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Abstract Plasmodesmata (PD) structure and function vary
temporally and spatially during all stages of plant develop-
ment. PD that originate during, or post, cell division are
designated as primary or secondary according to classical
terminology. PD structure may be simple, twinned, or
branched. Studies of PD during leaf, root, and embryo
development have lead to the generalization that cells in
less mature tissues contain predominantly simple PD. New
quantitative analyses reveal that twinned and branched PD
also occur in immature tissues. New data also highlight the
versatility of viral movement proteins as tags for labeling
PD in immature tissues as well as PD in mature tissues. A
summary of the formation and function of primary,
secondary, and branched PD during leaf, trichome, embryo,
apical meristem, vascular cambium, and root development
underscores the remarkable and indispensible plant-specific
intercellular communication system that is mediated by PD.
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Intercellular movement

Introduction

Coordinated growth, development, response to the envi-
ronment, and defense in multi-cellular organisms require

the exchange of information between cells. In plants, cell-
to-cell communication must occur despite the presence of
cellulosic walls surrounding each individual cell. This
difficulty is circumvented by the use of cell wall spanning,
membrane-lined, cytoplasmic channels known as plasmo-
desmata (PD). PD connect nearly all the cells of a plant,
allowing the transport of nutrients, signaling molecules, and
developmentally important macromolecules such as tran-
scription factors and RNA (reviewed in (Cilia and Jackson
2004; Lucas and Lee 2004; Kim and Zambryski 2005)).

One of the most critical and unique functions of PD
during plant development is the formation of symplastic
domains. During embryonic development, all cells share
common cytoplasm due to PD interconnections and thus
form one single symplastic unit allowing transport of small
fluorescent tracers and green fluorescent protein (GFP)
(McLean et al. 1997; Kim et al. 2005a). As growth and
further differentiation occurs, individual cells or groups of
cells become isolated from their immediately neighboring
cells by the loss of functional PD. Such subsets of cells
form distinct symplastic domains where cells within the
domain communicate with each other via PD, while cells at
the borders of the domains restrict intercellular transport
between domains.

That PD have essential roles in plant growth and
development is underscored by the lethal phenotypes of
mutants exhibiting altered PD or plasmodesmal transport
(Kim et al. 2002a; Kobayashi et al. 2007; Benitez-Alfonso
et al. 2009, Stonebloom et al. 2009). In this review, we
discuss the formation, structure, and distribution of PD
during development. We focus on cell-to-cell movement
and not long distance movement via the vascular system.
There is a vast PD literature and wherever possible, we try
to give only the most recent relevant references. For the
reader interested in additional references and details, we
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suggest a book entitled “Plasmodesmata” (Oparka 2005).
Other reviews are mentioned in specific subsections. We
sincerely apologize if we have missed a relevant publica-
tion due to our unawares. As we pay special attention to PD
nomenclature, we begin here.

PD nomenclature, structure, and function during
development

Primary and secondary PD have been described and defined
in a comprehensive review by Ehlers and Kollmann (2001);
primary PD originate during cell division, and secondary
PD refer to all PD that originate post cytokinesis. Besides
differing origins, PD have numerous structures, from
simple, to branched, to highly branched with central
cavities (Fig. 1). The least complex branched PD are Y-,
V-, X-, or H-shaped. Simple PD are most often found alone,
but they also occur in pairs, called twinned PD, PD not
more than 100-nm apart (Faulkner et al. 2008). Y-, V-, X-,

or H-shaped PD may represent intermediates in fission of
simple PD to form twinned PD. Figure 1a diagrams
twinned PD formation from a single initiation point that
then results in PD doubling via Y- to V-shaped intermediates.
Figure 1b presents a scenario that involves two opposite
initiation sites forming an X-shaped intermediate that then
becomes H-shaped prior to resolving into twinned PD.
Figure 1c diagrams that complex branched PD with multiple
channels and central cavities that may arise from H-shaped
branched PD.

Here, we suggest that H-shaped PD represent intermediates
in the formation of twinned PD (Fig. 1b) or they may
represent modifications of simple PD that occur as cells and
tissues mature to form complex multiply branched PD
(Fig. 1c). Previously, numerous authors propose that H-
shaped branched PD arise by fusion of twinned PD, possibly
by an X-shaped intermediate (Ding and Lucas 1996; Ehlers
and Kollmann 2001; Faulkner et al. 2008); such PD fusion
implies H-shaped PD arise post-twin PD formation. How-
ever, here we put forward the hypothesis that PD fusion is an
unlikely event as such fusions would imply that the cell wall
regions between PD contract. Cell wall contraction may
occur under certain circumstances such as during senes-
cence, or environmental stress. However, during the bulk of
plant development as plant cells grow, their cell walls
expand, and PD are likely to double during cell wall
expansion (Ehlers and van Bel 2010) (Fig. 1d) (discussed
further below). Quantitative time course studies may resolve
these conflicting views.

The frequency of simple to branched PD strongly
correlates with plant development. In young, immature
tissues like embryos (Burch-Smith and Zambryski 2010),
sink leaves (Oparka et al. 1999), shoot (Ormenese et al.
2000), and root meristems (Duckett et al. 1994; Zhu et al.
1998a) PD are mostly morphologically simple, consisting
of a single linear channel connecting adjacent cells. In
mature tissues, PD are mostly branched, adopting more
complex structures of multiple channels connected by
central cavities (Ding et al. 1992). One of the best
illustrations of PD structural alterations during development
from immature to mature cells, is a quantitative study of
simple versus branched PD during the sink to source
transition in tobacco leaves (Oparka et al. 1999). These
authors found that sink leaf cells contain over 90% simple
PD. In contrast, source leaf cells contain predominantly
highly branched PD with central cavities, and only
approximately 20% simple PD.

The molecular details of how primary and secondary PD
are formed are unknown. Models to date derive from
descriptive ultrastructural studies that give only a static
snapshot of PD structure and development following harsh
chemical fixation of tissues. Nevertheless, we briefly
summarize what is known. Primary PD always arise during
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Fig. 1 PD structures and how they form. a, b Present different
intermediate PD structures that may form during the creation of
twinned PD by fission of a simple PD. a Initiation of PD doubling at
one site that results in Y- and V-shaped intermediates. b Initiation of
PD doubling at two sites that results in X- and H-shaped intermedi-
ates. c How an H-shaped PD may become further branched and
ultimately contain a central cavity (c). d A mechanistic model for how
twinned PD or branched PD arise that derives from the laying down of
new cell wall material (dark grey shading) as the cell wall (light grey
shading) expands laterally. New cell wall material may initiate the
branching of PD and then ultimately separate the two newly formed
PD channels. While the cell wall is not drawn in panels a, b, and c,
cell wall expansion likely also drives the formation of the Y-, V-, X-,
and H-shaped PD, twinned PD, and multiple-branched PD. Note the
PD channels diagrammed in all panels represent the cell membrane
bound channel without the central ER-derived desmotubule. The
model drawn in D is a simplification of a similar model in Ehlers and
van Bel (2010)
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cell division, when strands of endoplasmic reticulum (ER)
become entrapped in the cell plate during Golgi-mediated
deposition of new cell wall material; Golgi membranes then
surround the ER strands to form the outer limits of the PD
membrane (reviewed in Ehlers and Kollmann 2001).

An even bigger question is how secondary PD form? We
now know that there are two types of secondary PD.
Secondary PD that arise from simple PD to form twinned
PD, and secondary PD that arise entirely de novo in cell
walls without pre-existing PD. We use the terms “twinned
secondary PD” and “de novo secondary PD” to distinguish
these two types of secondary PD. Figure 1d presents a
simple model for how twinned secondary PD arise. In this
model (from Ehlers and van Bel 2010), PD form as the cell
wall loosens and expands horizontally and new cell wall
material becomes inserted in between PD membranes. Cell
wall expansion may also provoke the insertion of new PD
channels as occurs during complex branched PD formation
(Fig. 1c). Another model proposes new strands of ER
become inserted nearby an existing PD localized ER strand,
followed by insertion of new cell wall material (Faulkner et
al. 2008). Ehlers and van Bel (2010) distinguish the role of
the ER in these two models in PD fission, as “passive” and
“active”. We favor the passive model (cell wall deposition,
not ER drives PD formation) presented in Fig. 1d as we
never observe ER insertion into the cell wall during
examination of thousands of PD that are forming in cells
from developing immature tissues in embryos and sink
leaves. It remains possible that ER insertion and/or
entrapment may occur in other cells and tissues. Genetic,
molecular, and advanced imaging approaches are clearly
needed to resolve how twinned PD arise and subsequently
develop.

How de novo secondary PD form is even more poorly
understood. The critical question is how does the formation
of a plasmodesma initiate? Does PD formation initiate in one
cell and then progress through the cell wall to the adjacent
cytoplasm? A more intricate and unlikely scenario would
involve signaling of PD initiation at identical locations in
adjacent cells resulting in PD fusion/formation in the central
wall region. A plausible scenario involves localized thinning
of the cell wall bringing the plasma membranes between two
adjacent cells into proximity to allow PD formation to
initiate in a focused region with subsequent vertical
extension as new cell wall material is laid down. This
intriguing possibility is supported by abundant data from
graft unions, and fusions between cells growing in tissue
culture (reviewed in Ehlers and Kollmann 2001).

However, few studies monitor de novo secondary PD
formation during wild-type development. The most obvious
cells to study de novo secondary PD formation are those
undergoing cell wall elongation post cell division. Two
such systems have been investigated in astonishing detail,

the elongation zone of the developing root (Zhu et al.
1998a) and the development of secondary xylem and
phloem (Ehlers and van Bel 2010). Both studies quantify
PD in different cell types along apical, basal, and side cell
walls, and are described in more detail in later sections of
this review. Apical and basal root cell walls predominantly
contain primary PD resulting from cell division in the
horizontal plane, whereas elongating sidewalls contain de
novo secondary PD. Other systems to study de novo
secondary PD formation are those which characterize PD
between cells that are unambiguously not clonally related,
such as between the epidermal cell layer and the underlying
mesophyll cells of the leaf (Burch-Smith and Zambryski
2010). Like primary PD, secondary PD can have various
morphologies, from simple to branched (Ehlers and van Bel
2010; Burch-Smith and Zambryski 2010).

How then can primary PD be distinguished from
secondary PD? In immature cell walls that are clearly
formed as a result of cytokinesis, such as the mesophyll
cells of a newly arising sink leaf or the transverse cell walls
of a file of elongating root cells in the differentiation zone,
PD can be classified most likely as primary. Twinned, Y-, or
H-shaped PD in rapidly dividing cells from embryos or sink
tissues may represent different stages in the modification of
primary PD to produce secondary twin or branched PD
(Fig. 1). In contrast, in mature cell walls it is impossible to
unequivocally assign the origin of PD as primary or
secondary unless the lineage of the cell wall and the
developmental history of the PD is known.

Finally, PD function is described by the types of
molecules are transported by PD. We introduced the terms
targeted and nontargeted PD movement (Crawford and
Zambryski 2000). Proteins that interact with PD and induce
their own efficient movement are designated “targeted” PD
proteins. Targeted proteins, such as tobacco mosaic virus
movement protein (TMV-MP) have a punctate appearance
in cell walls and such puncta are coincident with PD. Non-
targeted proteins, exemplified by exogenous proteins such
as GFP, move cell to cell by diffusion and do not target/
localize to PD. Targeted movement is thought to be an
active process compared with passive non-targeted move-
ment. Whether a protein can move via PD or not is dictated
by its cellular address (Crawford and Zambryski 2000);
thus, proteins with ER retention or organelle targeting
signal sequences do not move cell to cell as they are
sequestered into different cellular compartments. Likewise,
proteins that are anchored onto cellular structures such as
the cytoskeleton do not move cell to cell via PD. Thus, only
“soluble” nonsequestered cytoplasmic proteins can move
cell to cell. Interestingly, the nuclear pore allows proteins to
move into the cytoplasm and vice versa, so that nuclear
proteins also can move cell to cell via PD (Crawford and
Zambryski 2000). Notably, numerous transcription factors

Plasmodesmata during development 63



have been demonstrated to move to adjacent cells via PD
(see below), and when expressed ectopically they move
extensively. These latter data have led to the suggestion that
transcription factors move cell to cell via diffusion, unless
retained by their respective binding sites in active chroma-
tin (Wu et al. 2003).

Two new results provoke renewed attention to PD
nomenclature. Firstly, we (Kobayashi et al. 2007), and
others (Benitez-Alfonso et al. 2009), previously assumed
that embryos only contain simple unbranched PD; both
reports mention the presence of branched PD specifically as
a feature of the mutant phenotype. However, quantitative
and statistically significant measurements of PD structures
during embryogenesis now reveal that wild-type embryos
contain 5–9% twinned and branched PD between early and
late torpedo stages of development (Burch-Smith and
Zambryski 2010). Thus, the 9% branched PD reported by
Benitez-Alfonso et al. (2009) is not significantly different
from the frequency observed in wild-type embryos. While
Kobayashi et al. (2007) noted 15% branched PD in their
mutant, they incorrectly reported no branched PD occur in
wild-type tissues because insufficient numbers of PD were
analyzed in wild-type tissues. Thus, to accurately determine
the frequencies of different PD structures in particular cell
types it is essential to analyze a statistically significant
number (at least 500) of PD in both experimental and wild-
type tissues.

Secondly, we have new results on the properties of the
movement protein (MP) of tobacco mosaic virus (TMV).
TMV-MP is an exceptionally valuable tool for PD research
as TMV-MP labels PD, and TMV-MP can also manipulate
PD aperture to increase intercellular movement (reviewed
in (Epel 2009)). While TMV-MP previously has been used
to identify PD as “secondary” (Ding et al. 1992), we
present data (Fig. 2 below) showing that TMV-MP also
extensively labels primary PD.

Developmental regulators that traffic through PD

Over the last two decades the importance of PD has been
augmented by abundant and clear evidence that endogenous
plant macromolecules use PD to move from cell to cell to
influence development. Table 1 highlights two critical
developmental regulators of cell identity, transcription
factors, and small interfering RNAs (siRNAs), that traffic
via PD. Most noncell-autonomous transcription factors are
members of the KNOTTED1 homeobox (KNOX) or
MADS domain families of proteins (reviewed in Jackson
2005). That multiple members of a given protein family
traffic intercellularly from one tissue layer to another
underscores such movement as essential for function.
Movement of transcription factors is tightly regulated as
most move only one to a few cells beyond their initial

expression site (Nakajima et al. 2001; Kim et al. 2002b;
Kim et al. 2003). The position of a plant cell is the key
factor governing its developmental fate (van den Berg et al.
1995, 1997). Therefore the movement of transcription
factors is a mechanism for conveying positional informa-
tion to neighboring cells to reinforce other signals directing
a differentiation process (Mezitt and Lucas 1996; Sessions
et al. 2000). While numerous transcription factors move
cell to cell via PD, none have been observed at sufficient
microscopic resolution to reveal whether or not they
accumulate to form PD puncta. However, KN1 dilates PD
(Lucas et al. 1995), and this result implies a specific active
interaction/targeting to PD.

Different types of siRNAs move cell to cell and act to
silence endogenous and exogenous homologous sequences.
Remnants from transposon inverted repeat sequences (IR)
form a large fraction of eukaryotic genes, and such IRs are
targets of endogenous gene silencing; we now design
RNAinterference (RNAi) experiments that mimic this
endogenous gene silencing strategy (Dunoyer et al.
2010b). Gene silencing is also critical to silence exogenous
RNAs such as plant viruses (Mlotshwa et al. 2008). siRNAs
likely move through PD as double-stranded RNA mole-
cules and to date no proteins are known to associate with
the siRNA complex (Dunoyer et al. 2010a). MicroRNAs
(miRNAs) are regulators of developmentally important
transcription factors and most act cell autonomously
(reviewed in Voinnet 2009). However, new evidence
suggests two miRNAs, miR165/6, move across cell files
to regulate root development (Carlsbecker et al. 2010)
discussed further below. Finally, some trans-acting silencing
(tasi) RNAs move from the upper leaf surface to the lower
leaf surface to signal auxin-mediated lower leaf development
(Chitwood et al. 2009). Local PD-mediated and systemic
movement of small (∼17–27 nucleotides) RNAs is a rapidly
advancing new area of research in plant developmental
biology.

PD aperture is regulated during development

PD were first described as channels allowing the passive
movement of water and small solutes between cells
(reviewed in Roberts and Oparka 2003). The advent of
modern cell biological techniques combined with probes
derived from plant viruses and membrane-impermeant
fluorescent molecules of various sizes revealed the dynamic
nature of PD. The upper limit of the size of molecules
transported by PD is called the size exclusion limit (SEL),
and SEL reflects PD aperture. Changes in PD aperture/SEL
occur during all stages of plant growth and development,
most often studied in tobacco leaves of different ages
(Oparka et al. 1999 and references therein). However, it is
important to note that within mature or immature tobacco

64 T.M. Burch-Smith et al.



leaves individual cells may have PD with different states of
aperture/SEL such as closed, open, or dilated, and the
frequency of the different states of PD aperture varies in
young versus older tissues (Crawford and Zambryski
2001). Remarkably, viral MPs can overcome reduced
aperture even in mature leaves; 2X-GFP (54 kDa) normally
moves out of only 2% of the cells expressing it in mature
source leaves, but TMV-MP fused to GFP (58 kDa) moves
out of 52% of such cells (Crawford and Zambryski 2001).
These data suggest that PD aperture is dynamic and not fixed.

As already mentioned, one important function of the
dynamic regulation of PD aperture/SEL is the establishment
of symplasmic fields, cytoplasmically coupled cells that
execute a common developmental program. Symplasmic
fields occur in the shoot apex (Rinne and van der Schoot
1998; Gisel et al. 1999; Gisel et al. 2002), root epidermis
(Duckett et al. 1994), different regions of developing
embryos (Kim et al. 2005a), seeds (Stadler et al. 2005),
and the tissues surrounding the male and female game-
tophytes (Imlau et al. 1999). PD within a field will likely
have similar SEL but reduced PD aperture at the borders
likely modulates the passage of morphogens, allowing the
establishment of morphogenetic gradients required for
tissue development. Sometimes symplastic isolation is

fundamental to the development of a particular cell type
including root hairs (Duckett et al. 1994), stomatal guard
cells (Palevitz and Hepler 1985), cotton fiber cells (Ruan et
al. 2001), pollen mother cells that become isolated from the
surrounding tapetum during their development (Regan and
Moffatt 1990), and the female megaspore that becomes
isolated from the surrounding cells of the ovule (Werner et
al. 2010).

The viral connection: confusing primary and secondary PD

TMV-MP localizes to the central cavities of complex
branched PD in the source leaves of transgenic tobacco
plants constitutively expressing MP but is absent from
simple PD in the sink leaves of the same plants (Ding et al.
1992). These data have led to the idea that TMV-MP only
localizes to complex branched PD with central cavities,
called “secondary” PD by the authors, in mature tissues
(Ding et al. 1992). Many reports have subsequently asserted
that viral MPs preferentially localize to “secondary”
plasmodesmata in mature tissues (e.g., Epel 1994; Hofius
et al. 2001). Based on these earlier reports, TMV-MP was
used to distinguish branched (“secondary”) PD from
primary PD (Roberts et al. 2001).

Table 1 Developmental regulators of cell identity, transcription factors, and small interfering RNAs

Molecule Description Function Tissue References

Transcription factors

KN1 KNOX family Cell division and cell fate Maize SAM Lucas et al. 1995

GLO/DEF MADS domain family
and B type

Petal and stamen identity Antirrhinum
inflorescence
meristem

Perbal et al. 1996

LFY Unique and plant specific Floral meristem identity Arabidopsis
inflorescence

Sessions et al. 2000

STM KNOX family SAM initiation and
maintenance

Arabidopsis SAM Kim et al. 2003

KNAT1/BP KNOX family SAM initiation and
maintenance; inflorescence
cell fate

Arabidopsis
meristem

Kim et al. 2003

SHR GRAS family Cell division and endodermis
specification

Arabidopsis root Helariutta et al. 2000;
Nakajima et al. 2001

CPC MYB family Root hair development Arabidopsis root Wada et al. 2002

AG MADS domain family
and C type

Cell division and cell fate;
flower development

Arabidopsis
inflorescence

Urbanus et al. 2010

RNAs

Endogenous
siRNAs

21–24 nt RNA from transcripts
with stem-loop structures

Silence endogenous IR
sequences

All tissues Tretter et al. 2008; Dunoyer et al.
2010a, b; Molnar et al. 2010

tasiRNA 20–24 nt RNA, form by miRNA
activity, and siRNA machinery

Leaf development Leaf Tretter et al. 2008;
Chitwood et al. 2009

miRNAs 20–24 nt RNA encoded by MIR
genes

Cell fate and root
development

Root Carlsbecker et al. 2010

KN1 KNOTTED1, KNOX KNOTTED1 homeobox, SAM shoot apical meristem, GLO GLOBOSA, DEF DEFICIENS, LFY LEAFY, STM
SHOOTMERISTEMLESS, KNAT1 KNOTTED1-like homeobox protein 1, BP BREVIPEDICELLUS, SHR SHORTROOT, CPC CAPRICE, AG
AGAMOUS, siRNAs small interfering RNAs, tasi transacting siRNAs, miRNAs microRNAs

Plasmodesmata during development 65



However, it is critical to point out that TMV-MP is also
capable of labeling simple PD (without branches or
cavities) in immature cells. For example, TMV-MP fused
to GFP (MP-GFP) significantly labels PD in cells from
tobacco sink leaves (see Fig. 4 in Crawford and Zambryski
2001). Furthermore, TMV-MP-GFP extensively labels PD
in embryos (Kim et al. 2005a), even though very few PD in
embryonic tissues are secondary (Zhu et al. 1998b; Burch-
Smith and Zambryski 2010). Significantly, here we show
that TMV-MP-GFP also labels the PD in transverse walls of
cells in the differentiation zone just above the meristem of
1-week-old Arabidopsis seedling roots (Fig. 2a, c). These
PD have been established as primary PD (Zhu et al. 1998a)
and their distribution frequencies in the different cell files
of seedling roots are illustrated in Fig. 2e. In support and in
contrast the movement protein of, Potato leaf roll virus
(PLRV) MP17, another MP that accumulates at complex
PD in transgenic plants (Hofius et al. 2001), does not
localize to PD in the same region of the developing root
(Fig. 2b, d). Instead, PLRV MP17-GFP appears throughout
the cytoplasm or in aggregates in the developing root
(Fig. 2b, d).

While the literature claims that both TMV-MP and PLRV
MP17 specifically label secondary PD, it is clear that TMV-
MP can also label primary PD in sink leaves, embryos, and
young seedling roots. Thus, P30 and P17 have different and
distinct PD-labeling specificities. Results that depend on the

use of these probes to distinguish between PD of different
origins should therefore be interpreted cautiously.

PD in different developing cells and tissues have differing
transport capacities

PD of different origins and structures have different transport
capabilities in different tissues. Arguably, strictly controlled
differences in PD function have important roles in develop-
ment to allow specific distribution of developmentally
important molecules.

Leaves

Cell-to-cell movement has been studiedmost in tobacco leaves.
In young leaves or in regions of maturing leaves that are still
net photosynthetic sinks, greater than 90% of PD are simple
(Oparka et al. 1999). As these cells become net exporters of
photosynthate, simple PD become complex and sometimes
elaborately branched PD (Ding et al. 1992; Itaya et al. 1998).
While the origins of these latter PD were not determined, the
authors refer to them as secondary. At least some of these
complex PD may derive from modified (i.e., branched)
primary PD. Nonetheless, it is clear that modified PD have
different transport abilities from their simple progenitors.

Large soluble molecules like GFP move through PD by
diffusion without specifically interacting with the PD,

Fig. 2 Localization of viral movement proteins in Arabidopsis seedling
root tips. TMV-MP-GFP constitutively expressed from the CaMV
minimal 35S promoter in a 5-day-old transgenic Arabidopsis seedling
root tips localizes predominantly to plasmodesmata in transverse cell
walls (a) containing high densities of primary PD while PLRV MP17-
GFP expressed from the same promoter fails to localize to plasmodes-
mata in root tips (b). Images are projections of confocal stacks; scale
bar represents 50 μm. Higher magnification confocal images of TMV-
MP-GFP (c) and PLRV MP17-GFP expression (d) in root tip epidermal

cells reveal that TMV-MP-GFP is localized largely to punctae in
transverse cell walls while PLRV MP17-GFP is retained in the
cytoplasm and forms cytoplasmic aggregates. Scale bar represents
5 μm. e A graphic representation of the distribution and frequency of
predominantly primary plasmodesmata in 1-week-old Arabidopsis root
tips demonstrates that transverse cell walls in all cell layers of the root
tip contain a higher density of plasmodesmata than longitudinal cell
walls. e Adapted from Fig. 4 of Zhu et al. 1998b and used with kind
permission from Springer: Protoplasma
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termed non-targeted movement (Crawford and Zambryski
2000). Cell-to-cell spread of GFP fusions revealed that the
aperture/SEL of mesophyll PD of tobacco sink leaves is 47
to 54 kDa (Oparka et al. 1999; Crawford and Zambryski
2001). However, source tissues showed a marked decrease
in the ability to transport molecules of this size (Oparka et
al. 1999; Crawford and Zambryski 2001). These results
suggest that sink PD have a high basal aperture/SEL
allowing diffusion-driven non-targeted transport of relative-
ly large molecules, while source tissues have more
restricted cell-to-cell movement.

In contrast to non-targeted movement of soluble GFP,
TMV-MP-GFP targets to PD forming punctate patterns in
the cell wall and remains associated with PD as it spreads to
neighboring cells (Crawford and Zambryski 2000). When
fluorescent membrane-impermeable dyes were microin-
jected into the cytoplasm of mature tobacco mesophyll
cells, dyes of only approximately 500 Da move freely from
cell to cell (Wolf et al. 1989). However, in transgenic
tobacco plants constitutively expressing TMV-MP, PD
aperture/SEL increases to allow molecules of approximate-
ly 10 kDa to move cell to cell following microinjection
(Wolf et al. 1989). Thus in addition to mediating its own
intercellular movement TMV-MP can “gate” PD, causing
large increases in their apparent aperture/SEL and such
“gating” stimulates movement of molecules (such as large
fluorescent dextrans) in trans. PD gating was limited to
fully expanded or mature leaves in TMV-MP transgenic
tobacco when studied by microinjection assays (Deom et al.
1990). However, quantitative studies using biolistic bom-
bardment to introduce TMV-MP for transient expression
revealed that MP-GFP dramatically gates PD in source
leaves (52% of cells exhibited targeted movement of 58-
kDa MP-GFP versus only 2% exhibited non-targeted
movement of similarly sized 54-kDa 2X-GFP), and also
causes significant gating in sink leaves (76% of cells
exhibited targeted movement of MP-GFP versus 30%
exhibited non-targeted movement of 2X-GFP) (Crawford
and Zambryski 2001). Thus, TMV-MP causes a striking
manipulation of aperture/SEL in complex PD of mature
source leaf cells, but can also manipulate PD that already
exhibit high aperture/SEL in immature sink leaf cells. That
Deom et al. (1990) did not observe gating in immature
tissues as in Crawford and Zambryski (2001) is likely due
to several factors. Deom et al. (1990) used transgenic plants
with long-term over-expression of TMV-MP that may lead
to inactivation of TMV-MP by host factors, and fluorescent
dextrans were added to cells by microinjection that may
result in pressure induced PD closure (Oparka and Prior
1992). In contrast, Crawford and Zambryski (2001)
studied TMV-MP activity following transient expression of
DNA constructs introduced by biolistic bombardment at very
low pressure. Note, early studies using biolistic bombardment

at much higher pressure resulted in no diffusive non-targeted
cell-to-cell movement of GFP (Itaya et al. 1997).

Independent dye coupling analyses in mature leaves,
where the intercellular movement of an injected dye is
monitored, reveal PD transport between specific cells:
mesophyll to mesophyll, mesophyll to bundle-sheath cells,
bundle-sheath cells to each other, but not bundle-sheath to
phloem-parenchyma cells (Ding et al. 1992). This latter
group of PD is truly secondary (Ehlers and Kollmann
2001), and is critical for unidirectional sugar transport
(Volk et al. 1996). Thus secondary PD may have functions
that are different from modified primary PD, despite their
apparently identical structure.

Trichomes

Tobacco trichomes contain a linear array of five to eight cells
that arise by cell division; thus, the PD connecting the cells are
mainly primary, or secondary if they are formed post cell
division. Trichome cells are connected by a gradient of simple
(at the less mature tip cell) to complex, branched PD (in the
more mature basal cell) (Waigmann et al. 1997). The basal
aperture/SEL of PD between trichome cells is relatively large
at 7 kDa (determined by microinjection) and is not increased
by TMV-MP (Waigmann and Zambryski 1995). Thus TMV-
MP cannot gate PD in all cell types.

A comprehensive study of PD at the tobacco leaf trichome-
epidermal cell interface illuminates PD development during
trichome maturation (Faulkner et al. 2008). The first PD
formed at this interface are randomly distributed primary PD.
As the surface area of the trichome-epidermal cell wall
interface increases, there is an increase in the number of
secondary PD due to the insertion of new PD directly
adjacent to existing channels to produce twinned PD. These
twinned PD likely represent one primary PD and one
secondary PD and Faulkner et al. (2008) suggest they may
fuse to give rise to branched PD with central cavities.
Interestingly, there is unidirectional transport across this wall
interface. The small (∼45 Da) fluorescent dye Lucifer yellow
CH failed to enter epidermal cells when microinjected into
the basal trichome cell, although it moved apically into other
trichome cells (Christensen et al. 2009). However, if the dye
was injected into the supporting epidermal cell, it entered the
trichome cells. TMV-MP had no effect on this symplastic
barrier, suggesting that the PD at this boundary are resistant
to the gating effect of MP consistent with previous data
(Waigmann and Zambryski 1995). Directionality of PD
transport develops as leaves mature and PD undergo
modification since PD in young single-celled trichomes,
containing simple PD, allow transport into epidermal cells
(Faulkner et al. 2008; Christensen et al. 2009). Another
factor that may drive directional transport in mature
trichomes is bulk solute transfer to tip cells for excretion.
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Embryos

The embryo has traditionally been viewed as a collection of
immature tissues that establish the basic body plan of the
adult plant. However, these developing tissues exhibit
intricate regulation of their PD aperture/SEL (Kim et al.
2002a; Kim et al. 2005a, b; Kim and Zambryski 2005;
Stadler et al. 2005) that is critical for normal Arabidopsis
embryogenesis. For example, at the mid-torpedo stage PD
aperture/SEL is significantly decreased (Kim et al. 2002a).
Furthermore, the embryo contains distinct symplastic
domains where single, double, and triple-sized GFP display
differential movement into different regions of the embryo
at different stages of embryogenesis (Kim et al. 2005a).
Remarkably, these domains of PD-mediated transport
correspond to the areas that will give rise to the basic
tissues of the seedling established by clonal analyses, i.e.,
cotyledons, shoot apical meristem, hypocotyl, and root.
Thus, the size of PD aperture and consequent transport
capacity likely facilitates morphogenesis.

The identification of embryo-lethal mutants with altered
patterns of movement of fluorescent tracers compared with
wild type reinforces the importance of regulation of PD
aperture/SEL in embryo development (Kim et al. 2002a).
Two mutations, increased size exclusion limit (ise)1 and 2,
allow transport of fluorescent tracers beyond the time of the
mid-torpedo transition when wild-type PD aperture/SEL is
decreased. ISE1 encodes a mitochondrial DEAD-box RNA
helicase (Stonebloom et al. 2009), and ISE2 encodes a
DEVH-type RNA helicase (Kobayashi et al. 2007).
Benitez-Alfonso et al. (2009) mutagenized seedlings
expressing GFP in phloem specific cells that lead to GFP
movement cell to cell into surrounding tissues. They
screened for mutants, called GFP-arrested trafficking1
(gat1) that exhibit reduced PD function by failing to unload
GFP from the phloem.

Ultrastructural analyses examined the relationship between
PD form and function in wild type versus ise1 and ise2
embryos (Burch-Smith and Zambryski 2010). Interestingly
twinned and branched (Y- and H-shaped) PD occur in wild-
type embryos of all stages representing 9%, 10%, and 8% of
PD in hypocotyls of early, mid, and late torpedo embryos
(Burch-Smith and Zambryski 2010). Thus, in contrast to the
widely held view that branched PD are synonymous with
mature tissues, branched PD also occur in very young
developing tissues. Notably ise1 and ise2 mutations result in
a significant increase in the occurrence of twinned and
branched PD in embryos (Burch-Smith and Zambryski
2010); ise1 embryos have 18%, 15%, and 26% twinned
and branched PD in hypocotyls of early, mid, and late
torpedo stages, and ise2 hypocotyls have 25%, 28%, and
13% twinned and branched PD at the same stages.
Interestingly there is a temporal pattern in the frequency of

twinned and branched PD during embryogenesis; the
hypocotyl contains more twinned and branched PD than
the cotyledon in early and mid-torpedo embryos, and this
pattern is reversed in late torpedo embryos. This pattern is
conserved in the ise2 mutant compared with wild type, but it
is altered in the ise1 mutant. Thus, PD structure/function
may regulate plant development or vice versa.

What is the origin of these twinned and branched PD in
the embryo? RNA silencing experiments in sink leaves of
Nicotiana benthamiana revealed that ISE1 and ISE2 act in
pathways to control the formation of de novo secondary
plasmodesmata; we were able to unambiguously assign PD
as de novo secondary PD since we scored PD in the cell
walls connecting the epidermal layer to the underlying
mesophyll cells. Epidermal and mesophyll cells are not
clonally related and divide independently of each other
((Marcotrigiano 2001) and references therein). Thus, we
propose that the increased proportions of twinned and
branched PD in ise1 and ise2 mutant embryos are due to the
upregulation of secondary PD formation. Secondary PD
formed in ISE1- and ISE2-silenced leaves have significantly
increased transport abilities compared with nonsilenced
controls, as measured by TMV-MP-2XGFP movement in
the horizontal and vertical planes representing PD-mediated
movement between epidermal cells and from the epidermal
layer to the underlying mesophyll cells. These data in
silenced leaves are consistent with the increased transport
of fluorescent tracers in ise1 and ise2 mutant embryos
(Burch-Smith and Zambryski 2010).

PD in the shoot apex

PD connecting the L1 cells to underlying L2 cells in the shoot
apical meristem (SAM) of dicotyledonous plants are unam-
biguously secondary as cells in the L1 layer almost exclu-
sively divide anticlinally (Marcotrigiano 2001). Secondary
PD connecting L1 to L2, such as those connecting the
epidermis to the mesophyll layer of leaves can be simple or
branched (Burch-Smith and Zambryski 2010). Secondary
L1–L2 PD in the vegetative and inflorescence apical
meristems facilitate movement of developmentally important
transcription factors belonging to the KNOX (Jackson et al.
1994; Lucas et al. 1995) and the MADS families (Perbal et
al. 1996) among others (Table 1). KNOTTED1 (KN1) was
the first transcription factor shown to move intercellularly:
KN1 RNA is expressed exclusively in L2 cells of maize
meristems but KN1 protein is detected in both L1 and L2
(Lucas et al. 1995). Similarly, Antirrhinum DEFICIENS
moves from L2 and L3 to the L1 (Perbal et al. 1996). When
a GFP-KN1 fusion was expressed specifically in Arabidopsis
leaf mesophyll cells (L2/L3) it was detected in the epidermis
(L1), but it could not move in the opposite direction from
epidermis to mesophyll (Kim et al. 2003). In contrast, when
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GFP-KN1 was expressed in the L1 of the SAM it moved to
the L2/L3 layers. Thus, leaf L1–L2 secondary PD exhibit
directionality of PD transport comparedwith L1–L2 secondary
PD in the SAM (Kim et al. 2003). Free GFP and a GFP-viral
MP fusion could move in both directions in the leaf,
suggesting there is a specific mechanism regulating move-
ment of the GFP-KN1 fusion and that PD are not generally
closed in one direction.

PD and intercellular trafficking in the SAM are also
regulated in response to environmental cues like seasonal
day length changes that influence development. The
frequency of PD throughout the Sinapis alba SAM
undergoing the floral transition increases dramatically
(Ormenese et al. 2000). While some PD may be primary
due to cell division, Ormenese et al. (2000) suggest that the
vast majority of these newly formed PD are secondary.
Such secondary PD formation may be prompted by the
transient increase in a floral stimulus (Ormenese et al.
2000), most likely cytokinin (Ormenese et al. 2006).

Detailed time course experiments indicate that PD
transport is temporally regulated at the Arabidopsis SAM
during development (Gisel et al. 1999; Gisel et al. 2002).
There is little unloading of fluorescent tracers from the
vascular system into young vegetative apices (plants with
less than 12 visible leaves) but there is a dramatic increase
of unloading into apices in older plants with greater than 12
visible leaves. (Loading is a term used to denote movement
of nutrients, signal molecules and tracers into the vascular
system from the surrounding cells of source leaves; the
corollary is unloading which occurs when molecules move
from the vascular system into the surrounding cells of sink
tissues. For the experiments described tracer was loaded
into the vascular system of leaf petioles, and then observed
for unloading in the SAM sink.) Remarkably, unloading
into the apex ceases for several days during the transition
from vegetative to floral development in Arabidopsis
(Fig. 3), and then resumes again once floral morphogenesis
is underway (Gisel et al. 1999; Gisel et al. 2002). As the
inflorescence meristem undergoes profound changes in
architecture and gene expression to produce floral mer-
istems (that will produce multiple organ types) versus the
single type of organ (leaves) produced by the vegetative
meristem, it may be advantageous to sequester the SAM
during the establishment of reproductive development.
Secondary PD formed during this time (Ormenese et al.
2000) may then facilitate highly regulated transport of
micro- and macromolecular signaling molecules.

PD in vascular development

The vascular cambium is a lateral meristem that gives rise to
the secondary vascular tissues. An outstandingly detailed
study utilized newly arising secondary xylem and phloem in

the tomato stem to follow the production and function of PD
during vascular development (Ehlers and van Bel 2010). PD
development follows a strict chronological pattern that
coincides with cell development, as also noted during
embryo development (Burch-Smith and Zambryski 2010).
Notably, most of the PD deployed in the cambial zone arise
by modification of existing PD and extensive insertion of
secondary PD (Ehlers and van Bel 2010). The authors
describe four phases of PD development in tangential walls
beginning with PD connecting the xylem and phloem initials
and ending with PD connecting mature vascular cells. The
radial patterning of cells during vascular development is
dependent on increased branching of PD and insertion of
secondary PD during cell expansion, and is concomitant
with decreased intercellular transport (measured by injection
of Lucifer Yellow and its movement in radial sections). In
contrast, in transverse cell walls connecting cells of the same
developmental stage, secondary PD are inserted in all

Fig. 3 Movement of symplastic tracers during the transition to floral
development in Arabidopsis. Arabidopsis grown under short-day (SD)
conditions were loaded through their leaf petioles with 8-
hydroxypyrene 1,3,6,-trisulfonic acid (HPTS), molecular mass
520 Da. Following 39 and 42 SDs, seedlings have 15 (a, b) and 19
leaves (c, d). a At 39 SD, plants are still vegetative and unload HPTS
into their apices following transport via the vascular system from leaf
petioles. The image is a confocal optical section and documents that
HPTS does not unload in the center of the meristem (Gisel et al.
1999); however, HPTS does unload throughout leaf primordia seen
around the circumference of the meristem. c At 42 SD, plants have
initiated reproductive development and no longer unload HPTS into
their apices. Vegetative versus reproductive apices are distinguished
by the types of primordia they produce; leaf primordia are pointy
versus floral primordia have a rounded shape (arrows in (d)). b
Scanning electron micrograph (SEM) of a 39-SD-old apex reveals leaf
primordia around the SAM. d SEM of a 42-SD apex reveals leaf
primordia as well as newly arising floral primordia. Data were
obtained as described in Gisel et al. 1999
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developmental phases, not always coincident with cell
expansion. Despite the large numbers of PD connecting
longitudinal cell files, transport in cambial tissue is preferen-
tially in the radial direction via PD between different cell types
representing distinct developmental stages. This elaborate
pattern of PD formation and modification likely serves to
establish symplastic domains that are important for the
differentiation of the secondary vasculature. There also are
seasonal changes in PD trafficking in the cambium of poplar
trees (Fuchs et al. 2010). Storage proteins that accumulate
during the winter months are mobilized from vacuoles and
storage bodies and are transported to growing buds during a
3-week period in the spring coincident with reactivation of
PD transport in cambial cells.

PD in roots

Cell division patterns, cell expansion and PD distribution in
the roots of Arabidopsis seedlings have been extensively
characterized (Baum and Rost 1996; Rost et al. 1996; Zhu et
al. 1998a; Zhu et al. 1998b; Benfey and Scheres 2000). The
distribution of PD in developing Arabidopsis seedling roots
as observed by Zhu et al. (1998a, b) is summarized in
Fig. 2e. Since the cells of a developing root file are the
product of successive transverse divisions, the PD in the
transverse cell walls are predominantly primary, while those
in the longitudinal walls connecting neighboring files of tissue
are mainly secondary. There are more PD in the transverse
walls than in longitudinal walls in young roots (Fig. 2e). This
pattern is maintained through root development as cell
expansion occurs, although the relative number of PD per
μm2 in transverse walls decreases (Zhu et al. 1998b).

The cells of a particular vertical file or lineage share similar
gene expression patterns (Rost and Bryant 1996; Brady et al.
2007) and are connected by numerous PD. After unloading
from the phloem carboxyfluorescein moves preferentially
through the transverse cell walls within a cell file of the root,
consistent with the abundance of primary PD in those walls
(Zhu et al. 1998a). Enhanced transport via PD may serve to
reinforce both developmental programs within groups of cells
and positional signaling from older to younger cells (van den
Berg et al. 1995, 1997; Zhu et al. 1998a, b).

A striking example of the importance of PD-mediated
intercellular traffic during development is how radial pattern-
ing is established in the root. The SHORTROOT (SHR)
transcription factor moves from cell files in the central stele to
the single layer of adjacent endodermal cells (Nakajima et al.
2001) (Table 1). Interestingly, SHR transport occurs via the
secondary PD that connect the vertical walls in adjacent cell
files, just as secondary PD are used for transcription factor
movement in the apical meristem (see above). Note again
that traffic through the secondary PD seems to be more
tightly regulated than through primary PD, since there is no

dye coupling between cell files (Zhu et al. 1998a). SHR acts
in the nucleus of the endodermis with its partner, the
SCARECROW (SCR) transcription factor, to induce the
expression of other transcription factors to promote root cell
differentiation. Moreover, SHR and SCR induce the expres-
sion of specific miRNAs 165 and 166. miRNA165/166 then
move cell to cell in the reverse direction to regulate the activity
of the PHABULOSA (PHB) transcription factor by binding to
PHB mRNA to promote root xylem development in a dose
dependent manner (Carlsbecker et al. 2010). Lateral move-
ment of miRNA 165/166 likely occurs via secondary PD.

How are PD apertures/SELs and transport regulated?

One of the outstanding questions about PD function is how
aperture/SEL is regulated. The emerging picture suggests
numerous cellular processes coordinate intercellular and
intracellular signals that affect PD function/aperture.

Callose

In the dormant birch SAM, callose is deposited around PD
neck regions leading to the isolation of individual cells and the
breakdown of symplasmic fields (Rinne and van der Schoot
1998; Rinne et al. 2001). However, in the active birch SAM,
callose is not associated with PD at the boundaries of active
symplasmic fields (Rinne and van der Schoot 1998; Rinne et
al. 2001). Also, callose deposition was not observed when PD
transport was decreased in cells with clear differences in PD
aperture/SEL that connect the differing cell types in the
cambium and developing secondary vasculature of the tomato
stems (Ehlers and van Bel 2010). Thus, while callose may be
involved in long-term occlusion of PD during dormancy, it is
not likely to be the main mechanism used for the transient
regulation of PD during normal development. The importance
of callose as a regulator of PD aperture is evidenced by the
identification of a PD localized b-1,3-glucanase that regulates
callose degradation (Levy et al. 2007). Reversibly glycosy-
lated proteins (RGPs) can also localize to PD (Sagi et al.
2005), and they may regulate callose accumulation and PD
function. In fact, RGP over-expression leads to decreased cell-
to-cell movement (Zavaliev et al. 2010) and silencing of RGP
leads to enhanced PD-mediated transport (T.B.-S.,unpub-
lished). The deposition of callose following wounding and
during pathogen attack is an active area of investigation (see
(Chen and Kim 2009) for review). Herein, Benitez-Alfonso,
Jackson, and Maule review callose deposition at PD in
response to changes in redox state.

Cargo modification

The best-studied PD interacting proteins are the viral MPs
and several are phosphorylated in planta ((Lee and Lucas
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2001) and references therein). TMV-MP is phosphorylated
at specific residues at its C terminus resulting in loss of its
ability to move cell to cell and gate PD (Waigmann et al.
2000). TMV-MP is phosphorylated by a PD-resident kinase
that is also active on a subset of other viral MPs and plant
transcription factors including LEAFY (Lee et al. 2005).
These results suggest an endogenous pathway uses phos-
phorylation to regulate cargo movement through PD.

Energy and reactive oxygen species

Inhibitor studies suggest that ATP-dependent mechanisms
(apart from the previously mentioned phosphorylation) are
important for regulating PD function. The general meta-
bolic inhibitor sodium azide increases PD aperture/SEL
while drastically reducing cellular ATP levels in a variety of
tissues including wheat roots (Cleland et al. 1994), tobacco
leaves (Christensen et al. 2009), and Setcreasea stamen
hairs (Tucker 1993). ATP-dependent proteins such as actin
may regulate PD transport in specific cell types. Applica-
tion of the actin inhibitor latrunculin B caused an increase
in PD aperture/SEL between leaf mesophyll cells (Ding et
al. 1996) but not at the trichome-epidermis boundary
(Christensen et al. 2009).

Recent evidence further implicates the general energy
status of the cell, i.e., ATP production by mitochondria, in
regulating PD transport. Embryo defective ise1 mutants
increase PD transport and exhibit delayed development
(Kim et al. 2002a). ISE1 encodes a nuclear encoded
mitochondria localized RNA helicase that is likely essential
for mitochondrial mRNA synthesis, and ise1 mutants are
defective in the formation of mitochondrial electron transport
gradients necessary for ATP production (Stonebloom et al.
2009). In addition, reactive oxygen species (ROS) likely act
as critical signaling molecules between cellular energy status
and PD development and/or function as ise1 mutants
produce increased levels of ROS (Stonebloom et al. 2009),
and another Arabidopsis PD mutant, gat1, also produces
increased levels of ROS (Benitez-Alfonso et al. 2009). GAT1
encodes a plastid thioredoxin and gat1 mutants increase
callose production (Benitez-Alfonso et al. 2009). However,
ise1 mutants have increased intercellular transport while gat1
mutants have decreased intercellular trafficking (Benitez-
Alfonso et al. 2009; Stonebloom et al. 2009). Thus, the site
of ROS production, mitochondria versus chloroplasts, likely
differentially regulates cellular processes and associated
specific targets that in turn affect PD function. In addition,
the relative amount of ROS may differentially affect PD
function as the levels of ROS produced in gat1 are higher
than those produced in ise1.

Interestingly, thioredoxins, which are general regulators of
the oxidative state of cells, can themselvesmove between cells
(Ishiwatari et al. 1998; Meng et al. 2010). However, various

thioredoxins differ in function and PD are implicated in the
movement of only some thioredoxins in the vasculature
(Ishiwatari et al. 1998). Further supporting the integral role
of ROS in co-ordinating PD function, oxidative stress
induced by anaerobic conditions increases PD aperture/SEL
in wheat roots (Cleland et al. 1994).

Perspectives

Exciting advances in understanding PD form and function
during development have been made recently. We look
forward to progress in answering numerous outstanding
questions. Now independent reports document the occur-
rence of twinned and branched PD in several immature
tissues, leaves, roots, embryos, and vascular cambium.
Does PD function differ in simple versus twinned or
branched PD in such young tissues? Does PD function
differ in primary versus secondary or twinned and branched
PD in immature versus mature tissues? As PD-specific
components are identified (Faulkner and Maule 2010) it
will be interesting to determine their localization patterns
during primary and secondary PD formation and PD
modification throughout development. How do energy and
ROS levels (reviewed by Benitez-Alfonso et al. 2010)
signal PD formation and function during development?
How widespread is miRNA movement? How do small
RNAs interact with and move via PD? What factors control
the movement of cell nonautonomous transcription factors
that regulate development? How do secondary PD form?
What are the roles of membranes and/or cell wall synthesis
and degradation in secondary PD formation? What signals
secondary PD to form? What signals PD to form branches
or cavities? All these studies will benefit from the
development of advanced imaging techniques as described
by Oparka et al. (1992, 1999; Fitzgibbon et al. 2010).
Finally, new data show that TMV-MP also labels PD in
immature tissues, thus increasing its value as a versatile
probe to study PD formation and function during all stages
of developmental programming.

As we continue to make strides in elucidating and
characterizing the critical roles of PD in plant development,
it is important to adopt standard nomenclature for PD. We
strongly encourage the use of the terms utilized by Ehlers
and Kollmann (2001) to describe PD based on their origin
and structure. The terms “primary” and “secondary” should
be reserved for use when the origin of PD is unambigu-
ously known. Simple and twinned PD are easiest to
distinguish. Branched PD can be specified as Y- or H-
shaped, or complex branched PD with central cavities. The
latter degree of branching or cavity formation can be further
specified, as they are clearly less complex in immature
versus mature tissues. Moreover, as there are 2 types of
secondary PD, it may be useful to adopt the terms “twinned
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secondary PD” and “de novo secondary PD”. Clarity in PD
nomenclature will ensure consistency and allow coherent
and incisive discussions of existing and forthcoming data.
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