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Abstract Total absence of callose in the ovules of dip-
losporous species has been previously suggested. This paper
is the first description of callose events in the ovules of
Chondrilla juncea, which exhibits meiotic diplospory of the
Taraxacum type. We found the presence of callose in the
megasporocyte wall and stated that the pattern of callose de-
position is dynamically changing during megasporogenesis.
At the premeiotic stage, no callose was observed in the ovules.
Callose appeared at the micropylar pole of the cell entering
prophase of the first meioticdivision restitution but did not
surround the megasporocyte. After the formation of a restitu-
tion nucleus, a conspicuous callose micropylar cap and dis-
persed deposits of callose were detected in the megasporocyte
wall. During the formation of a diplodyad, the micropylar
callose cap decreased and the walls of a newly formed mega-
spores showed scattered distribution of callose. Within the
older diplodyad, callose was mainly accumulated in the wall
between megaspores, as well as in the wall of the micropylar
cell; however, a dotted fluorescence of callose was also visible
in the wall of the chalazal megaspore. Gradual degradation of
callose in the wall of the chalazal cell and intense callose
accumulation in the wall of the micropylar cell were related
to the selection of the functional megaspore. Thus, our find-
ings may suggest that callose fulfills a similar role both during
megasporogenesis in sexual angiosperms and in the course of
meiotic diplospory in apomicts and seems to form a regulatory
interface between reproductive and somatic cells.
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Introduction

Callose, a β-1,3-linked homopolymer of glucose containing
some β-1,6 branches, may be considered as a histological
marker for a preliminary identification of the reproduction
mode in angiosperms. In the majority of sexually reproducing
flowering plants, the isolation of the spore mother cell and the
tetrad by callose walls is a striking feature of both micro- and
megasporogenesis (Rodkiewicz 1970; Bhandari 1984; Bouman
1984; Lersten 2004). Callose functions as amarker to distinguish
the reproductive cells from other ovule tissue in plants with
mono- and bisporic patterns of megasporogenesis (Rodkiewicz
1970; Russell 1979; Tucker and Koltunow 2014). Moreover,
uneven callose deposition and degradation during femalemeiosis
is one of the factors involved in the designation of abortive
megaspores and thereby crucial in the selection of a functional
megaspore within a tetrad regulating the selection of a functional
megaspore within a tetrad andA3B2 showappears to be linked to
the programmed cell death of three supernumerary megaspores
(Webb andGunning 1990; Papini et al. 2011). Contrary to sexual
reproduction, the pattern of callose deposition is altered in the
ovules of apomicts (Drews and Koltunow 2011; Galla et al.
2011; Musiał et al. 2015). As a rule, callose is absent in the walls
of the cells that initiate diplospory and apospory, which may
suggest that these cells do not share identity with functional
megaspore mother cells (Tucker et al. 2001; Bicknell and
Koltunow 2004). However, it should be noted that research data
on the callose accumulation and degradation in the ovules of
apomicts, especially diplosporous species, are not unambiguous
and still remain poorly documented. Total absence of callose or
an incomplete callose wall in the megasporocyte was essentially
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observed in the species exhibiting mitotic diplospory
(Antennaria type, in which meiosis is omitted), for example in
the grasses Elymus rectisetus (Carman et al. 1991), Poa
nemoralis and Poa palustris (Naumova et al. 1993, 1999),
Tripsacum species (Leblanc et al. 1993, 1995), and Eragrostis
curvula (Peel et al. 1997). It has been postulated that the lack of
callose during megasporogenesis may be also a characteristic of
the meiotic diplospory (Carman et al. 1991; Peel et al. 1997).
However, callose walls around the megaspore mother cells were
found in Paspalum minus, which showed meiotic diplospory of
the Taraxacum type that involves first division restitution and
normal second meiotic division (Bonilla and Quarin 1997).
Recently, callose deposition has also been documented during
meiotic diplospory in the ovules of a triploid dandelion
Taraxacum atricapillum (Musiał et al. 2015). As there is a close
phylogenetic relationship between Taraxacum and Chondrilla,
as well as a similarity of apomixis mechanisms in both of these
genera (van Dijk 2003), in the present research, we have under-
taken an analysis of callose location in the young ovules of
diplosporous species Chondrilla juncea L.

The genus Chondrilla L. represents the Asteraceae family
and belongs to the Cichorioideae subfamily, the tribe
Cichorieae, and the subtribe Chondrillinae (Koopman et al.
1998; Anderberg et al. 2007; Kilian et al. 2009). It includes
a polyploid complex comprising both amphimictic diploids
(2n = 2 × = 10) and agamospermous polyploid species, mainly
triploids (2n = 3 × = 15) and tetraploids (2n = 4 × = 20)
(Poddubnaja-Arnoldi 1933; Bergman 1950, 1952a, b;
Kościńska-Pająk 1996; Van Dijk 2003). There are about 30
species of Chondrilla worldwide which are biennial or peren-
nial hemicryptophytes (Iljin 1930; McVean 1966; Kościńska-
Pająk 1996; van Dijk 2003). The genusChondrilla is native to
Eurasia and North Africa (Iljin 1930; van Dijk 2003); howev-
er, certain taxa have been introduced in Australia, and North
and South America, where especially C. juncea (rush
skeletonweed) became a rapidly spreading noxious invasive
weed in cereal cultivations (McVean 1966; Gaskin et al.
2013). So far, C. juncea is the most studied taxon within the
genus. Extensive research is designed to improve the under-
standing of its invasion and to introduce an effective program
of biological control. C. juncea is a triploid perennial herb that
reproduces clonally via autonomous gametophytic apomixis,
and hence, the formation of viable seeds is completely inde-
pendent of the male gametophyte (Iljin 1930; Poddubnaja-
Arnoldi 1933; Jankun et al. 1996). Research on the mode of
reproduction showed the occurrence of meiotic diplospory of
the Taraxacum type, parthenogenesis, and autonomous endo-
sperm formation in this species (Rosenberg 1912;
Poddubnaja-Arnoldi 1933; Battaglia 1949; Bergman 1950;
Cuthbertson 1974; Kościńska-Pająk 1996, 2006). The subse-
quent embryological examinations, conducted on the speci-
mens of C. juncea from natural habitats in Poland, were also
devoted to a study of the male gametophyte development and

the pattern of cytoskeletal organization duringmicrosporogen-
esis, as well as the microtubule configuration in the cells of a
diplosporous female gametophyte (Kościńska-Pająk 2000, 2006;
Kościńska-Pająk and Bednara 2003, 2006).

Up to now, callose events in the ovules have never been
studied in detail in the genus Chondrilla, though preliminary
observations of C. juncea young ovules revealed the presence
of a thick callose wall between the unreduced megaspores
within the diplodyad (Kościńska-Pająk 2006). The aim of
the present investigation was to examine the pattern of callose
deposition during meiotic diplospory of the Taraxacum type
in the ovules of C. juncea.

Materials and methods

Plant material

Mature seeds of C. juncea were sampled from plants within a
natural population in Poland, locality Jany (51° 58′ 26″N, 15°
36 25″ E). Then, the plants obtained from the seeds were
grown on an experimental field in Modlnica near Cracow
(50° 07′ 45″ N, 19° 52′ 01″ E). From the cultured specimens,
young capitula were collected and fixed in glacial acetic acid:
96 % ethanol (1:3, v/v) for at least 24 h. The fixed plant ma-
terial was transferred to 70 % ethanol and stored at 4 °C.

Tissue clearing technique

Individual flowers were isolated from fixed inflorescences and
dehydrated for 30min in a graded ethanol series (70 to 100%).
Then they were cleared in methyl salicylate (Sigma-Aldrich)
according to a procedure earlier described by Musiał et al.
(2012) with some modifications. Dehydrated flowers were in-
cubated in absolute ethanol/methyl salicylate solutions (3:1,
1:1, and 1:3, v/v) and in two changes of pure methyl salicylate
(1 h per step). Cleared samples were placed in a drop of pure
methyl salicylate on a Raj slide (Herr 2000) and examined
using a Nikon Eclipse 80i microscope fitted with Nomarski’s
Interference Contrast (DIC optics). A total of 67 ovules
were analyzed.

Detection of callose

Decolorized aniline blue (DAB; 0.1 % w/v) was used to detect
the presence of callose (Martin 1959). Individual flowers were
dissected from fixed capitula and transferred to 80 % ethanol
for 30 min. Then they were softened in 1 N NaOH for 4 h at
37 °C, and after three washes with distilled water and one with
0.1 M K3PO4, the softened samples were stained overnight in
0.1 % DAB in 0.1 MK3PO4 at room temperature. After wash-
ing with 0.1 M K3PO4, flowers were placed into a drop of
0.1 M K3PO4/glycerol (1:1, v/v) on a microscope slide and
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ovules were dissected under a stereomicroscope. After ovule
isolation, samples were gently squashed under a cover slip and
observed under UV light using a Nikon Eclipse E400 micro-
scope with an Epi-Fl Filter Block N UV-2A consisting of
excitation filter EX330–380, dichroic mirror DM400, and bar-
rier filter BA420. A total of 146 ovules were analyzed.

Results

Early ovule development and megasporogenesis

A homogamous capitula of C. juncea comprise from 9 to 11
yellow ligulate florets, which are hermaphroditic and have a
bicarpellate gynoecium with an inferior, unilocular ovary and
five stamens with connate anthers forming a tube around the
pistil style. In C. juncea, as in other members of Asteraceae,
mature ovules are anatropous, tenuinucellate, and unitegmic.
In the examined florets, one ovule primordium emerged from
the placental tissue at the base of the young ovary, and, just
after ovule initiation, a single archesporial cell differentiated in
the subepidermal zone of the nucellus apex (Fig. 1a, b). This
distinctly enlarged cell had a dense cytoplasm and a centrally
located prominent nucleus with a large nucleolus (Fig. 1a).
The archesporial cell extended along the micropylar-chalazal
axis, and simultaneously, a single integument began to devel-
op at the base of the nucellus (Figs. 1a, b and 2a, b). During
further ovule development, the multilayer integument gradu-
ally covered the nucellus leaving a small apical opening—the
micropyle, and because of curvature of the funiculus, the anat-
ropous orientation of the ovule was established (Fig. 2a–e).
The archesporial cell functioned directly as the megaspore
mother cell (MMC) and entered an asyndetic meiotic pro-
phase. A disturbed first meiotic division led to the formation
of a restitution nucleus with an unreduced chromosome num-
ber, whereas the second meiotic division proceeded without
irregularities and resulted in a dyad of unreduced megaspores
(Fig. 1c). After the completion of meiosis, the inner epidermis
of the integument began to develop in the integumentary ta-
petum surrounding a single layer of nucellar cells adjacent to
the diplodyad (Fig. 1c). Then, the micropylar cell of the
diplodyad gradually degenerated while the chalazal one sur-
vived and became the functional megaspore (FM), which gave
rise to an unreduced female gametophyte by three successive
mitoses.

Callose localization in young ovules

At the premeiotic stage, callose was absent in the walls of the
ovule somatic cells, as well as in the wall of the archesporial
cell (Fig. 2a, b). In the slightly older ovules ofC. juncea under
examination, the presence of callose was limited to the walls
of the germline cells. The appearance of callose was observed

just after the beginning of the first meiotic division restitution,
and the amount of deposited callose, as well as the pattern of
its distribution, changed dynamically in the course of the mei-
otic diplospory and during the FM development. Callose bio-
synthesis was initiated at the stage of prophase I, and fluores-
cence of the aniline blue-stained callose deposits was notice-
able at the micropylar apex of the MMC wall in the form of a
fine arc-shaped line (Fig. 2c). Then, deposition of callose
progressed slightly towards the chalazal pole of the MMC
(Fig. 2d); however, the wall comprising callose did not extend
to the entire megasporocyte (Figs. 2e, f and 3a). Moreover,
callose was not evenly deposited in the wall of MMC and its
greatest accumulation was observed at the top of the
megasporocyte micropylar pole (Figs. 2e, f and 3a, b).
Strong fluorescence of the micropylar cap of callose was ob-
served until the end of the first meiotic division restitution
(Fig. 3a, b). After the formation of restitution nucleus, a very
slight callose deposition was also found at the top of theMMC
chalazal pole (Fig. 3b). In addition, especially in the middle
part of the lateral wall and in the chalazal region of the MMC,
scattered and dotted callose distribution was observed
(Fig. 3b). Usually, dispersed deposits of callose were still vis-
ible in the walls of newly formed megaspores at the end of the
second meiotic division (Fig. 3c); however, in some
diplodyads, the lateral walls of megaspores did not exhibit
such a specific callose accumulation (Fig. 3d). During cytoki-
nesis, callose appeared in the cell plate, while an intense

Fig. 1 Early stages of the ovule formation in C. juncea. Images were
obtained from cleared flowers using DIC optics. a, b Unilocular ovary
containing ovule primordiumwith a single archesporial cell differentiated
in the hypodermal part of the nucellus and a visible developing
integument. ac archesporial cell, int integument, ov ovary wall;
arrowhead indicates region of integument initiation. c Dyad of
unreduced megaspore cells surrounded by a layer of integumentary
tapetum. Arrow points to thick transversal wall between megaspores. ch
chalazal pole, it integumentary tapetum, m micropylar pole. Scale
bars = 10 μm
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fluorescence of the callose micropylar cap significantly de-
creased but did not disappear completely (Fig. 3c). In the
diplodyad, a newly formed transverse wall between the mega-
spores showed enhanced callose deposition and over time,
these callose deposits took the shape of a thick disk exhibiting
a very strong fluorescence (Fig. 3d, e). While the chalazal
megaspore of the diplodyad developed into the FM, the inten-
sity of callose fluorescence gradually decreased in this cell
(Fig. 3e, f). Finally, the lateral wall of the FM was devoid of
callose and showed no fluorescence, and only a very small
amount of callose persisted at the top of its chalazal pole
(Fig. 3f). At the same time, the wall of the micropylar cell of

the diplodyad displayed stronger fluorescence due to an in-
creased accumulation of callose, which again formed a dis-
tinctive cap at the top of the megaspore micropylar pole
(Fig. 3f).

Discussion

It was suggested previously that the absence of callose during
megasporogenesis may be common among diplosporous apo-
micts (Carman et al. 1991; Peel et al. 1997). However, the
results of our study do not confirm this hypothesis and dis-
tinctly indicate the presence of callose in the young ovules of
some diplosporous species exhibiting meiotic diplospory of
the Taraxacum type.C. juncea is the second apomictic species
in which we described the pattern of callose accumulation in
the wall of a cell undergoing meiotic diplospory. Earlier, we

Fig. 3 Callose localization during diplodyad formation in the ovules of
C. juncea after staining with DAB. a, b Megaspore mother cell with a
restitution nucleus. Strong fluorescence of the micropylar cap of callose
and slight callose deposits at the chalazal pole (arrow) are visible. c
Megaspore mother cell just after the second meiotic division. Note the
decrease of micropylar callose cap fluorescence and its appearance in the
plate cell (arrowheads). d Young diplodyad. Callose is mainly
accumulated in the transversal wall (arrowhead); dotted fluorescence is
visible in the wall of the chalazal megaspore (arrow). e, f Formation of the
functional megaspore. Gradual degradation of callose in the wall of the
chalazal cell within the diplodyad and an intensive callose accumulation
in the wall of the micropylar cell, as well as in the transversal wall
between megaspores (arrowhead); arrow indicates a remaining small
callose deposit at the chalazal pole of the functional megaspore.
ch chalazal pole, m micropylar pole. Scale bars = 10 μm

Fig. 2 Callose localization in the ovules of C. juncea after staining with
DAB. a, b Early developmental stages of an anatropous, unitegmic, and
tenuinucellate ovule. Callose is absent in the walls of both somatic and
archesporial cells (arrow). c, dMegaspore mother cell entering prophase
of the first division restitution. Callose appears at the megasporocyte
micropylar pole as a fine arc-shaped line (arrowhead). e, f Late
prophase I in the megaspore mother cell. Callose fluorescence is visible
only at the megasporocyte micropylar pole. ch chalazal pole, f funicle, int
integument, m micropylar pole. Scale bars = 10 μm
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documented the details of callose deposition in the walls of
MMC and during the FM selection in the ovules of a
diplosporous dandelion T. atricapillum (Musiał et al. 2015).
In the ovules of these two apomictic species, as in sexual
reproducing angiosperms, this polysaccharide appears as a
transient wall component only of the cells involved in the
reproductive process. Usually, callose deposition patterns vary
between species (Rodkiewicz 1970); however, ovules of apo-
micts C. juncea and T. atricapillum show a similar pattern of
its accumulation, and during the first meiotic division restitu-
tion, abundant callose deposits were detected on the micropy-
lar pole of the MMC. In the case of Taraxacum, there were
differences in the deposition of callose between apomictic and
sexual species. The monopolar pattern of its deposition in the
wall of the MMC was observed only in the ovules of an
apomictic dandelion, while in a sexual diploid Taraxacum
linearisquameum, callose was deposited in a bipolar manner
in the wall of the megasporocyte (Musiał et al. 2015).
Regarding the genus Chondrilla, it would be also interesting
to compare callose events in the ovules of apomictic and sex-
ual taxa; unfortunately, now we do not have the specimens of
diploid species.

Callose has multiple biological functions and plays
an important role in the regulation of intercellular com-
munication during developmental, physiological, and
stress response processes in flowering plants; however,
the molecular mechanisms involved in its biosynthesis
and degradation have not yet been fully elucidated
(Verma and Hong 2001; Chen and Kim 2009;
Zavaliev et al. 2011; Piršelová and Matušíková 2013).
It has been shown that callose deposition is an early
marker in somatic embryogenesis and in this case, its
possible role is that of isolating an embryogenic cell
from the influence of the surrounding cells and
interrupting cell–cell communication, which might stim-
ulate the reprogramming of a somatic cell into an
embryogenically competent cell and induce somatic em-
bryo development (Dubois et al. 1990, 1991; You et al.
2006). Likewise, temporary callose walls surrounding
the zygote and young zygotic embryo may have a func-
tion in establishing spatial isolation and may allow for
the initiation of genome reprogramming and the first
division of the zygote, as well as early embryogenesis
(Williams et al. 1984). Distinct callose walls are also
found around the initials of nucellar embryos. They also
surround young adventitious embryos (Gupta et al.
1996). Thus, in the light of the postulated callose role
as a factor isolating cells undergoing an autonomous
genetic program that determines especial cell differenti-
ation, the lack of callose in the walls of the aposporous
initials in apomicts (Tucker et al. 2001), as well as its
absence during tetrasporic megasporogenesis in sexual
angiosperms (Rodkiewicz 1970), seems intriguing.

Recent studies have confirmed the key role of intercel-
lular signaling between the somatic tissues and the re-
productive lineage during both sexual and apomictic fe-
male reproductive developments (Armenta-Medina et al.
2011; Bencivenga et al 2011; Grossniklaus 2011; Tucker
et al 2012). Currently, it is known that these signaling
pathways involve transcriptional regulation by transcrip-
tion factors and posttranscriptional control mechanisms,
and epigenetic regulation via small RNAs, as well as
hormonal regulation (for review see Drews and
Koltunow 2011; Grimanelli 2012; Rodriguez-Leal and
Vielle-Calzada 2012; Barcaccia and Albertini 2013;
Schmidt et al. 2014, 2015). During the early ovule de-
velopment, callose is a wall component only of a dif-
ferentiating female reproductive cell and seems to form
a regulatory interface between reproductive and somatic
cells, but it is still unclear whether this polysaccharide
functions as a specific semipermeable molecular filter,
or rather as a source of oligosaccharide signaling mole-
cules influencing cell differentiation and fate (Tucker
and Koltunow 2009, 2014). In sexual species, the pat-
tern of callose deposition during megasporogenesis is
also essential to the selection the FM, and callose rep-
resents a physical barrier that suppresses nonfunctional
megaspores by restricting the flow of nutrients or
growth factors (Rodkiewicz 1970; Russell 1979; Webb
and Gunning 1990; Papini et al. 2011). Our previous
observations of callose events in the ovules of apomict
T. atricapillum (Musiał et al. 2015) and result of the
present analysis of callose deposition in the ovules of
C. juncea indicate that in diplosporous apomicts
exhibiting meiotic diplospory of the Taraxacum type,
the pattern of callose distribution is also related to the
selection of the FM, and disappearance of callose within
the diplodyad coincides with the localization of the FM.

In conclusion, the present report documents, for the first
time, callose events in the course of meiotic diplospory in
C. juncea. In the analyzed ovules, we recorded (i) lack of
callose in the premeiotic stage; (ii) callose is a marker of the
cell entering the first meiotic division restitution; (iii)
monopolar callose deposition in the megasporocyte wall;
(iv) callose deposition pattern changing dynamically during
the diplodyad formation; and (v) callose deposition and disso-
lution corresponding to the localization of the FM.
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