. a, b Fluorescence of
steroids in the drupe skin (a) and
in the endocarp and endosperm
cell walls (b) in the Cy5 filter set
after application of antimony
trichloride. c, d Fluorescence of
flavonoids in the skin and
mesocarp cells in the Cy5 filter set
(c) and in the endocarp and
edosperm cells in the TRITC filter
set (d) after application of
magnesium acetate. e
Fluorescence of flavonoids in the
endocarp and edosperm cells in
the Cy5 filter set after application
of aluminium chloride. f–i
Fluorescence of essentials oils in
the cuticle (f, g) and in endocarp
cell walls (h) in the Cy5 filter set
as well as fluorescence of lipid
droplets in the endosperm cells in
the FITC filter set (i) after
application of Neutral Red. j, k
Autofluorescence the phenolic
compounds in skin cells in the
Cy5 filter set (j) and in the
lignified endocarp cell walls in
the TRITC filter set (k); arrows:
lipid droplets
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chromoplasts in the pericarp cells. As reported by Miller
(2002), the colour of fruits in different Lycium species can range
from yellow through orange or red to green or brown. The
presence of thylakoids in many plastids of the L. barbarum
pericarp indicates transformation of chloroplasts present in
green fruits into chromoplasts specific for mature fruits. In turn,
fully developed L. barbarum chromoplasts exhibited numerous
carotenoid-filled plastoglobules or the carotenoids had a
reticulotubular/fibrillar form. The chromoplasts also contained
spherical phytoferritine deposits, i.e. complexes of iron with
protein. As shown by literature data, phytoferritine deposits
are a non-toxic form of accumulation and storage of iron; they
can subsequently be used in the synthesis of carotenoids and
serve an important function during fruit development and in
stress conditions (Simpson et al. 1975; Briat 1996; Di Fabio
and Parraga 2016). Various types of chromoplasts, i.e. globular,
membranous, tubular, fibrillar, or crystalline forms observed
during chromoplastogenesis, have been described in the fruits
of family Solanaceae representatives (e.g. Kilcrease et al. 2013;
Suzuki et al. 2015). As shown by Rosso (1967), several differ-
ent forms of chromoplasts can be present simultaneously in
same species. In turn, as suggested by Ljubesić et al. (1991),
there are many different pigment-containing structures even in
the same chromoplast. Moreover, Schweiggert et al. (2011) and
Jeffery et al. (2012) indicate that the type of the chromoplast
structure depends on the type of carotenoid molecules accumu-
lated in these organelles and determines the bioavailability of
carotenoids during human digestion.

The histochemical assays and fluorescence microscopy ob-
servations have revealed that the L. barbarum fruits are a
source of many various secondary metabolites. Besides carot-
enoids, polysaccharides (LBP), terpenoids (essential oils, ste-
roids, sesquiterpenes, oleoresins), polyphenols (tannins and
flavonoids), and alkaloids were accumulated in the pericarp
and seed of the drupes.

The presence of polysaccharides other than starch and cel-
lulose in the protoplasts of the mesocarp cells in the Lycium
barbarum drupes was confirmed by the reactions with
Ruthenium Red and Schiff’s reagent. Currently, there are no
histochemical methods that would confirm the presence of
specific polysaccharides in wolfberry fruits, i.e. the so-called
LBP. Nevertheless, the author observed that the wolfberry
pericarp chromoplasts exhibited an untypical turquoise-green
colour when stained with Lugol’s iodine. Probably, interme-
diate polysaccharide fractions such as rhamnose, arabinose,
mannose and/or LBP-forming proteoglycans were accumulat-
ed in the chromoplasts, bearing in mind that chromoplasts
were shown by Neuhaus and Emes (2000) and Barsan et al.
(2010) to be involved not only in the synthesis of lipids and
aromatic compounds, but also in the production of sugars.

The terpenoids in the L. barbarum drupes were primarily
accumulated in the fruit skin and endocarp. A special role is
attributed to terpenoids present on the surface of the

epidermis, i.e. in the cuticle and wax, and in lignified endocarp
walls. Given their specific smell, these compounds can con-
tribute to the dispersal of fruits and seeds by attracting con-
sumers and/or they can repel frugivores. Additionally, essen-
tial oils exhibit strong antibacterial and antifungal activity and
are toxic to nematodes and molluscs (Nishida 2002;
Gershenzon and Dudareva 2007). The presence of 11 different
terpenoids and over 50 sterols and steroids has been demon-
strated in L. barbarum fruits (Qian et al. 2017).

Tannins and flavonoids are phenolic compounds that were
accumulated in the exocarp, endocarp, and endosperm of the
wolfberry drupes. Tannin deposits detected in the skin had a
form of globules with varied structure and size, i.e. so-called
proanthocyanidins. This type of tannin deposits present in the
skin of various fruits has also been reported by other authors
(Hammouda et al. 2014; Tessmer et al. 2014; Konarska and
Domaciuk 2018). Phenolic compounds are valuable antioxi-
dants with an ability to chelate metal ions and scavenge free
radicals thus enhancing the plant defencemechanism (Sengul et
al. 2009; Karamian and Ghasemlou 2013).Moreover, similar to
terpenoids and flavonoids, tannins can deter herbivores and
protect plants against pathogens (Lattanzio et al. 2006; He et
al. 2015; Tessmer et al. 2016). They also determine the attrac-
tiveness to fruit and seed dispersers (Havsteen 2002; Cazetta et

The L. barbarum drupes contained alkaloids, as confirmed
by the histochemical assays based on the Wagner and
Dragendorff reagents. These compounds were present in the
exocarp and endosperm of the seeds. As in the case of other
repellent compounds (tannins, flavonoids), the location of alka-
loids in sensitive fruit layers exposed to pathogens or herbivores
may allow the plant to protect the propagules and to reproduce
effectively. A similar observation was done by Adler (2000),
who stated that alkaloids not only can increase plant fitness by
reducing herbivore attack, but also indirectly increase the life-
time seed production. The toxicity of L. barbarum fruits has
aroused controversy for many years. For a long time, the fruits
were believed to be highly toxic due to the content of atropine,
hyoscyamine, and scopolamine (Harsh 1989). However, the
quantitative investigations conducted by Adams et al. (2006)
and Wang (2006) have questioned the toxicity of L. barbarum
fruit although the presence of these alkaloids has been con-
firmed. Recent research has evidenced that wolfberry fruits
are a source of approximately 20 piperidine, pyrrole, spermine,
and tropane alkaloids (Qian et al. 2017), but they are present at a
very low, non-toxic level (Yong 2005).

Conclusions

L. barbarum drupes are characterised by a short shelf life and
susceptibility to mechanical damage. These first examinations
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al. 2008) and protect the fruit against the harmful effects of
UV-B radiation (Robson et al. 2015; Siipola et al. 2015).



of the wolfberry fruit microstructure demonstrated that the
reduced quality and durability of drupes is determined by their
thin skin, amorphous cuticle, thin layer of amorphous epicu-
ticular waxes, and thin layer of the hypodermis with slightly
thickened walls. Wolfberry fruits are regarded as functional
food and a source of various types of bioactive compounds
located in all pericarp layers and seeds, especially in the skin
and endocarp of the drupes. Metabolites that are accumulated
in L. barbarum drupes and attributed special phytotherapeutic
importance include specific polysaccharides (LBP), caroten-
oids, terpenoids (essential oils, sesquiterpenes, and steroids),
polyphenols (tannins and flavonoids), and alkaloids. The
unique microstructural and histochemical analyses presented
in this paper are a valuable addition to phytochemical inves-
tigations, as they facilitate detailed determination of the sites/
regions of synthesis and/or storage of pharmacologically ac-
tive compounds at the tissue level and help to understand the
relationship between the tissue structure and function as well
as the chemical nature of the tissues. The knowledge of the
location of bioactive plant metabolites facilitates identification
of therapeutically promising and valuable compounds applied
in folk herbal and traditional medicine. Furthermore, the
knowledge of the fruit microstructure, in particular the analy-
ses of the differentiation of plastid structure and pigmentation,
may contribute to a better understanding of the biogenesis of
these fruits as well as their developmental and environmental
regulation.
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