
Acta Mech
https://doi.org/10.1007/s00707-024-03927-w

ORIGINAL PAPER

Pembe Merve Karabulut · İlkem Turhan Çetinkaya ·
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Abstract This paper develops a frictional moving contact model for a functionally graded (FG) orthotropic
layer pressed by a rigid cylindrical punch. The FG orthotropic layer is fully bonded to the isotropic half-plane.
The punch moves to the left on the layer at a constant subsonic velocity and a shear stress arises in the contact
zone according to the Coulomb friction law. General expressions of displacements and stresses are derivedwith
the help of the Fourier transform and Galilean transformation. Using boundary conditions, the moving contact
problem is reduced to a Cauchy-type singular integral equation, the unknowns of which are contact stress and
contact width. Gauss–Jacobi integration formula is used to solve the obtained singular integral equation. The
effect of some parameters and material properties on the contact width, contact stress and in-plane stress are
given in graphical forms and detailed numerical interpretations are presented.

1 Introduction

Contact problems play an important role in mechanics because of their wide application to many engineering
problems, such as foundations, pavements in roads and runways, railway ballast, brake disks, and gas turbines.
Due to their advanced mechanical properties, functionally graded materials (FGMs) have been widely used
in various engineering practices. The usage of FGMs as a coating layer or an interfacial material reduces
mismatching stresses, increases the bonding strength, improves surface properties, and provides protection
against adverse thermal or chemical environments [1, 2]. Some of the applications of FGMs are cylinder
linings, brake disks and other automotive components for the purpose of improving the wear resistance of
abradable seal design in stationary gas turbines [3]. Numerous studies on FGMs have been conducted recently.
For example, Draiche et al. [4] developed an integral shear and normal deformation theory for functionally
graded (FG) sandwich curved beams. Free vibration analysis of FG sandwich beams, and two-dimensional
FG structures with an exponential material gradation were presented by Yang, Lam et al. and Yang, Kou et al.
respectively [5, 6]. A formulation for analyzing FG sandwich structures was presented by Rezaiee-Pajand
et al. [7] who developed a mixed interpolated formulation for nonlinear analysis of plates and shells. Xu and
Meng [8] presented beam models for FGMs with regular polygonal cross sections, while Chikh [9] presented
an analytical solution to a problem of isotropic homogeneous beams based on an elastic foundation.

Among the contact problems, the moving punch problem has a separate and important place. Since, if
the speed of the rigid body relative to the elastic one is small enough, then the dynamic character of the
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phenomenon could be neglected. However, there are problems that arise in practice in which the speed of one
body relative to the other is quite large, and, therefore, we need to investigate whether it is necessary to take
the dynamic character of the problem into account [10]. Some studies on the moving contact problem are as
follows:

Balcı and Dag [11–14] reduced moving contact problems to singular integral equations and presented
a detailed mechanical analysis. Chen and Chen [2] considered a thermoelastic contact model sliding at a
speed V on a finite graded layer in which the determination of stress intensity factors (SIFs) and contact
stresses were given. A frictional moving punch problem for orthotropic materials was presented for different
punch cases by Zhou et al. [15], the study leading to the explanation of the surface damage mechanism of
orthotropic materials. The exact solution of moving triangular or parabolic punch problems was presented by
Zhou et al. [16].Meanwhile, Zhou and Lee [17] presented an eigenvalues analysis for amoving frictional punch
problem and Çömez [18, 19] considered frictionless and frictional moving contact problems, respectively.
The obtained singular integral equations were solved by Gauss–Chebyshev and Gauss–Jacobi integration
formulas, respectively. Güler [20] considered a frictional moving contact problem in which a rigid cylindrical
punch was assumed to slide at a constant velocity on an orthotropic layer attached to an isotropic half-plane.
A singular integral equation was obtained with the help of the Fourier transform technique and Galilean
transformation. Numerical results were obtained with the help of the Gauss–Jacobi method. Çömez [21] also
applied the singular integral equation technique to a sliding moving contact problem in which the FG layer
was bonded to an isotropic homogeneous layer. Zhou and Kim [22] employed the Galilean transformation
and Fourier transforms to a frictional moving contact problem of piezomagnetic materials to obtain Cauchy
integral equations. Numerical analysis revealed the effects of the friction coefficient and the moving speed of
the punch.

In the application of contact mechanics, material properties have great importance. The materials can be
classified as isotropic and anisotropic. While isotropic materials have the same properties in all directions,
anisotropic materials have different properties in different directions. In particular, the mechanics of anisotropy
are of interest when increasing the usage of anisotropic materials such as composites. Among the anisotropic
materials, orthotropicmaterials, inwhich theirmechanical and thermal properties are unique and independent in
three mutually perpendicular directions, have been used in many applications, such as fiber-reinforced plates
and shells, thin films, and coatings. Bagheri et al. [23] and Bagheri and Hosseini [24] considered multiple
moving crack problems in a non-homogeneous orthotropic strip and a non-homogeneous orthotropic plane,
respectively. Numerical results were presented for material properties. Hashemi and Ayatollahi [25] examined
the transient behavior of an orthotropic layer in multiple crack problems while another multiple crack problem
in an orthotropic non-homogeneous plane was studied by Mottale et al. in [26]. Lobatto-Chebyshev method
was applied to present the material orthotropy on SIFs. Lei et al. [27] applied the generalized finite difference
method to crack problems for anisotropic materials, the numerical results given for orthotropic materials.
Yusufoglu and Turhan [28, 29] solved an orthotropic strip problem using different methods for thick and thin
strips, respectively Erbaş et al. [30] considered an orthotropic strip problem and solved it with an iterative
solution technique and a direct asymptotic procedure for thick and thin strip cases, respectively. Rodriguez-
Tembleque andAbascal [31] presented a newmethodology for 3D frictional contact problems,while Pozharskii
[32] approached a 3D contact problem in orthotropic half-space numerically and analytically. An orthotropic
plane problem with a slit was considered by Hakobyan and Dashtoyan [33] and an exact solution presented.
Shavlakadze et al. [34] used the methods of the theory of analytic function to reduce the contact problem
for a piecewise homogeneous orthotropic plate to a system of singular integro-differential equations, Hou
et al. [35] proposed a method based on the Green’s function for the orthotropic coating-substrate system and
Ustinov and Idrisov [36] calculated twomodes of SIFs for the problem of two strips of different degenerate and
non-degenerate orthotropic materials. Finally, Cao et al. [37] examined the effect of the material orthotrophy
in a frictional receding contact problem.

Although there are many studies in the literature where the punch is static, the number of studies involving
the moving contact problem is relatively very few. On the other hand, moving contact studies involving FG
half-planes and layers are fewer than homogeneous studies. More specifically, there are no studies on the
moving contact problems of an FG orthotropic layer bonded to a homogeneous isotropic half-plane. To fill this
gap in the literature, the moving punch problem is modeled with the help of elasticity theory and boundary
conditions of the problem in the view of the basics of elasticity theory. This study consists of six sections.
The second section defines the boundary conditions and formulation of the problem. In the third section, the
singular integral equation is derived, the fourth section is devoted to the numerical solution of singular integral
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Fig. 1 Geometry of frictional moving contact problem

equations and the fifth section is devoted to the numerical results and mechanical interpretation. Finally, the
last section is the conclusion.

2 Problem statement and formulation

This section presents the formulation of a frictional moving contact problem of an FG orthotropic layer bonded
to a homogeneous isotropic half-plane (see Fig. 1). It is assumed that the thickness of the FG orthotropic layer
is h and the punch profile is cylindrical. The rigid punch with a radius R moves frictionally at a constant
velocity V in the negative direction of the −x axis. The rectangular coordinates (X , Z ) are fixed in the layer
and the translating coordinates (x , z) are attached to the moving punch. It is modeled that the punch and layer
are in relative motion, that is, Q � ηP . Where η is the coefficient of friction, P and Q are the resultant normal
and tangential forces, respectively.

The boundary conditions of the problem can be defined as:

σz1(x , 0) �
{−p(x) −a < x < −b
0 x ≤ a, x ≥ b (1a)

τxz1(x , 0) �
{−η p(x) −a < x − b

0 x ≤ a, x ≥ b (1b)

u1(x , − h) � u2(x , − h) (1c)

w1(x , − h) � w2(x , − h) (1d)

σz1(x , − h) � σz2(x , − h) (1e)

τxz1(x , − h) � τxz2(x , − h) (1f)

whereσzi (i � 1, 2) and τxzi (i � 1, 2) are stress components;ui (i � 1, 2) andwi (i � 1, 2) are displacement
components, p(x) and η are the contact stress under the rigid punch on the contact area (−a, b) and the friction
coefficient, respectively.

Now, we will give some basic equations of elasticity theory. Motion equations without body forces can be
written as

∂σxi

∂X
+

∂τxzi

∂Z
� ρi (z)

∂2ui
∂t2

(2a)

∂τxzi

∂X
+

∂σzi

∂Z
� ρi (z)

∂2wi

∂t2
(2b)
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whereσxi , ui ,wi , t andρ denote the X− components of the stress, X− and Z− components of the displacement
vector, time variable and density, respectively.

The generalized Hooke’s law for an FG orthotropic material in a state of plane strain can be written as
follows.

σx1 � C11(z)
∂u1
∂X

+ C13(z)
∂w1

∂Z
(3a)

σz1 � C13(z)
∂u1
∂X

+ C33(z)
∂w1

∂Z
(3b)

τxz1 � C55(z)

(
∂u1
∂Z

+
∂w1

∂X

)
(3c)

where Ci j (z) are the elastic stiffness constants and their continuous variation is modeled by an exponential
function in the following form:

Ci j (z) � C0
i j e

γ z , γ h � −Log �, � � Ch
i j/C

0
i j (4)

where γ and � denote the inhomogeneity constant and the ratio of material constants on the top and bottom
surfaces of the FG orthotropic layer, respectively. It is assumed that the variation of the Poisson’s ratio is
constant.

The following Galilean transformation is suitable to use for the constant speed:

x � X − V t , z � Z (5)

Substitution of the generalized Hooke’s laws (3) and Galilean transformation (5) into motion Eq. (2) yields
the steady-state governing equations in the coordinate system (x , z).

C0
11

∂2u1
∂x2

+ C0
55

∂2u1
∂z2

+
(
C0
13 + C0

55

)∂2w1

∂x∂z
+ γC0

55

(
∂u1
∂z

+
∂w1

∂x

)
� c21C

0
55

∂2u1
∂x2

(6a)

(
C0
13 + C0

55

) ∂2u

∂x∂z
+ C0

55
∂2w

∂x2
+ C0

33
∂2w

∂z2
+ γ

(
C0
33

∂w

∂z
+ C0

13
∂u

∂x

)
� c21C

0
55

∂2w1

∂x2
(6b)

where c21 � V ∗ � V 2/(C0
55/ρ10).

Let us rewrite the displacement vectors u1(x , z) andw1(x , z) using Fourier integral transforms as follows:

u1(x , z) �
∞∫

−∞
ũ1(α, z)e

−Iαxdα (7a)

w1(x , z) �
∞∫

−∞
w̃1(α, z)e

−Iαxdα (7b)

where ũ1(α, z) and w̃1(α, z) are the inverse Fourier transforms of the displacement vectors, α and I denote
the transform variables and the imaginary unit, respectively.

Inserting Eq. (7) into the governing Eq. (6) and applying inverse Fourier transform gives rise to a system
of ordinary differential equations

C0
55
d2ũ1
dz2

+ γC0
55
dũ1
dz

+ α2(−C0
11 + c21)ũ1 − Iα(C0

13 + C0
55)

dw̃1

dz
− IαγC0

55w̃1 � 0 (8a)

−Iα(C0
13 + C0

55)
dũ1
dz

− IγαC0
13ũ1 + C0

33
d2w̃1

dz2
+ γC0

33
dw̃1

dz
+ α2(−1 + c21)C

0
55w̃1 � 0 (8b)

The characteristic polynomial of the ordinary differential Eq. (8) is as

n4 + L1n
3 + L2n

2 + L3n + L4 � 0 (9)

where

L1 � 2γ (10a)
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L2 �
(
(C0

13)
2 − C0

11C
0
33 + 2C0

13C
0
55

)
α2 + C0

55

(
c21(C

0
33 + C0

55)α
2 + C0

33γ
2
)

C0
33C

0
55

(10b)

L3 �
(
(C0

13)
2 − C0

11C
0
33 + 2C0

13C
0
55 + c21C

0
55(C

0
33 + C0

55)
)
α2γ

C0
33C

0
55

(10c)

L4 � α2
(
(−1 + c21)

(−C0
11α

2 + c21C
0
55α

2
)
+ C0

13γ
2
)

C0
33

(10d)

So, the solutionof the systemof ordinary differential Eq. (8) leads to the following transformeddisplacement
expressions ũ1 and w̃1:

ũ1(α, z) �
4∑
j�1

A j e
n j z , w̃1(α, z) � I

4∑
j�1

m j A j e
n j z (11)

where n j ( j � 1, 2, ...4) are the roots of the characteristic polynomial (9), A j ( j � 1, 2...4) are the unknown
functions which will be determined by the boundary conditions of the moving contact problem andm j is found
as

m j � − Iα(C0
55n j + C0

13(n j + γ ))

(−1 + c21)C
0
55α

2 + C0
33n j (n j + γ )

(12)

Now, the stress expressions for the FG orthotropic layer can be rewritten by substituting Eq. (11) into
Eq. (3):

σx1(x , z) � 1

2π

∞∫
−∞

4∑
j�1

[
A j (C13m jn j − IαC11) e

n j z
]
e−I α xdα (13a)

σz1(x , z) � 1

2π

∞∫
−∞

4∑
j�1

[
A j (C33m jn j − IαC13) e

n j z
]
e−I α xdα (13b)

τxz1(x , z) � 1

2π

∞∫
−∞

4∑
j�1

[
A jC55(n j − Iαm j ) e

n j z
]
e−I α xdα (13c)

Note that, by setting C0
11 � C0

33 � μ2
κ2+1
κ2−1 , C

0
13 � μ2

3−κ2
κ2−1 , C

0
55 � μ2, γ � 0 and h → ∞ the FG

orthotropic layer becomes an homogeneous isotropic half plane. So, for isotropic half plane, the displacement
and stress components can be given as [10]:

u2(x , z) � 1

2π

∞∫
−∞

2∑
j�1

[
Bje

n2 jαz
]
e−Iαxdα (14a)

w2(x , z) � 1

2π

∞∫
−∞

I

[
B1

1

n21
en21αz + B2n22 e

n22αz
]
e−Iαxdα (14b)

σx2(x , z) � 1

2π

∞∫
−∞

−Iμ2α

[
2B1e

n21αz + B2
(1 + n222(−3 + κ2) + κ2)

−1 + κ2
en22αz

]
e−Iαxdα (14c)

σz2(x , z) � 1

2π

∞∫
−∞

Iμ2α

[
2B1e

n21αz + B2
(−3 + n222(1 + κ2) + κ2)

−1 + κ2
en22αz

]
e−Iαxdα (14d)

τxz2(x , z) � 1

2π

∞∫
−∞

μ2α

[
1 + n221
n21

B1e
n21αz + 2n22B2e

n22αz

]
e−Iαxdα (14e)



P. M. Karabulut, et al.

where κ2 � 3 − 4v2. Also μ2 is the shear modulus and v2 is the Poisson’s ratio of the isotropic half plane,
respectively. Bj ( j � 1, 2) are the unknowns which will be determined from the boundary conditions of the
problem. n2 j ( j � 1, 2) is defined as

n21 �
√
1 − c22, n22 �

√
1 − c22

(−1 + κ2)

(1 + κ2)
(15)

where c2 � V/
√

μ2/ρ2.
Note that, in a translating coordinate system, the unknowns A j ( j � 1, 2...4), B1 and B2 will be determined

with the help of boundary and continuity conditions (1).

3 Derivation of singular integral equation

In this section, we will use the basic equations of elasticity theory and boundary conditions (1) to derive the
singular integral equation. Using Eqs. (13)–(14) in the boundary conditions (1) and applying inverse Fourier
transform, six linear algebraic equations are obtained. By solving the obtained system of linear algebraic
equations, the coefficients A j and Bj can be obtained depending on the unknown contact stress p(x) as the
following form

A j �
b∫

−a

p(ξ )eIαξ (Ap
j + η Aq

j )dξ j � 1, 2 . . . 4 (16a)

Bj �
b∫

−a

p(ξ )eIαξ (B p
j + η Bq

j )dξ j � 1, 2 (16b)

The following mixed condition will be used to find the unknown contact stress p(x)

∂w1(x , 0)

∂x
� x

R
(17)

Using the unknowns A j in the mixed condition (17) and considering the asymptotic behavior of the kernels
for |α| → ∞ yields the following second kind of singular integral equation of Cauchy type:

ηφ2 p(x) +
1

π

b∫
−a

p(ξ )

[
φ1

ξ − x
+ K1(x , ξ ) + η K2(x , ξ )

]
dξ � x

R
(−a < x < b) (18)

where

K1(x , ξ ) �
∞∫
0

( S1(α) − φ1) sin α(ξ − x)dα (19a)

K2(x , ξ ) �
∞∫
0

(S2(α) − φ2) cosα(ξ − x)dα (19b)

S1(α) � α

4∑
j�1

Ap
j m j , S2(α) � −Iα

4∑
j�1

Aq
jm j (19c)

φ1 � lim
α→∞ S1(α), φ2 � lim

α→∞ S2(α) (19d)

Note that, the contact widths must satisfy the following equilibrium condition

∞∫
−∞

σz1(x , 0)dx � −
b∫

−a

p(ξ )dξ � −P (20)
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4 Numerical solution of the singular integral equation

This section presents the numerical solution of the singular integral Eq. (18). Here, it is aimed to convert
the solution of singular integral equation to the solution of system of algebraic equations. Gauss–Jacobi
integration formulas are used to approach the numerical solution. So, first, the singular integral equation
should be converted to the dimensionless form by using following normalization procedure:

ξ � a + b

2
r +

b − a

2
, x � a + b

2
s +

b − a

2
(21)

Hence, the integral Eq. (18) can be rewritten as

ηφ2 p(s) +
1

π

1∫
−1

p(r )

[
φ2

r − s
+ K ∗

1 (s, r ) + η K ∗
2 (s, r )

]
dr � f (s) (22)

where

K ∗
1 (s, r ) � a + b

2
K1(x , ξ ), K ∗

2 (s, r ) � a + b

2
K2(x , ξ ), f (s) � 1

R

(
a + b

2
s +

b − a

2

)
(23)

By applying the same variable transform (21) to the equilibrium condition (20), the following integral
equation can be obtained:

a + b

2

1∫
−1

p(r )dr � P (24)

Since the punch profile is cylindrical, smooth contact occurs at the end points of the contact x � −a and
x � b. Therefore, the index of the integral Eq. (18) is taken −1.

Now, let us seek the solution of the singular integral Eq. (22) as

p(r ) � g(r )(1 − r )β1 (1 + r )β2 (25)

where g(r ) is an unknown bounded function and

β1 � 1

2π I
ln

[
η φ2/φ1 − I

η φ2/φ1 + I

]
(26a)

β2 � − 1

2π I
ln

[
η φ2/φ1 − I

η φ2/φ1 + I

]
+ 1 (26b)

By applying Gauss–Jacobi integration formulas [38] to the singular integral Eq. (22) and equilibrium
condition (24), the following system of algebraic equations is obtained:

N∑
i�1

WN
i g(ri )

[
1

ri − sk
+ K ∗

1 (sk , ri ) + η K ∗
2 (sk , ri )

]
� f (sk) k � 1, 2, ..., N + 1 (27)

b + a

2

N∑
i�1

WN
i g(ri ) � P

π
(28)

where ri and sk are the roots of Jacobi polynomials defined as

P (α,β)
N (ri ) � 0 i � 1, 2, ..., N (29a)

P (−α,−β)
N+1 (sk) � 0 k � 1, 2, ..., N + 1 (29b)

and WN
i is the weighting constant given as follows:

WN
i � − 1

π

2N + α + β

(N + 1)!

�(N + α + 1)�(N + α + 1)

�(N + α + β + 1)

2(α+β)

P (α,β)′
N (ri )P

(α,β)
N+1 (ri )

(29c)
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Table 1 Material properties of glass/epoxy [39]

Ci j (GPa) Ci j (GPa)

C11 46.86 C32 10.49
C12 77.04 C33 18.04
C13 77.04 C44 3.78
C21 77.04 C55 8.24
C22 18.04 C66 8.24
C23 10.49 Exx 42.70
C31 77.04

As is seen from Eqs. (27) and (28), there are N + 2 equations which have N + 2 unknowns. The unknowns
are g(ri ) (i � 1, 2....N ) and contact widths a and b. Since the contact widths a and b are initially unknown,
the system of equations is non-linear, and, therefore, an iterative procedure is applied to determine the contact
widths. In the iterative algorithm the initial values of the a and b are chosen and N unknowns g(ri ) are
determined from the linear algebraic equations in (27). Then, the subtracted equation in (27), i.e. the consistency
condition and the equilibrium condition (25) are checked. If the selected accuracy is not achieved, new values
of a and b are selected. The selection of new values of a and b will continue until a and b achieve the desired
accuracy.

In mechanics, the analysis of in-plane stress is also an important subject. The in-plane stress at the surface
of FG orthotropic layer σx1(x , 0) can be determined by the relation below:

σx1(x , 0) �
{

φ3 p(x) + H (x), −a < x < b
H (x), x ≤ −a, x ≥ b

}
(30)

where

H (x) � 1

π

b∫
−a

p(ξ )

[
φ4

η

ξ − x
+ K3(x , ξ ) + η K4(x , ξ )

]
dξ (31a)

K3(x , ξ ) �
∞∫
0

(S3(α) − φ3) cosα(ξ − x)dα (31b)

K4(x , ξ ) �
∞∫
0

( S4(α) − φ4) sin α(ξ − x)dα (31c)

S3(α) �
4∑
j�1

[
Ap
j (C13m jn j − IαC11)

]
(31d)

S4(α) � I
4∑
j�1

[
Aq
j (C13m jn j − IαC11)

]
(31e)

φ3 � lim
α→∞ S3(α), φ4 � lim

α→∞ S4(α) (31f)

5 Numerical results

This section presents the effect of the dimensionless quantities such as moving velocity V ∗ � V/

√
C0
55/ρ10,

inhomogeneity parameter � � Ch/C0, friction coefficient η, shear modulus of the half plane μ∗
2 � μ2/C0

55,
density of the half plane ρ∗

2 � ρ2/ρ10 and indentation load P∗ � P/(C0
55h), on the dimensionless contact

stress p(x)/C0
55 and in-plane stress σx1(x , 0)/C0

55 are given. During the analysis, it is assumed that the FG
orthotropic layer is made of glass/epoxy (Gl/Ep). The material properties of glass/epoxy are listed in Table 1.

By setting� � Ch/C0 � 1 the FG orthotropic layer becomes a homogeneous orthotropic layer. So, it gives
a chance to validate the present results with the numerical results obtained in [20]. As a result of comparison
of the results of the limiting case by [20], a very good agreement was obtained as depicted in Fig. 2.
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Fig. 2 Comparison of the contact stress and in-plane stress with those from [20]. (V ∗ � 0.4, η � 0.4, P/(C550h) � 0.01,
� � Ch/C0 � 1, ρ2/ρ10 � 1, μ2/C550 � 2)

Fig. 3 Variation of the contact width (a + b)/h with moving velocity V ∗ and indentation load P∗. (η � 0.4, R/h � 100,
� � Ch/C0 � 2, ρ2/ρ10 � 1.5, μ2/C550 � 2)

Variation of the contact width with moving velocity V ∗ and indentation load P∗ is given in Fig. 3. It is
seen in the figure that the punch becomes more embedded in the layer with increasing load. On the other hand,
increasing the movement speed at small load values affects the contact width less than at large load values.

Variation of the contact width with the shear modulus of the half-plane and � inhomogeneity parameter is
shown in Fig. 4. The stiffness of the functionally graded orthotropic layer changes exponentially depending
on the � inhomogeneity parameter, starting from the bottom surface of the layer. Increasing the � parameter
increases the stiffness of the FG layer while decreasing the � parameter reduces the stiffness of the FG layer.
The situation where � is equal to one corresponds to the homogeneous layer particular case. When the layer
become soft, the penetration between the punch and the layer increases, and, accordingly, the contact width
between the FG layer and the punch increases. At values of the � inhomogeneity parameter close to zero, there
is a tendency for contact widths to approach infinity. On the other hand, as the dimensionless shear modulus
ratio of the half-plane decreases, the contact widths under the punch increase as the half-plane becomes flexible.
Especially if this ratio is equal to 0.5, contact widths increase significantly.
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Fig. 4 Variation of the contact width (a + b)/h with shear modulus of half plane μ∗
2 and inhomogeneity parameter �. (η � 0.4,

R/h � 200, P/(C550h) � 0.02, ρ2/ρ10 � 2, V ∗ � 0.2)

Fig. 5 Variation of the contact width (a+b)/h with friction coefficient η and density of half plane ρ∗
2 . (R/h � 200, P/(C550h) �

0.02, � � Ch/C0 � 2, V ∗ � 0.2, μ2/C550 � 2)

Figure 5 shows the variation of the contact width with the friction coefficient η and dimensionless density
of the half-plane ρ∗

2 . It can be concluded from the figure that changes in density ratio and friction coefficient do
not much affect the contact width. On the other hand, since it creates resistance forces that prevent separation
between the FG layer and the punch due to the friction forces, it causes a slight decrease in the contact widths
between the punch and the FG layer. Moreover, according to Newton’s law of motion, as the mass density
increases, the dynamic forces acting on the system due to the speed of the punch also increase. Therefore, as
the density ratio ρ∗

2 increases, the contact lengths under the punch increase slightly.
Figure 6 presents the variation of the dimensionless contact stress and in-plane stress versus different

moving velocity values. The regionswhere tensile stress occurs in the σx1(x , 0)/C0
55 in-plane stress distribution

under the punch are the regions where contact damage and crack formation are likely. Surface cracks may
subsequently cause fatigue cracks to form and propagate. For this reason, the dimensionless σx1(x , 0)/C0

55
in-plane stress distribution under the punch was evaluated based on the behavior of tensile stresses. As can be
seen from the figure, because of the increase in the moving speed of the punch, the peak value of the tensile
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Fig. 6 Variations of the contact stress, p(x), in-plane stress, σx1(x , 0), versus moving velocity, V ∗. (R/h � 200, P/(C550h) �
0.02, � � Ch/C0 � 2, ρ2/ρ10 � 2, μ2/C550 � 2)

Fig. 7 Variations of the contact stress, p(x), in-plane stress, σx1(x , 0),versus inhomogeneity parameter,�. (η � 0.4, R/h � 200,
P/(C550h) � 0.02, ρ2/ρ10 � 2, V ∗ � 0.4, μ2/C550 � 2)

stresses in the σx1(x , 0)/C0
55 in-plane stress distribution decreases. In addition, it leads to smaller contact

pressure associated with a larger contact zone when the punch slides faster.
Variations of the contact stress p(x)/C0

55 and in-plane stressσx1(x , 0)/C
0
55 versus inhomogeneity parameter

� are illustrated in Fig. 7. As can be seen from the figure, as the � inhomogeneity parameter increases, the FG
layer will become stiffer and the dimensionless contact widths under the punch decrease. Since the stresses will
disperse over a smaller area, the maximum value of the contact stresses under the punch increases. Although
the σx1(x , 0)/C0

55 in-plane stresses under the punch are not significantly affected by the increase in this �
inhomogeneity parameter, the peak value of the tensile stresses at the trailing edge decreases slightly.

Figure 8 presents variations of contact stress p(x)/C0
55 and in-plane stress σx1(x , 0)/C0

55 versus friction
coefficient η. The distribution of dimensionless contact stresses under the punch is symmetrical in the case of
frictionless contact (η � 0) and takes its largest value on the z-axis. This symmetry disappears when friction
forces are influential (η 
� 0). However, as the friction forces increase, the values of the tensile stresses at the
right end of the distribution of dimensionless σx1(x , 0)/C0

55 in-plane normal stresses increase significantly.



P. M. Karabulut, et al.

Fig. 8 Variations of the contact stress, p(x), in-plane stress, σx1(x , 0), versus friction coefficient, η. (R/h � 200, P/(C550h) �
0.02, � � Ch/C0 � 2, ρ2/ρ10 � 2, V ∗ � 0.4, μ2/C550 � 2)

Fig. 9 Variations of the contact stress, p(x), in-plane stress, σx1(x , 0), versus shear modulus of half plane, μ∗
2. (η � 0.4,

R/h � 200, P/(C550h) � 0.02, � � Ch/C0 � 2, ρ2/ρ10 � 2, V ∗ � 0.2)

Therefore, it should be taken into consideration that increased friction effects may cause damage and crack
formation on the contact surfaces. To prevent such damage, a small coefficient of friction should be selected.

Figure 9 illustrates variations of contact stress p(x)/C0
55 and in-plane stress σx1(x , 0)/C0

55 versus the
dimensionless shear modulus of the half-plane μ∗

2. Since the rigidity of the system increases with bigger
values of μ∗

2 ratio, the contact width under the punch decreases. Additionally, the maximum values of tensile
stresses in the σx1(x , 0)/C0

55 in-plane stress distribution increase with the increase in the shear modulus of the
half-plane μ∗

2.
Variations of the contact stress p(x)/C0

55 and in-plane stress σx1(x , 0)/C0
55 versus indentation load P∗

and dimensionless density of the half-plane ρ∗
2 are shown in Fig. 10 and Fig. 11. In contrast to the other

parameters, an increase in load increases both contact widths and contact stresses together. The peak values
of tensile stresses in the σx1(x , 0)/C0

55 in-plane stress distribution under the punch also increase significantly
with this increase. Although the change in the dimensionless density values of the half-plane ρ∗

2 does not have
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Fig. 10 Variations of the contact stress, p(x), in-plane stress, σx1(x , 0), versus indentation load, P∗. (η � 0.4, R/h � 200,
� � Ch/C0 � 2, ρ2/ρ10 � 2, V ∗ � 0.4, μ2/C550 � 2)

Fig. 11 Variations of the contact stress, p(x), in-plane stress, σx1(x , 0), versus density of half plane, ρ∗
2 .(η � 0.4, R/h � 200,

P/(C550h) � 0.02, � � Ch/C0 � 2, V ∗ � 0.2, μ2/C550 � 2)

a significant effect, the peak values of the contact stress under the punch and the σx1(x , 0)/C0
55 in-plane tensile

stresses decrease slightly as this value increases.
Figures 12 and 13 show the effect ofC330 andC110 orthotropy constants on the distribution of p(x) contact

stress and σx1(x , 0) in-plane stress. Since increasing the C330 orthotropy constant will increase the material
rigidity in the direction of the force, the contact length under the punch decreases, and the peak value of contact
stress increases for increasing the C330 orthotropy constant value. In the σx1(x , 0) in-plane stresses under the
punch, as the C330 orthotropy constant increases, the maximum value of the tensile stress, which can trigger
crack formation and surface damage, also increases. The change of the C110 orthotropy constant is not related
to the change of material stiffness in the force direction. However, since the increase in the C110 orthotropy
constant will increase the layer stiffness, the contact lengths under the punch decrease slightly. Additionally,
with the increase of theC110 orthotropy constant, the maximum value of in-plane σx1(x , 0) tensile stress under
the punch increases significantly.
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Fig. 12 Variations of the contact stress, p(x), in-plane stress, σx1(x , 0), versus orthotropy constant C330. (η � 0.4, R/h � 200,
P/(C550h) � 0.01, � � Ch/C0 � 2, ρ2/ρ10 � 1, V ∗ � 0.4, μ2/C550 � 2)

Fig. 13 Variations of the contact stress, p(x), in-plane stress, σx1(x , 0), versus orthotropy constant C110. (η � 0.4, R/h � 200,
P/(C550h) � 0.01, � � Ch/C0 � 2, ρ2/ρ10 � 1, V ∗ � 0, μ2/C550 � 2)

6 Conclusions

This study investigated the moving contact problem of a functionally graded orthotropic-coated half-plane.
Numerical results for dimensionless contact widths, contact pressures and in-plane stress distributions under
the punch were obtained for different values of moving velocity, indentation loads, inhomogeneity parameter,
the density of the half-plane, shear modulus of the half-plane and friction coefficient. The outcomes of the
study can be summarized as given as follows.

• Dimensionless contact widths under the punch vary directly proportional to the moving velocity, indentation
load, and orthotropy constant C330, and inversely proportional to the values of the inhomogeneity parameter
and the dimensionless shear modulus of the half plane. The size of the contact area under the punch is not
much affected by the change in the friction coefficient, the dimensionless density ratio of the half plane and
orthotropy constant C110.

• The regions where tensile stress occurs at the in-plane stress distribution under the punch are the regions
where contact damage and crack formation are likely. Surface cracks may subsequently cause fatigue cracks
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to form and propagate. In the σx1(x , 0)/C0
55 in-plane stress distribution, the peak values of tensile stresses

increase significantly with the increase in the friction coefficient, dimensionless shear modulus of the half-
plane, indentation load values, orthotropy constantsC110 andC330. On the other hand, increasing themoving
velocity of the punch causes the peak values of tensile stresses to decrease. The change in the density ratio
of the half-plane and the � inhomogeneity parameter values does not have much effect on the peak values
of tensile stresses.
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30. Erbaş, B., Yusufoğlu, E., Kaplunov, J.: A plane contact problem for an elastic orthotropic strip. J. Eng. Math. 70, 399–409
(2011)

31. Rodríguez-Tembleque, L., Abascal, R.: Fast FE–BEM algorithms for orthotropic frictional contact. Int. J. Numer. Meth. Eng.
94(7), 687–707 (2013)

32. Pozharskii, D.A.: Contact problem for an orthotropic half-space. Mech. Solids 52(3), 315–322 (2017)
33. Hakobyan, V.N., Dashtoyan, L.L.: Contact problem for an orthotropic plane with a slit. Mech. Compos. Mater. 49, 507–518

(2013)
34. Shavlakadze, N., Odishelidze, N., Criado-Aldeanueva, F.: The adhesive contact problem for a piecewise-homogeneous

orthotropic plate with an elastic patch. Math. Mech. Solids 28(8), 1798–1808 (2023)
35. Hou, P.F., Jiang, H.Y., Li, J.R.: A method for the orthotropic coating-substrate system: Green’s function for a normal line

force on the surface. Int. J. Mech. Sci. 96, 172–181 (2015)
36. Ustinov, K.B., Idrisov, D.M.: On delamination of bi-layers composed by orthotropic materials: exact analytical solutions for

some particular cases. ZAMM-J. Appl. Math. Mech./Z. für Angew. Math. und Mech. 101(4), e202000239 (2021)
37. Cao, R., Li, L., Li, X., Mi, C.: On the frictional receding contact between a graded layer and an orthotropic substrate indented

by a rigid flat-ended stamp. Mech. Mater. 158, 103847 (2021)
38. Erdogan, F.: Mixed boundary value problems in mechanics. In: Nemat-Nasser, S. (Ed.), Mechanics Today Vol 4. Oxford:

Pergamon Press (1978).
39. Binienda, W.K., Pindera, M.J.: Frictionless contact of layered metal-matrix and polymer-matrix composite half planes.

Compos. Sci. Technol. 50(1), 119–128 (1994)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional
affiliations.


	Moving contact problem of a functionally graded orthotropic coated half plane
	Abstract
	1 Introduction
	2 Problem statement and formulation
	3 Derivation of singular integral equation
	4 Numerical solution of the singular integral equation
	5 Numerical results
	6 Conclusions
	References


