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A journey through the microscopic ages of DNA replication
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Abstract Scientific discoveries and technological advance-
ments are inseparable but not always take place in a coherent
chronological manner. In the next, we will provide a seeming-
ly unconnected and serendipitous series of scientific facts that,
in the whole, converged to unveil DNA and its duplication.
We will not cover here the many and fundamental contribu-
tions from microbial genetics and in vitro biochemistry.
Rather, in this journey, we will emphasize the interplay be-
tween microscopy development culminating on super resolu-
tion fluorescence microscopy (i.e., nanoscopy) and digital im-
age analysis and its impact on our understanding of DNA
duplication. We will interlace the journey with landmark con-
cepts and experiments that have brought the cellular DNA
replication field to its present state.
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The (very) early years

Long after water-filled glass bowls were used to read small
letters (Singer 1914), a simple single lens microscope started
the microscopic revolution (Bacon 1267) (see Table 1 and
Fig. 1). Spurred throughout the ages by accidental inventions

(van der Aa 1851), leaps by Galileo (Galilei 1610), and Hooke
(1665), it was not until Carl Zeiss started to mass-produce
microscopes in 1847 that DNA observation started to take
off. Simultaneously, Mendel studied 29,000 pea plants
(1866) and Haeckel postulated the containment of hereditary
traits in the nucleus (1866) (Dahm 2008; Haeckel 1866), while
Miescher put the microscope to good use and purified the
nuclei and observed DNA (Miescher 1871). Köhler’s game-
changing illumination technique (Köhler 1893) helped to per-
fect Zeiss UV-microscope together with Siedentopf in 1908.
In 1927, shortly after Levene described the nucleic acid struc-
ture (1919), Koltsov postulated the semiconservative replica-
tion idea (Soyfer 2001).

The race down to the DNA structure and duplication

Phase contrast microscopy (Zernike 1955) and DNA X-ray
diffraction images (Astbury 1947) Franklin, 1952, BPhoto
52^) lead to fantastic images, new discoveries, and the de-
scription of the double helix DNA structure (Watson and
Crick 1953). Meselson and Stahl ingeniously demonstrated
the semiconservative mode of DNA replication (Meselson
and Stahl 1958). The theoretical description of a confocal
microscope and the first practical application of a Nipkow
disk in microscopy (Egger and Petráň 1967; Petráň et al.
1968) were clear landmarks of the microscopy revolution.

Radioactive labeling and autoradiography allowed Cairns
to observe DNA unwinding and the replication fork (Cairns
1963), and Huberman and Riggs observed similar replication
structures in mammalian chromosomes (Huberman and Riggs
1966) and Okazaki described the lagging strand synthesis and
Bits^ fragments (Okazaki et al. 1968; Okazaki and Okazaki
1969; Sugimoto et al. 1969; Sugimoto et al. 1968).
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Table 1 Chronological list of landmarks in microscopy and DNA replication

Year Landmark Author

63 Water filed glass bowls to read small letters (Singer 1914)

1267 The first simple microscope (Bacon 1267)

1590 Accidental discovery of the compound microscope with two (or more) lenses by
Zacharias Janssen

(van der Aa 1851)

1610 BMicroscope^ with ×1000 magnification (Galilei 1610)

1665 BMicrographia^ (Hooke 1665; Singer 1914)

1847 First Bmass produced^ microscopes in 1847

1866 Hereditary traits in 29,000 pea plants (Mendel 1866)

1866 Hereditary traits contained in the nucleus (Dahm 2008; Haeckel 1866)

1871 Purified nuclei for the first time and observed DNA (Miescher 1871)

1893 Ein neues Beleuchtungsverfahren für mikrophotographische Zwecke (Köhler 1893)

1907 On the absorption of antibodies

1908 First fluorescence microscopes based on UV-microscopy

1919 Identification of the nucleic acid structure

1927 BReplicate in a semiconservative fashion using each strand as a template^ (Soyfer 2001)

1932 Discovery of the electron microscope (Knoll and Ruska 1932a; Knoll and Ruska
1932b)

1947 DNA X-ray diffraction images (Astbury 1947)

1953 X-ray diffraction BPhoto 51^ (Watson and Crick 1953)

1953 Discovery of the double-helix DNA structure (Watson and Crick 1953)

1953 Discovery of phase contrast microscopy (Zernike 1955)

1958 Confirmation of the semiconservative DNA replication model (Meselson and Stahl 1958)

1957 Discovery of the confocal microscope (Minsky 1961)

1962 Extraction, purification, and properties of GFP (Shimomura et al. 1962)

1963 DNA unwinding for replication and Breplication fork^ (Cairns 1963)

1966 Autoradiography of chromosomal DNA fibers from Chinese hamster cells. (Huberman and Riggs 1966)

1966 On the mechanism of DNA replication in mammalian chromosomes (Huberman and Riggs 1968)

1967 First practical application of the BNipkow disk^ in confocal microscopy (Egger and Petráň 1967; Petráň et al. 1968)

1968 Mechanism of DNA chain growth. I. Possible discontinuity and unusual secondary
structure of newly synthesized chains.

(Okazaki et al. 1968)

1968 Mechanism of DNA chain growth, II. Accumulation of newly synthesized short
chains in E. coli infected with ligase-defective T4 phages.

(Sugimoto et al. 1968)

1969 Duration of the cell cycle (Van Dilla et al. 1969)

1969 Mechanism of DNA chain growth, III. Equal annealing of T4 nascent short DNA
chains with the separated complementary strands of the phage DNA

(Sugimoto et al. 1969)

1969 Mechanism of DNA chain growth. IV. Direction of synthesis of T4 short DNA
chains as revealed by exonucleolytic degradation.

(Okazaki and Okazaki 1969)

1972 Bidirectional Replication of Simian Virus 40 DNA (Danna and Nathans 1972)

1974–1979 Fork speed, replication speed, and replicon sizes (Kriegstein and Hogness 1974; Taylor 1977;
Taylor and Hozier 1976; Wilson and
Wilson 1975; Yurov 1977; Yurov 1978;
Yurov 1979; Yurov and Liapunova 1977)

1975 Continuous cultures of fused cells secreting antibody of predefined specificity.

1986 Structural organizations of replicon domains during DNA synthetic phase in the
mammalian nucleus

(Nakamura et al. 1986)

1989 Three distinctive replication patterns (Nakayasu and Berezney 1989)

1992 Dynamic organization of DNA replication in mammalian cell nuclei spatially and
temporally defined replication of chromosome

(O’Keefe et al. 1992)

1992 Progression of DNA synthesis (Rizzoli et al. 1992)

1993 Structured Illumination Microscopy (SIM) (Bailey et al. 1993)

1994 Green fluorescent protein as a marker for gene expression (Chalfie et al. 1994)

1994 4pi microscope (Hell 2003; Hell et al. 1994)
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Table 1 (continued)

Year Landmark Author

1994 Alignment and sensitive detection of DNA by a moving interface (Bensimon et al. 1994)

1997 The replication origin decision point is a mitogen (Wu and Gilbert 1997)

1997 Dynamic molecular combing: stretching the whole human genome for
high-resolution studies.

(Michalet et al. 1997)

1998 Replicon clusters are stable units of chromosome structure evidence that nuclear
organization contributes to the efficient activation and propagation of S phase
in human cells

(Jackson and Pombo 1998)

1999 The spatial position and replication timing of chromosomal domains are both
established in early G1 phase

(Dimitrova and Gilbert 1999)

1999 Single molecule analysis of DNA replication. (Herrick and Bensimon 1999)

2000 Heterogeneity of eukaryotic replicons, replicon clusters, and replication foci (Berezney et al. 2000)

2000 Dynamics of DNA replication factories in living cells (Leonhardt et al. 2000)

2000 DNA replication at high resolution (Keck and Berger 2000)

2000 Mechanisms of DNA replication (Davey and O’Donnell 2000)

2001 Eukaryotic origins

2001 Repression of origin assembly in metaphase depends on inhibition of RLF-BCdt1
by geminin

(Tada et al. 2001)

2001 Visualization of DNA replication on individual Epstein-Barr Virus episomes (Norio and Schildkraut 2001)

2002 DNA polymerase clamp shows little turnover at established replication sites but
sequential de novo assembly at adjacent origin clusters

(Sporbert et al. 2002)

2002 DNA replication and chromatin (Gerbi and Bielinsky 2002)

2002 Initiation of DNA replication in multicellular eukaryotes (Gerbi et al. 2002)

2003 Sequence-independent DNA binding and replication initiation by the human origin
recognition complex

(Vashee et al. 2003)

2003 The ‘ORC cycle’: a novel pathway for regulating eukaryotic DNA replication (DePamphilis 2003)

2004 Stable chromosomal units determine the spatial and temporal organization of DNA
replication

(Sadoni et al. 2004)

2004 DNA replication and DNA repair mechanisms most of the replication machinery is
also used in DNA repair.

(Sancar and Lindsey-Boltz 2004)

2005 Preventing rereplication (Blow and Dutta 2005)

2005 PCNA acts as a stationary loading platform for transiently interacting Okazaki
fragment maturation proteins

(Sporbert et al. 2005)

2005 Eukaryotic origins of DNA replication: could you please be more specific? (Cvetic and Walter 2005)

2006 Origin selection and silent origins (Patel et al. 2006)

2006 Regulating the licensing of DNA replication origins in metazoa (DePamphilis et al. 2006)

2006 DNA replication: keep moving and don’t mind the gap. (Langston and O’Donnell 2006)

2007 Impact of chromatin structure

2007 Replisome mechanics: insights into a twin DNA polymerase machine. (Pomerantz and O’Donnell 2007)

2007 The many faces of the origin recognition complex (Sasaki and Gilbert 2007)

2007 High-throughput mapping of origins of replication in human cells. (Lucas et al. 2007)

2007 Characterization of a triple DNA polymerase replisome. (McInerney et al. 2007)

2007 Dynamic DNA helicase-DNA polymerase interactions assure processive
replication fork movement.

(Hamdan et al. 2007)

2007 Polymerase switching in DNA replication. (Lovett 2007)

2008 3D–SIM (Gustafsson et al. 2008)

2008 Division of labor at the eukaryotic replication fork. (Nick McElhinny et al. 2008)

2008 DNA polymerases at the replication fork in eukaryotes (Stillman 2008)

2008 Discovery of stimulated emission depletion (STED) (Schmidt et al. 2008)

2009 In DNA replication, the early bird catches the worm. (Boye and Grallert 2009)

2009 G-quadruplex structures: in vivo evidence and function. (Lipps and Rhodes 2009)

2009 Eukaryotic DNA replication control: lock and load, then fire. (Remus and Diffley 2009)

2010 Organization of DNA replication (Chagin et al. 2010)
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Table 1 (continued)

Year Landmark Author

2010 Eukaryotic chromosome DNA replication: where, when, and how? (Masai et al. 2010)

2010 SCF (Cyclin F) controls centrosome homeostasis and mitotic fidelity through
CP110 degradation.

(D’Angiolella et al. 2010)

2010 Uncoupling of sister replisomes during eukaryotic DNA replication. (Yardimci et al. 2010)

2010 DNA replication: making two forks from one prereplication complex. (Botchan and Berger 2010)

2011 Eukaryotic origin-dependent DNA replication in vitro reveals sequential action of
DDK and S-CDK kinases.

(Heller et al. 2011)

2011 Failure of origin activation in response to fork stalling leads to chromosomal
instability at fragile sites.

(Ozeri-Galai et al. 2011)

2011 Selective bypass of a lagging strand roadblock by the eukaryotic replicative DNA
helicase.

(Fu et al. 2011)

2011 Genome-wide depletion of replication initiation events in highly transcribed
regions.

(Martin et al. 2011)

2011 Origin association of Sld3, Sld7, and Cdc45 proteins is a key step for determination
of origin-firing timing.

(Tanaka et al. 2011)

2012 Genome-scale identification of active DNA replication origins. (Cayrou et al. 2012)

2012 Forkhead transcription factors establish origin timing and long-range clustering in
S. cerevisiae

(Knott et al. 2012)

2012 A fragment based click chemistry approach towards hybrid G-quadruplex ligands:
design, synthesis and biophysical evaluation

(Ritson and Moses 2012)

2012 Histone hypoacetylation is required to maintain late replication timing of
constitutive heterochromatin.

(Casas-Delucchi et al. 2012)

2012 OriDB, the DNA replication origin database updated and extended. (Siow et al. 2012)

2012 Replication timing: the early bird catches the worm. (Douglas and Diffley 2012)

2012 CK2 inhibitor CX-4945 suppresses DNA repair response triggered by
DNA-targeted anticancer drugs and augments efficacy: mechanistic rationale for
drug combination therapy.

(Siddiqui-Jain et al. 2012)

2012 Experimental approaches to identify cellular G-quadruplex structures and
functions.

(Di Antonio et al. 2012)

2012 Activation of the replicative DNA helicase: breaking up is hard to do. (Boos et al. 2012)

2012 Analysis of DNA replication profiles in budding yeast and mammalian cells using
DNA combing.

(Bianco et al. 2012)

2012 DeOri: a database of eukaryotic DNA replication origins. (Gao et al. 2012)

2012 Replication origins run (ultra) deep. (Gilbert 2012)

2012 Unraveling cell type-specific and reprogrammable human replication origin
signatures associated with G-quadruplex consensus motifs.

(Besnard et al. 2012)

2012 Targeted manipulation of heterochromatin rescues MeCP2 Rett mutants and
re-establishes higher order chromatin organization.

(Casas-Delucchi et al. 2012)

2013 Genome-wide mapping of human DNA-replication origins: levels of transcription
at ORC1 sites regulate origin selection and replication timing.

(Dellino et al. 2013)

2013 Functional implications of genome topology. (Cavalli and Misteli 2013)

2013 Nuclear positioning. (Gundersen and Worman 2013)

2013 Chromatin dynamics at the replication fork: there’s more to life than histones. (Whitehouse and Smith 2013)

2013 Quantitative, genome-wide analysis of eukaryotic replication initiation and
termination.

(McGuffee et al. 2013)

2013 The Elg1 replication factor C-like complex functions in PCNA unloading during
DNA replication.

(Kubota et al. 2013)

2013 Replication timing regulation of eukaryotic replicons: Rif1 as a global regulator of
replication timing.

(Yamazaki et al. 2013)

2013 Bubble-seq analysis of the human genome reveals distinct chromatin-mediated
mechanisms for regulating early- and late-firing origins.

(Mesner et al. 2013)

2013 A personal reflection on the replicon theory: from R1 plasmid to replication timing
regulation in human cells.

(Masai 2013)

2013 From simple bacterial and archaeal replicons to replication N/U-domains. (Hyrien et al. 2013)

2013 Genomes and G-quadruplexes: for better or for worse. (Tarsounas and Tijsterman 2013)

2013 New insights into replication clamp unloading. (Ulrich 2013)

2013 Replication dynamics: biases and robustness of DNA fiber analysis. (Técher et al. 2013)
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Always look on the bright side

Along came Aequorea victoria green fluorescent protein
(Shimomura et al. 1962) and brought light into darkness.
Where audioradiography once ruled (Huberman and Riggs
1966; Huberman and Riggs 1968; Taylor et al. 1957), immu-
nofluorescence labeling of fixed cells with monoclonal anti-
bodies to modified nucleotides incorporated into newly syn-
thesized DNA took the stage (e.g., Aten et al. 1992; Cardoso
et al. 1993; Jackson and Pombo 1998; Jaunin et al. 1998; Ma
et al. 1998; Mazzotti et al. 1990; Nakamura et al. 1986; Raska
et al. 1989; Raska et al. 1991) only to be outshined by live cell
microscopy of fluorescent fusion proteins (Cardoso et al.
1997; Leonhardt et al. 2000). Cell cycle duration (Van Dilla

et al. 1969), fork speed, replication rate, and replicon sizes
(Kriegstein and Hogness 1974; Taylor 1977; Taylor and
Hozier 1976; Wilson and Wilson 1975; Yurov 1977; Yurov
1978; Yurov 1979; Yurov and Liapunova 1977) were all
unearthed from the dark.

In parallel, the first affordable home computers made dig-
ital image analysis possible through the help of Wayne S.
Rasband who developed the milestone in image analysis
ImageJ (then, NIH Image) in 1987 (Schneider et al. 2012).

Extensive microscopic analysis in fixed cells followed and
provided a spatiotemporal description of replication sites
(replication foci; see Fig. 2) in cells throughout S-phase
(Nakamura et al. 1986) along with the three main distinctive
early, mid, and late S-phase replication foci patterns (Jackson

Table 1 (continued)

Year Landmark Author

2013 Specification of DNA replication origins and genomic base composition in fission
yeasts.

(Mojardín et al. 2013)

2013 The replication domain model: regulating replicon firing in the context of
large-scale chromosome architecture.

(Pope and Gilbert 2013)

2013 Time to be versatile: regulation of the replication timing program in budding yeast. (Yoshida et al. 2013)

2013 Why are there so many diverse replication machineries? (Forterre 2013)

2014 Epigenetic control of DNA replication dynamics in mammals (Casas-Delucchi and Cardoso 2014)

2014 Lethal effects of short-wavelength visible light on insects. (Hori et al. 2014)

2014 Existence and consequences of G-quadruplex structures in DNA. (Murat and Balasubramanian 2014)

2014 Histone variants: the tricksters of the chromatin world. (Volle and Dalal 2014)

2014 Supercoiling in DNA and chromatin. (Gilbert and Allan 2014)

2014 G4 motifs affect origin positioning and efficiency in two vertebrate replicators. (Valton et al. 2014)

2014 The spatiotemporal program of DNA replication is associated with specific
combinations of chromatin marks in human cells.

(Picard et al. 2014)

2014 Licensing of DNA replication, cancer, pluripotency and differentiation: an
interlinked world?

(Champeris Tsaniras et al. 2014)

2014 Temporal and spatial regulation of eukaryotic DNA replication: from regulated
initiation to genome-scale timing program.

(Renard-Guillet et al. 2014)

2014 The histone variant H2A. Bbd is enriched at sites of DNA synthesis. (Sansoni et al. 2014)

2014 FANCJ promotes DNA synthesis through G-quadruplex structures. (Castillo Bosch et al. 2014)

2015 The hunt for origins of DNA replication in multicellular eukaryotes. (Urban et al. 2015)

2015 Measuring the effectiveness of scientific gatekeeping. (Siler et al. 2015)

2015 Peaks cloaked in the mist: the landscape of mammalian replication origins. (Hyrien 2015)

2015 Post-translational modifications of tubulin: pathways to functional diversity of
microtubules.

(Song and Brady 2015)

2015 Regulated eukaryotic DNA replication origin firing with purified proteins. (Yeeles et al. 2015)

2015 Single-molecule studies of origin licensing reveal mechanisms ensuring
bidirectional helicase loading.

(Ticau et al. 2015)

2015 Single-molecule visualization of MCM2–7 DNA loading: seeing is believing. (Chistol and Walter 2015)

2015 High-resolution profiling of Drosophila replication start sites reveals a DNA shape
and chromatin signature of metazoan origins.

(Comoglio et al. 2015)

2015 The dynamics of eukaryotic replication initiation: origin specificity, licensing, and
firing at the single-molecule level.

(Duzdevich et al. 2015)

2016 4D Visualization of replication foci in mammalian cells corresponding to
individual replicons

(Chagin et al. 2016)

2016 3D replicon distributions arise from stochastic initiation and domino-like DNA
replication progression

(Löb et al. 2016)
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The race down to the DNA structure

Always look on the bright side...

The quest to replicate the genome

Factories full of dominos

The (very) early years

Beyond the Abbe limit

‘Myths’ confirmed!

first microscope
Microscopy of biological samples

Isolation of DNA

Discovery of DNA structure
Semi-conservative DNA replication mode

Mechanism of DNA replication

Discovery of GFP
S-phase replication patterns

SIM

High-resolution studies
Replicon clusters

Regulation of DNA replication timing

Domino- Model
Licensing of origins

3D-SIM, STED
Nanoscopy

Single replicons in 3D

Organization of DNA replication
Epigenomic landscape
Single replicons in 4D

1893
Köhler
Focussing light 
on specimen

1986
Huberman
Mechanism of 
DNA replication

1953
Watson
Double-helix 
DNA structure

1994
Bailey
Structured Illumination
Microscopy

1999
Herrick
Single molecule
analysis of DNA
replication

2010
Chagin
Organization
of DNA replication

2015
Hyrien
landscape of 
mammalian 
replication
origins

1958
Meselson
Semi-conservative 
DNA  replication

2000
Leonhardt
Dynamics of DNA
replication factories 
in living cells

1994
Chalfie
GFP as a marker
for gene expression

2012
Cayrou
Genome-scale
identification of 
origins

2015
Comoglio
High-resolution profiling
of Drosophila replication
start sited

1963
Cairns
Replisome and 
‘replication fork”

2016
Chagin
4D visulization
of replication foci

1869
Miescher
Purification of 
nuclei and DNA

1968
Okazaki
DNA chain 
grotwh

2016
Löb
3D replicion distributions
from stochastic initiation

1937
Astbury
DNA X-ray 
diffraction images

1989
Nakayasu
3 distinctive
repication pattern

2005
Blow & Dutta
Preventing re-
replicaton

2008
Schmidt
STED

2014
Picard
Association DNA
replication with specific 
chromaitn marks

1998
Jackson & Pombo
Replicon clusters
as stable units

1267
Bacon
Simple 
microscope

1931
Ruska
Electron 
microscope

1994
Bensimon
Alignment and 
detection of DNA

2002
Sporbert
De novo assembly
at adjacent origins

2008
Gustafsson
3D-SIM

2012
Gao
DeOri: database
of eukaryotic
origins

1986
Nakamura
Structural 
organization
of replicons

Fig. 1 Graphical overview of microscopy developments and their impact on DNA replication studies

Fig. 2 Organization of DNA replication from the genome to the
individual replisome/replicon. A fluorescently labeled human HeLa
Kyoto cell with a typical late S-phase replication pattern is presented in
the top left corner (scale bar = 5 μm). Magnified super-resolution
replication foci, with white circles representing individual replication
sites displayed in the middle of the top row. A scheme of clustered

DNA loops with active replication sites (white) is shown on the right.
Starting point of DNA replication, the replication origin (ori), and the
region replicated from a single origin displayed in the bottom row. Each
replicon is replicated by two replication machineries (magenta),
composed of various replication proteins, magnified in the bottom left
corner. Adapted from (Chagin et al. 2016; Chagin et al. 2010)
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and Pombo 1998; Mills et al. 1989; Nakayasu and Berezney
1989). Alongside, replication origins (Burhans et al. 1990;
Burhans et al. 1991) were also reported.

The quest to replicate the genome

DNA loops (see Fig. 2) and their Bfunctional^ attachments to
active transcription units were shown as chromatin organizers
during mitosis (Jackson et al. 1992), and replication factories
were proposed as clusters of DNA replication sites organized
by the nucleoskeleton (Hozák et al. 1993). Molecular comb-
ing, refined DNA fiber analysis, and sensitive detection of
DNA (Bensimon et al. 1994) opened the door to whole ge-
nome stretching and high-resolution studies (Michalet et al.
1997). It allowed analysis of single DNA molecules undergo-
ing replication (see Fig. 2) in a much greater resolution
(Herrick and Bensimon 1999) than ever before. Stable repli-
con clusters were also described as a basis for effective acti-
vation and propagation of genome replication during S-phase
(Jackson and Pombo 1998) and regulation of replication
timing (Dimitrova and Gilbert 1999).

Studies on DNA replication proteins (see Fig. 2) using live-
cell fluorescence microscopy produced time lapse movies of
replication factories and elucidated basic principles of their
dynamic assembly-disassembly behavior (Leonhardt et al.
2000). Different regulatory levels were shown to be necessary
to initiate and regulate DNA replication. Not only the chro-
matin structure, nuclear, and chromosomal locations but also
origin recognition complex (ORC) and a whole bunch of other
factors were found to define start sites of replication
(DePamphilis 2003; Gerbi and Bielinsky 2002; Gerbi et al.
2002; Sasaki and Gilbert 2007).

Factories full of dominos

In addition to the Bfactory model^ (Hozák et al. 1993), more
dynamic models ensued (Sadoni et al. 2004; Sporbert et al.
2002) whereby replication at one site induces domino-like
activation of neighboring origins, without the need to postu-
late pre-determined clusters of replicons. The combination
with an earlier model postulating that origins of replication
would be licensed only during mitosis and this license to rep-
licate would be revoked after one round of replication (Blow
and Dutta 2005; Blow and Laskey 1988) elegantly demon-
strated how DNA is completely duplicated once, and only
once, during each cell cycle. Despite Cvetic wishing for
Beukaryotic origins of DNA replication to please be more
specific^ (Cvetic and Walter 2005), DNA replication origins
in higher eukaryotes have been at best elusive. Nonetheless, as
a whole, DNA replication is a very robust mechanism and
stalled forks can be reactivated or reactivate neighboring

origins to close all gaps and provide a perfect copy of billions
of nucleotides at every cell division (Langston and O’Donnell
2006; Patel et al. 2006).

The ever elusive origin

The hunt for the elusive consensus motif of DNA replication
origins continued with genome-wide high throughput map-
ping of potential origins and next-generation sequencing
methods (Besnard et al. 2012; Cadoret et al. 2008; Cayrou
et al. 2012; Dellino et al. 2013; Karnani et al. 2010; Lucas
et al. 2007; Martin et al. 2011; Mesner et al. 2013; Mesner
et al. 2011; Mukhopadhyay et al. 2014; Picard et al. 2014;
Valenzuela et al. 2011) but stalled without a conclusive defi-
nition of the mammalian origin of replication. Correlations
with specialized DNA structures (e.g., G-quadruplexes) and
many others have been suggested but there seems not to be a
simple solution and potentially there is no need to have one.

Studies into the epigenomic landscape, epigenetic control
of DNA replication, and higher order chromatin organization
(Casas-Delucchi and Cardoso 2011; Casas-Delucchi et al.
2012) have provided a link of epigenetic modifications (in
particular, histone acetylation level) and temporal control of
DNA replication origin firing.

Altogether, even Hyrien’s BPeaks cloaked in the mist,^ all
out approach was not able to identify possible origins by sim-
ilarities in thousands of microarrays and/or next-generation
sequencing data, suggesting origins form at unspecific DNA
sites, but are suppressed by ongoing transcription (Hyrien
2015), which is highly correlated with histone acetylation.

To go where no one has gone before:
beyond the Abbe limit

Meanwhile, the microscopy arms race to and beyond the dif-
fraction limit calculated by Abbe continued with the
Structured Illumination Microscopy (SIM) (Bailey et al.
1993), the 3D–SIM (Gustafsson et al. 2008) and the stimulat-
ed emission depletion (STED) (Schmidt et al. 2008).

The first attempts to label dating back to 1986 (Nakamura
et al. 1986) and quantify replication sites in cells yielded num-
bers on the low hundreds (see Fig. 3). A decade later with the
advent of digital imaging and computational image analysis
tools, these numbers grew to around one thousand (Berezney
et al. 1996; Fox et al. 1991; Jackson and Pombo 1998; Ma
et al. 1998), where they remained for several years (see Fig. 3).
Such numbers of replication sites were compatible with a con-
cept of clusters of replicons activated together and, thus, visu-
alized together.

The dramatic increase in spatial resolution made possible
with the new super-resolution microscopy techniques
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(fluorescence nanoscopy) enabled the visualization, for the
first time, of smaller replication structures (Baddeley et al.
2010; Cseresnyes et al. 2009; Ligasová et al. 2009). It was
now possible to resolve structures well below the Abbe limit,
down to 30 nm and smaller. Nanoscopy (Gustafsson et al.
2008; Hell 2003; Hell et al. 1994) is in full swing and let us
go where no one has gone before: beyond the Abbe limit.
This, on the other hand, created another level of demand upon
image analysis tools.

BMyths^ confirmed!

The stage was now set to try and unveil the units of genome
replication, i.e., the replicons and their associated machinery,
the replisome, in cells.

From the earlier studies using light nanoscopy tech-
niques (Baddeley et al. 2010; Cseresnyes et al. 2009) as
well as electron microscopy (Koberna et al. 2005), suitable
computational image analysis protocols were developed
(Chagin et al. 2015). These combined efforts led to a fur-
ther increase in the numbers of replication sites measured
in cells (see Fig. 3), which was now finally compatible and
fitting with the predicted numbers of replicons needed to
duplicate the genome in human cells (Chagin et al. 2016;
Löb et al. 2016).

The microscopic information age had arrived. Previous
efforts by Shaw et al. (2010), together with measurements
throughout the years culminating on the visualization and
quantification of individual replicons in cells in 4D, all
supported by 3D–SIM imaging (Chagin et al. 2016) were
all combined in a minimalistic but comprehensive 4D

replicon simulation model (Löb et al. 2016) displaying
previously published replication polarity gradients, repli-
cation timing profiles, N/U domains, topologically associ-
ating domains, and timing transition regions (Audit et al.
2013; Baker et al. 2012; Chen et al. 2010; Hyrien et al.
2013; Pope et al. 2014).

Journey into the future

Future work should aim to bridge the ever-increasing genome-
wide population data, with single molecule and single-cell
microscopic data. Novel ways to combine and relate these
very different types of information should be developed to
get the highest spatial together with the highest temporal res-
olution without compromising the data on variability between
single cells.

Importantly, the available models should be put to work to
predict and test genome replication in different cell types and
species and under different stress conditions. This would un-
leash the value of the existing models and lead us into the in
silico DNA replication era.
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