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Abstract The reduction of the equations of a slender, brittle continuum to a one-dimensional theory and the
possibility of accounting for the cracking of this body has received much attention recently. This contribution
investigates the effect of cross-sectional geometry on damage localization in an Euler–Bernoulli beam. Two
geometric fields characterizing the crack penetration depth on each side of the beam are introduced, from
which the modulation of the bending and tensile parts of the strain energy by the crack depth is deduced.
The geometry of the crack-tip envelope is obtained by energy minimization. We find that in the case of a
Griffith-like dissipation potential, the characteristic size of the crack is a key element for predicting initiation
at a finite external load. We can accurately predict the initiation position by regularizing the model in the spirit
of Variational Brittle Fracture. Model predictions are compared against computational results obtained by the
classical damage field theory.

1 Introduction

1.1 Motivation

Finding how andwhen cracks develop in a 3D continuum has immediate relevance in applications. The seminal
paper of Griffith [1] rooted the problem in an energetic framework where crack development is driven by the
competition between the elastic energy stored within the deforming body and the crack energy. Formulation
in the modern variational framework was only achieved recently [2] and pinpointed the troubles of Griffith’s
theory to handle initiation [3–5]. The need for numerical implementation lead to the development of phase-
field models [6,7]: a damage field modeling the phase transition of the material from pristine to damaged is
introduced and regularized by the addition of higher gradients. Refinements allow to mimic various material
behavior [8–10], and the framework proves successful for describing the crack initiation and propagation in
many situations [11] - see for example [12] for a review.

A beam theory requires describing the behavior of each section associated with a position on a centre-line,
a geometric abstraction grasping the shape of a slender body. For some geometries, the loads result in a tensile
stress all over the sections, legitimating the use of the brittle assumption [13,14].When bending is included, the
non-zero yet limited load-bearing capacity in tension together with the different capacities of a brittle material
in tension and compression result in the preferential development of cracks on the tensiled side of the body
[15,16]. This asymmetry results in significant variation of the sections characteristic geometrical quantities
[17,18] and requires special care when handling the description of the beam with developed cracks [19–21].
Recent attempts at developing a phase-field theory of beams or shells [22,23] grasping the initiation of the
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fracture stemmed from the idea that a damage field can be used to represent the crack penetration depth in the
beam [24]. In [25], the shape of the damage field is postulated whereas [26] attempts at precisely describing
the strain field alteration due to the existence of the cracks.

We propose here to investigate crack initiation by describing each cross section using two geometric fields
measuring the crack penetration on each side of a slender body thus parametrizing the geometry of partially
cracked sections. Characterizing the deformation of the sections using the Euler–Bernoulli hypothesis, we get
the dependence of the bending moment in both the transversal displacement field and the geometric fields
by direct integration. We formulate the problem of the equilibrium of a slender body allowed to crack in this
framework, and regularize the energy functional in the spirit of the variational brittle fracture by the addition
of higher gradients of the geometric fields. The solution fields are obtained as global minimizers along a time-
stepping procedure. The compatibility of the minimizers with the geometric description of the body, with the
irreversibility of the cracking process, and the crack localization on the tensiled side are ensuredwith additional
constraints. From our smeared modeling, we retrieve the envelope of the crack zones in our dimension-reduced
model.

1.2 Phase field modeling in R3

Consider a homogeneous connected body � ⊂ R
3 with Lipschitz boundary ∂�. The body is in equilibrium

with internal forces of density f
b
and surfacic forces of density fs whose work we will denote P = ∫

�
f
b

·
ud� + ∫

∂�
fs · udS. Under the effect of the forces the body deforms following a displacement field u and

stores energy as deformation energy of density W (∇u). The eventual cracks of the body form a set � ⊂ R
2 -

supposed smooth - endowed with a surface energy of density G according to the Griffith postulate. Altogether,
the total energy of the solid contains the three terms from above:

E =
∫

�−�

W (∇u)d� − P +
∫

�

GdS. (1)

The strain energy densityW is the double contraction of the strain tensor ε with the stress tensor σ . Assuming

small strains, the strain tensor is the symmetric part of the displacement gradient ε = 1
2 (∇u + ∇ut ). The

main difficulty of the formulation - besides the eventual complexity of the strain energy density W - is the
dependence of the functional on the unknown cracked set �. The elastic energy density is then given as

W (∇u) = 1

2
ε : σ = 1

2
ε : C : ε (2)

Thenowclassicalmethodof regularization [6,7,10] consists in introducing a smooth scalar fieldd : � → [0, 1]
measuring the local degradation of the material. This field is deemed to be 0 if the material is intact and 1
wherever the material is completely destroyed e.g there is no longer pressure transmission. The addition of a
term depending in the scalar field gradients [7,27] ensures well-posedness for the new problem consisting of
finding simultaneously the unknown displacement and damage fields [28]. A characteristic length � controlling
the transition size of the scalar field appears in the regularized form of the energy and can be traced with the
modeling of nonlocal materials [15]. In addition, the strain energy density has to be modulated by the local
value of the damage field , in order to account for the effect of the damage on the local stiffness. Physical
considerations [10] and need to faithfully represent various material behavior [9] lead to different modulations
of the bulk energy density. In case the load is purely tensile and the material homogeneous isotropic, a choice
suggested by the reference above is W̃ (d,∇u) := (1 − d)2W (∇u). In turn, the energy to minimize is:

E =
∫

�

W̃ (d, ∇u)d� − P + G
∫

�

d2

4�
+ �(∇d)2d�. (3)

The load dependence in time (or in some time-like control parameter) is contained in the potential energy P .
Using a gamma-convergence argument [6], one shows that the regularized energy (3) converges effectively to
the original energy (1) when the characteristic length � goes to zero.

In the following section, we develop an Euler–Bernoulli beam model, where the damage is characterized
by the crack penetration depth. For this purpose, we follow the beam slicing into sections and specify the
crack topology, on every section. In effect we retrieve a damage field whose geometric meaning is clear: it
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corresponds to the crack penetration depth on each side of the beam. The stress resultants and their modulations
by the crack depth are obtained by direct integration. Finally, the model is regularized by the addition of higher
gradients.

2 Modeling

2.1 Material description, kinematics

In this subsection we derive from the 3D model (3) a 1D version of the penalized elastic energy density.
Consider a beam, described by translating a section [−b/2, b/2] × [−h/2, h/2] along a straight line [0, L],
b, h and L being, respectively, the breadth, height and length of the beam. The domain occupied by the beam is
� = [−b/2, b/2] × [−h/2, h/2] × [0, L]. We use the frame where ẑ points in the direction of the centre-line,
and ŷ, x̂ are in the principal directions of inertia of the section, y being the height coordinate of any point of
the section. Let us associate a displacement field w(z)ŷ, deforming the centre line in its plane, and make the
Euler–Bernoulli hypothesis that sections perpendicular to the centre line remain perpendicular to the centre
line and deform rigidly. For a point at arclength z along the centre-line at a height y away from the neutral axis
and under the small displacement assumption, the transversal displacement u is

u(y, z) = −w,z(z)y (4)

With our hypothesis on the displacement field and neglecting Poisson effect, only the tensile stress σzz is
nonvanishing:

εzz = u,z(y, z) = −w,zz(z)y, (5)

Consider now that the beam sections are allowed to evolve. From the Euler–Bernoulli hypotheses, the
beam sections remain plane, thus we prescribe cracks to follow the beam slicing and reduce the section
at particular positions. That is, we assign to each position z along the centre-line of the curve scalar fields
0 ≤ h−(z), h+(z) ≤ h characterizing the damage, on each side, to each section. Effectively, we selected the
damage field d : � → [0, 1] appearing in (3) to be 0 in the part of the beam delimited by h−, h+ and 1 outside
it:

d(x, y, z) = 1 − I[−h/2−h−,h/2−h+](y). (6)

where we denoted I�(y) the indicator function of the set �, taking value 1 if y ∈ � and 0 otherwise. To get
the contribution of the damage to the bulk energy density, we start from the 3D formulation (3). The density
of elastic energy per unit length is obtained by integrating the energy density over the beam section at position
z. Taking into account our kinematic assumption (5) and our prior on the damage field (6), we get the lineic
density of elastic energy for the beam:

∫ b/2

−b/2

∫ h/2

−h/2

1

2
(1 − d)2εzz(z)σz z(z)dydx (7)

=
∫ b/2

−b/2

∫ h/2

−h/2

1

2
E(1 − d)2εzz(z)

2dydx (8)

=
∫ b/2

−b/2

∫ h/2−h+

−h/2+h−
1

2
Ew,zz(z)

2
(

y − h− − h+

2

)2

dydx (9)

= 1

2
E I (h+, h−)w,zz(z)

2. (10)

where the moment of inertia of the section depends on the crack penetration depths

I (h+, h−) = b

12
(h − h+ − h−)3 + b(h − h+ − h−)

4
(h− − h+)2 (11)

= bh3

12

(

1 − h+

h
− h−

h

)3

+ bh3

4

(

1 − h+

h
− h−

h

) (
h−

h
− h+

h

)2

. (12)
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Fig. 1 Schematics of a rectangular beam section of initial section [−h/2, h/2]× [−b/2, b/2]. The undamaged part of the section
is figured in gray whereas the white zones figure the cracked zones. The crack penetration depth on the top side is h+ and on the
bottom side is h−. The centroidal line of the damaged section lies at γ = (h− − h+)/2

In the second line we introduced dimensionless quantities h+/h and h−/h corresponding to the damaged
fraction of the height of the beam section. These quantities characterize the damage to the section as damage
fields: they have minimal value 0 without damage and maximal value 1 when the damage spans a whole
section. They are the 1D analogous of the damage field d appearing in the first term of Eq. (3).

We now turn to the second term appearing in (3) accounting for the energy cost of creating new cracks
surfaces. According to Griffith theory and in the case of a perfectly brittle material, the energy expenditure is
the product of the created crack surface with the fracture toughness G. Using the fields notation we introduced
above, we get that the crack energy for a crack localized at z0 is:

Gbh

(
h+(z0)

h
+ h−(z0)

h

)

. (13)

The fundamental issue of the previous expression is that the crack is assumed to be perfectly localized at a
single position z0: the energy above does not have a density. We show in the next subsection that this results in
an infinite required stress for crack propagation from a pristine material, precluding the calculation of cracks
without regularization. In the next section, we include a regularization depending on the higher gradients of
h+, h− that allow the problem to be well posed (Fig. 1).

Currently we did not introduce asymmetry in the crack development. To keep track of the side on which
the crack initiation takes place, one can complexify the expression of the strain energy [29], but we find it
more convenient to postpone the resolution of this issue further. As the energy minimization has to follow a
time-stepping procedure, we will enforce at this latter stage the evolution of h+, h− depending on the sign of
the curvature w,zz . Further, note that the modulations of the sections surface and second moment of area are
different for the bending part and for the tensile part, similarly to [26].

2.2 Handling the initiation

In this subsection we show that the initiation of cracks depends on the size of the mesh discretization.
Let us, just for this subsection, consider that the a crack is localized at arclength z0 of the beam, and that

this crack occupies a small portion of the beam between the arclengths z0 − ε/2 and z0 + ε/2 - the length ε
can be taken to be a typical mesh size. Without loss of generality, due to assuming that the crack initiates on
the tensiled side of the bent beam, we set h− ≡ 0 and thus concern ourselves only with h+ that we assume
constant on the interval under consideration. In this setup, h+ is a scalar parameter characterizing the crack
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penetration depth in the beam element, and 0 ≤ h+/h ≤ 1 is a dimensionless parameter characterizing the
crack penetration depth. Considering a Griffith-like dissipation potential, together with the results of Sect. 2.1
allows to write the energy stored in the deteriorating part of the beam

Eε(h
+) =

∫ z0+ε/2

z0−ε/2

E I (h+, 0)

2
w2

,zz + Gbh

ε

(
h+

h

)

dz̄. (14)

From the Griffith criterion, the crack propagates whenever the elastic energy release rate is larger than the
material toughness. Using that here the damage value h+ is a simple scalar, the derivative of Eε against h+/h
is readily computed:

∂Eε

∂h+ ≤ 0. (15)

Light calculations using expression (11) for I (h+, 0) yields the cracking criterion at length h+.
(

−(h+)2 − h+h + h2

4

)

w2
,zz ≥ G

2Eε
. (16)

Letting h+ go to zero, one retrieves a crack initiation criterion, determined by the geometry of the beam and
the material constants:

w2
,zz ≥ 2G

h2Eε
. (17)

Crack nucleation is possible with this model only if the crack is spatially extended. That means, only smeared
cracks can be computed, and the result will be more akin to a crack envelope than a localized crack. As the
relapse of the bending energy is conditioned by the reduction of the section, a localized crack cannot induce the
energy spending necessary for crack opening. We keep in mind this feature of the formulation, and introduce
in the next section such a characteristic length.

3 Problem formulation and resolution

3.1 Regularized problem formulation

From the general damage field formulation (3) and the previous section, we can readily formulate the problem
of the beam equilibrium in the variational framework. Considering a distributed load pt (z) whose potential
energy is P = ∫

ptw, we get the regularized energy of the solid from the previous subsection. The singular
term is approximated by a convex function of the damage fields and their gradient similar to [7,10]:

E(w, h+, h−) =
∫ L

0

E I (h+, h−)

2
w2

,zz − pt (z)wdz

+ Gbh
∫ L

0

1

4�

((
h+

h

)2

+
(
h−

h

)2
)

+ �

⎛

⎝

(
h+

,z

h

)2

+
(
h−

,z

h

)2
⎞

⎠ dz. (18)

The independence of the evolution of the two crack fronts on both sides of the beam is reflected in each term
being independently squared. Note that this formulation of the energy is consistent with our convention for
the value of h+, h−: the first part of the second line term is minimal when h+ = h− = 0. A dependence on a
scale parameter � is introduced to control the length over which the fields vary. Decreasing � effectively favors
sharp variations of the section.

Despite constraining the evolution of cracks to follow the beam slicing into sections as per the Euler–
Bernoulli hypothesis, the whole geometry of the beam and the cracks path is specified through h+, h−. In
practice, given a load pt (z) we look for a displacement field w and fields h+, h− minimizing the energy (18).
From now on and for all the remaining of this paper we will assume the beam to have a straight initial shape
and an initial rectangular cross-section as per the calculations of Sect. 2.1. Further we restrict ourselves to
proportional loads pt (z) = tp(z).
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3.2 Computing the evolution

This section is devoted to the method of computation of the unknown fields h+, h−, w following a quasistatic
increase of the load pt and with initial fields h+

0 , h−
0 , w0 provided. The computation of the whole evolution

roots in a time-stepping procedure. The load is discretized following instants tn = nδt , and the fields are
computed from the previous solutions. We use the staggered scheme introduced in [29] ensuring a robust and
reliable resolution of the equations. The displacement field and the damage fields are computed at two different
steps. We will denote wn, h+

n , h−
n the unknown fields at time step tn .

The solution unknown fields have to satisfy the stationarity equations for the functional defined (18).
Following the operator split, we look at the stationarity equations for the displacement field wn and the
geometric fields h+

n , h−
n separately.

At time tn, n ≥ 1 the first step of the staggered scheme is to compute the solution displacement wn given
the value of fields h+

n−1, h
−
n−1. The solution transversal displacement field wn is searched as a minimizer of

the restricted functional E(·, h+
n−1, h

−
n−1). Satisfying the Euler equation for the functional on the interior of

the interval where the displacement is defined (0, L):

(
E I (h+

n−1, h
−
n−1)wn,zz

)
,zz

− ptn (z) = 0. (19)

Providing boundary conditions suited to any problem at hand ensures well-posedness for the two point linear
boundary value problem for the displacement field wn . Boundary conditions will be specified within the
examples in Sect. 4.

The second step of the staggered scheme is to solve for the geometric fields h+
n , h−

n . The resolution is
much more delicate than for the damage fields, as the problems are highly nonlinear and constraints have to
be taken into account. The system of boundary value problems is deduced from setting the first variation of
the functional (18) to be zero and is supplemented with the natural boundary conditions for the fields h+

n , h−
n ,

namely:

h+
n,z(0) = h+

n,z(L) = 0, (20)

h−
n,z(0) = h−

n,z(L) = 0. (21)

Note that the subordination of the geometric fields evolution to the curvature sign is enforced here: depending
on the geometric field considered and the sign of the beam curvature wn,zz , the stationarity equation has to
be adapted. Precisely, if the curvature sign wn,zz(z) is positive on some given interval (z0, z1), then the field
h+
n (z) has to satisfy the Euler equation for the functional E(wn, ·, h−

n ) on that interval (z0, z1), whereas h−
n

has to remain constant. If the curvature is negative, then it is h−
n that has to satisfy the stationarity equations

whereas h+
n is prescribed to be constant.

In addition, constraints on the fields value have to be satisfied as given in (??) to ensure that the section
reduction due to the damage remains coherent with the initial geometry of the beam. Finally, the Unilateral
Stationarity constraint [2] is enforced by requiring that for all n, all 0 ≤ z ≤ L:

h+
n−1(z) ≤ h+

n (z), (22)

h−
n−1(z) ≤ h−

n (z). (23)

The damage is irreversible, and cracks can only open further as the load increases.

4 Examples

We investigate the predicted crack development with our model. For this purpose we compare the prediction
of our unidimensional reduced model with the predictions of a finite element implementation of the variational
theory [30].



Part-through cracks computation 1171

Fig. 2 The clamped-clamped beam mechanical model

Fig. 3 Numerical results for the clamped-clamped beam. On the left, the results of the simulation with the regularized damage
field model (3). On the right, the predicted cracks envelope with the geometric fields model (18). Parameters used L = 3m, h =
b = 0.2m, E = 30MPa,G = 1e−6 Nm−2, � = 1e−5, F = 4e3 kN . The FE simulation is performed in CODE_ASTER using
the ENDO_SCALAIRE material law with parameters K = 0.0315, M = 10.0, P = 5.0 and a characteristic length 0.6m

4.1 Clamped-clamped beam

The first load case we investigate is that of a beam whose two ends are clamped, loaded in the middle of its
span with a single point force F . The mechanical model can be seen in Fig. 2. The boundary condition for the
associated model are the geometrical conditions on the beam centre-line:

w(0) = w(L) = 0, (24)

w,z(0) = w,z(L) = 0. (25)

Namely there is no transversal displacement for the beam centre line at the clamped points, and the centre-line
of the beam there is horizontal. The results of the resolution following the algorithm of Sect. 3.2 are shown in
Fig. 3.

The moment diagram for the mechanical model of Fig. 2 when the beam section is kept constant has three
extrema at the extremal and middle points of the beam z = 0, z = L/2, z = L . On the left of Fig. 3, the
damage field obtained after a gradual load increase is showed. The zones of large damage are figured in red. As
expected, fracture initiate at the 3 points of maximal strain: on the tensiled, top parts of the beam at the supports
z = 0, z = L , and bottom part at the midpoint z = L/2. On the right hand side of the figure, the original
shape of the beam is figured in black and the damaged surface of the beam in red. The essential features of the
cracking pattern are grasped through the dimension reduction: the shape of the damage zone obtained through
the two-dimensional damage field model matches that of the depth crack penetration on the right. On the other
hand, our model predicts a strong smearing of the damage despite our small characteristic length. Neglecting
the effect of the crack on the stress distribution induces a diffusion of the damage farther away from the point
maximal moment.

4.2 Two points loaded cantilever beam

The second load case we investigate is that of a simple cantilevered beam loaded in the middle and the end of
its span with single point forces F1, F2. The mechanical model is given in Fig. 4. The boundary conditions to
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Fig. 4 The cantilever loaded with two point loads mechanical model

Fig. 5 Numerical results for the clamped-clamped beam.On the left, the results of the simulationwith the regularized damage field
model (3). On the right, the predicted cracks envelope with the geometric fields model (18). Parameters used L = 3m, h = b =
0.2m, E = 30MPa,G = 1e−6 Nm−2, � = 1e−5 m, F1 = F2 = 1e3 kN . The FE simulation is performed in CODE_ASTER
using the ENDO_SCALAIRE material law with parameters K = 0.0315, M = 10.0, P = 5.0 and a characteristic length 0.6m

associate are the following

w(L) = 0, w,z(L) = 0, (26)

w,zz(0) = 0, w,zzz(0) = 0. (27)

That is, the transversal displacement and the angle of the centre line with the horizontal are prescribed to be
zero at the attach point z = L , whereas the centre-line curvature and its derivative are zero at the free end.

As we investigate the case where F1 = F2, the moment diagram for the mechanical model of Fig. 4,
computed with the Euler–Bernoulli hypothesis has two maxima at z = L/2, z = L . The solution obtained by
the damage field model is given in Fig. 5 left, with the most damaged zones in red. The damage concentrates on
the tensiled side of the beam at the attach point, initiating at the point of maximal moment. The damaged zone
expands far away from the support with our model, probably for the same reason as in Sect. 4.1. Nonetheless
the appearance point of the crack at the support matches in both simulation.

5 Discussion and results

The envelope of the cracks appearing in a beam under flexion was computed using a dimension reduction
method. Under plane displacement assumptions, we adopted a parametrization of the beam section geometry
at any arclength, allowing for the description of the stress fields in the beam and computation of the stress
resultants by direct integration. Completing the formulation by the addition of a regularizing term in the
energetic formulation leads to predict cracks initiation at finite loads.

The position of the cracks appearance zone is found to match those of the usual engineering stress criterion,
and smeared, crack zones appear at positions ofmaximal bendingmoment in the undamaged configuration. The
smearing of the cracks can be related to the shortcomings of the crack modeling in our model, which accurately
represents the geometry of the section, but does not phenomenologically represent cracks. In particular, and
in opposition to sharp cracks representation, the stress resultants do not exhibit jumps at cracking points.
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In the present model, stress relaxation due to cracking only occurs through local reduction of the section’s
moment of inertia, whereas the appearance of a strong singularity at the crack tip shouldmodify the stress fields
within the beam depth. Nonetheless, the model predicts crack initiation at a finite load so long as the crack
occupies some non-zero measure part of the beam, what is adequately enforced by the use of a regularized
field. The points of crack initiation can be evaluated together with the initial crack depth, and the behavior of
beams developing multiple cracks could be investigated by placing discrete elements accurately representing
cracks behavior at points of expected cracks initiation.
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