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Abstract The annular flow of complex viscoelastic fluids, described by the generalised Phan-Thien–Tanner
model, is studied. This model considers the Mittag-Leffler function instead of the usual linear or exponential
functions of the trace of the stress tensor, and includes two new parameters that provide additional fitting
flexibility. We derive a semi-analytical solution that provides a better understanding of the behaviour of this
type of fluid in annular flows and also helps to improve the modelling of complex materials.

1 Introduction

Viscoelastic materials, such as polymer melts, polymer solutions, and biofluids (e.g. blood, saliva, proteins)
have complex behaviour. To better model and understand their rheological behaviour, several constitutive
equations have been proposed in the literature. In this study, we consider the study of annular fluid flows that
are commonly encountered in industrial processes such as drilling, cable coating, and food processing. In these
processes, the fluids are mixtures of various substances, such as water, particles, oils, and other long-chain
molecules, that impart the fluid with various non-Newtonian properties.
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The literature has many analytical and numerical solutions for annular flows using different constitutive
rheological models or different boundary conditions [1–11]. Among them, all the different variants of the
Phan-Thien–Tanner (PTT) model have already been studied (linear, quadratic, exponential), except for the
more recent PTT model, which uses the Mittag-Leffler function and is called the generalized Phan-Thien–
Tanner (gPTT) model [12]. The gPTT model considers the Mittag-Leffler function instead of the classical
linear and exponential functions of the trace of the stress tensor (linear PTT and exponential PTT, respectively)
to ensure a much wider rheology coverage range and uses two new fitting constants to provide such additional
fitting flexibility to the description of the rheological properties of viscoelastic fluids.

Using this constitutive equation, in this work we propose a new approach by deriving a new semi-analytical
solution for the annular flow domain. Note that this model was previously studied for Couette and pressure-
driven flows, and also in combined electro-osmotic/pressure-driven flows (see [13–15]). The obtained solutions
allow the characterization of the velocity profile in annuli and can be used to validate the numerical methods
and results.

The remainder of this paper is organized as follows: the next section presents the governing equations,
followed by the new analytical solution in Sect. 3, the discussion of the results in Sect. 4 and the closure of the
paper in Sect. 5.

2 Formulation and governing equations

We consider the pressure-driven annular flow of a viscoelastic gPTT fluid, as shown in Fig. 1, where R is the
radius of the outer cylinder and aR is the radius of the inner cylinder.
The equations governing the flow of an isothermal incompressible fluid are the continuity equation

∇ · u = 0, (1)

and the linear momentum equation

ρ
Du
Dt

= −∇ p + ∇ · σ , (2)

where u is the velocity vector, D
Dt is the material derivative, p is the pressure, t is the time, ρ is the fluid density

and σ is the extra-stress tensor.

2.1 Constitutive equation

In order to achieve a closed system of equations, a constitutive equation for the extra-stress tensor, σ ,
must be defined. Recently, Ferrás et al. [12] proposed a new differential rheological model based on the
Phan-Thien–Tanner constitutive equation (PTT model [16,17]), derived from the Lodge–Yamamoto type
of network theory for polymeric fluids. This new model considers a more general function for the rate of

Fig. 1 Schematic of the flow in an annular region
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destruction of junctions, the Mittag-Leffler function, where two fitting constants are included, in order to
achieve additional fitting flexibility [12]. More details about this model are discussed in [12].

The Mittag-Leffler function is defined by

Eα,β (z) =
∞∑

j=0

z j

� (α j + β)
, (3)

where α, β are real and positive values and � is the Gamma function. When α = β = 1, the Mittag-Leffler
function reduces to the exponential function, and when β = 1 the original one-parameter Mittag-Leffler
function, Eα , is obtained [18].

The constitutive equation of the gPTT model is given by

K (σkk)σ + λ
�
σ = 2ηpD, (4)

where σkk is the trace of the extra stress tensor, λ is the relaxation time and ηp is the polymeric viscosity
coefficient. D is the rate of deformation tensor and function K (σkk) is given by

K (σkk) = � (β) Eα,β

(
ελ

ηp
σkk

)
, (5)

where the normalization � (β) is used to ensure that K (0) = 1 for all choices of β, and ε represents the

extensibility parameter.
�
σ represents the Gordon-Schowalter derivative, defined as

�
σ = ∂σ

∂t
+ u · ∇σ − (∇u)T · σ − σ · (∇u) + ξ (σ · D + D · σ ) , (6)

where ∇u is the velocity gradient and the constant parameter ξ accounts for the slip between the molecular
network and the continuum.

3 Semi-analytical solution for the gPTT model in annuli

We derive the analytical solution for the gPTT model considering a steady fully-developed pressure-driven
annular flow (cf. Fig. 1). We consider a unidirectional flow in cylindrical coordinates, where the outer radius
is R and the inner radius is aR, with 0 < a < 1. Therefore, the momentum equation, Eq. (2), simplifies to

1

r

d (rσr z)

dr
= Pz, (7)

where Pz ≡ dp
dz is the constant streamwise pressure gradient and σr z is the shear stress.

In order to obtain closed form analytical solutions the slip parameter in the Gordon-Schowalter derivative,
Eq. (6), was set to ξ = 0. So, the constitutive equation for the gPTT model in this flow (Sect. 2.1) can be
further simplified, leading to:

K (σkk)σzz = 2λγ̇ σr z, (8)

K (σkk)σrr = 0, (9)

K (σkk)σr z = ηpγ̇ , (10)

where the velocity gradient γ̇ is a function of r (γ̇ (r) ≡ du
dr ) and σkk = σθθ +σzz +σrr is the trace of the extra

stress tensor. Under fully-developed flow conditions, σθθ = 0 and σrr = 0, the trace of the extra stress tensor
becomes σkk = σzz .

Integration of the momentum equation results in

σr z = Pz
2
r + c

r
, (11)
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where c is a constant of integration. Assuming that σr z = 0 at r = bR (the location of the maximum velocity,
see Fig. 1), with a < b < 1, we calculate the integration constant (c = −(Pz/2)b2R2), resulting in the
following shear stress distribution,

σr z = −PzbR

2

(
bR

r
− r

bR

)
. (12)

Dividing Eq. (8) by Eq. (10) results in the following relationship between normal and shear stresses,

σzz = 2λ

ηp
σ 2
r z . (13)

Solving Eq. (8) for γ̇ , and using Eqs. (12) and (13) results in the following velocity gradient distribution:

du

dr
= −�(β)

ηp

PzbR

2

(
bR

r
− r

bR

)
Eα,β

(
2ελ2

η2p

(
PzbR

2

(
bR

r
− r

bR

))2
)

. (14)

The velocity gradient can be written in dimensionless form, using the Weissenberg number, Wi = λUc/δ,
whereUc = −Pzδ2/ηp is a characteristic velocity of the flow and δ is the gap between the two cylinders in the
annulus.We also define u = u/Uc as the dimensionless velocity and r = r/δ as the normalized radius/distance
between the inner and outer cylinders (R = R/δ). This gives the following dimensionless velocity gradient:

du

dr
= �(β)

2

(
b2R

2

r
− r

)
Eα,β

⎛

⎝εWi2

2

(
b2R

2

r
− r

)2
⎞

⎠ . (15)

Now, we can obtain the velocity profile numerically by solving the following nonlinear problem:

Problem 1 Given εWi2 and a, find the value of b that satisfies,

∫ R

aR

du

dr
dr = 0. (16)

Using the value of b, compute the velocity profile:

u(r) =
∫ r

aR

�(β)

2

(
b2R

2

r
− r

)
Eα,β

⎛

⎝εWi2

2

(
b2R

2

r
− r

)2
⎞

⎠ dr , (17)

where 0 < a < 1 is defined by the user. Equation (17) results from the no-slip boundary condition, u(R) = 0.
The velocity profile in Eq. (17) can be easily approximated numerically by a simple quadrature rule. The

solution of Eq. (16) can be obtained by defining F(b) =
∫ R

aR

du

dr
dr. So, there exists 0 < a < b < 1 such that

F(b) = 0.

Equation (15) can be further expanded using the definition of the Mittag-Leffler function, resulting in

du

dr
= �(β)

2

(
b2R

2

r
− r

) ∞∑

j=0

1

� (α j + β)

⎛

⎝εWi2

2

(
b2R

2

r
− r

)2
⎞

⎠
j

(18)

= �(β)

2

∞∑

j=0

1

� (α j + β)

(
εWi2

2

) j (
b2R

2

r
− r

)2 j+1

(19)

and the velocity profile can be obtained from the integration of each term in this sum, leading to the following
expression:

u(r) = �(β)

2

∞∑

j=0

1

� (α j + β)

(
εWi2

2

) j ∫ r

aR

(
b2R

2

r
− r

)2 j+1

dr (20)
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The integral
∫ ( A

r − r
)2 j+1

dr , with A = b2R
2
, can be easily computed, using the Newton’s binomial. So,

the velocity profile, is given by:

u(r) = �(β)

2

∞∑

j=0

1

� (α j + β)

(
εWi2

2

) j
⎡

⎣
2 j+1∑

k=0

(
2 j + 1

k

)∫ r

aR

(
b2R

2

r

)2 j+1−k

(−r)kdr

⎤

⎦ (21)

that can be rewritten as:

u(r) = �(β)

2

∞∑

j=0

1

� (α j + β)

(
εWi2

2

) j
⎡

⎣
2 j+1∑

k=0

(
2 j + 1

k

)
(−1)k

(
b2R

2
)2 j+1−k

fk j (a, r)

⎤

⎦ (22)

where:

fk j (a, r) =
⎧
⎨

⎩
ln

(
r
aR

)
, if k = j.

r2(k− j)−(aR)2(k− j)

2(k− j) , if k �= j.
(23)

Although Eq. (22) is an infinite series, we can obtain an approximated solution with a fair number of correct
decimal places by using only j = 3 or j = 4 (depending on the problem and the parameters used). This will
be explored in detail in the next section.

The second relevant problem from a practical point of view is the corresponding inverse problem of
determining the pressure gradient for a given flow rate. In this second case, the following equation must be
solved,

U = 1

πR2(1 − a2)

∫ R

aR
u(r)2πr dr (24)

where πR2(1− a2) is the cross section area of the annular region andU is the average velocity in the annular
region. Equation (24) in dimensionless form becomes:

2

R
2
(1 − a2)

∫ R

aR
u(r)r dr − U

Uc
= 0 (25)

In this scenario, we can formulate the next problem:

Problem 2 Given εWi2U (WiU = λU/δ) and a, find b and εWi2 such that,

u(R) = 0 ∧ 2

R
2
(1 − a2)

∫ R

aR
u(r)r dr − U

Uc
= 0. (26)

Then use the values of b and εWi2 to compute the velocity profile given by Eq. (22). Note that U/Uc =
WiU/Wi.

4 Results and discussion

4.1 Assessment of the series solution

In this subsection, we compare the numerical solution of the velocity profile given by Eq. (17), with the
analytical solution of Eq. (22). These results were obtained using the Mathematica software and we first
consider a high-precision numerical solution, where we obtain the value of b using the secant method and then
we numerically integrate Eq. (15). This highly accurate numerical solution of the velocity profile was then
used as a reference to perform an investigation of the influence of the number of terms in the series on the error
of the solution. The new truncated solution is obtained from Eq. (22), truncating the sum with j + 1 terms.
We considered 200 equidistant mesh points along the cylinder gap and measured the maximum relative error
obtained at these points (boundaries excluded). The error is calculated by |u(r)num−u(r)t |

u(r)num
, where u(r)num is the
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Table 1 Maximum relative errors (in percentage) for εWi2 = 0.05

j α = 0.5 α = 1.5

1 5.669 × 10−1 9.405 × 10−2

2 1.342 × 10−2 4.757 × 10−4

4 4.550 × 10−4 4.432 × 10−4

Table 2 Maximum relative errors (in percentage) for εWi2 = 3.2

j α = 0.5

2 1.782 × 102

4 1.580 × 102

8 5.874 × 101

16 8.681 × 10−1

Table 3 Maximum relative errors (in percentage) for εWi2 = 5

j α = 1.5

1 1.414 × 102

2 4.773 × 101

4 1.409 × 100

8 4.275 × 10−4

Fig. 2 Velocity profiles for β = 1, α = 0.5, 1.5 and two different values of εWi2, 3.2 and 5. a α = 0.5; b α = 1.5

approximate value of the velocity and u(r)t is the velocity value from the truncated series. Three different
values of εWi2 were considered: 0.05, 3.2 and 5. We set β = 1 and tested two different values of α, 0.5 and
1.5. We only changed the values of α, because this parameter induces more changes in the series. The value
of a used was 0.5 in all cases.

In Table 1, we show the maximum relative errors, in percentage. For εWi2 = 0.05, the error was low, even
when considering a single term in the series [Eq. (22)]. For α = 1.5 we see that the error is much smaller, with
the decrease in error becoming less pronounced as the number of terms in the series increases. This is due to
the number of significant digits considered.

Tables 2 and 3 show the maximum relative errors in percentage for εWi2 = 3.2 and 5, respectively. As we
increase εWi2, the series solution shows convergence problems, and as we increase α (see Table 3), the error
decreases faster as the number of terms in the series increases (note also that in this case we even consider a
higher εWi2 value). The corresponding velocity profiles are shown in Fig. 2, where u/Uc is the velocity profile
normalised by the characteristic velocity, using the highly accurate numerical solution. These particular results
indicate that the velocity profile converges to the correct profile as the number of terms in the series increases,
and that this convergence is slower for low values of α.

Based on these observations, we will consider j = 15 for the results presented next.
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Fig. 3 Velocity profiles for β = 1, α = 0.5, 1 and 3. a εWi2 = 0.05 and 1; b εWi2 = 1 and 3.2

Fig. 4 Normalized shear rate profiles for εWi2 = 3.2 and α = 0.5, 1 and 3

4.2 Problem 1

Figure3 shows the velocity profiles for β = 1, α = 0.5, 1, 3 at three different values of the εWi2 of 0.05, 1
and 3.2.

For εWi2 = 0.05 (Fig. 3a) the velocity profiles for different values of α almost overlap. However, when
we increase εWi2 to 1, that no longer happens, in fact we obtain the highest velocity and flow rate for α = 0.5,
the case in which we have the highest rate of destruction of junctions. This behaviour is more pronounced
when we increase elasticity (see Fig. 3b). For εWi2 = 3.2, the differences in the flow rates are obvious, except
for α = 3, where the velocity profile almost overlaps with the case εWi2 = 1. It is interesting to see that
for α = β = 1 we still have a parabolic velocity profile typical of Newtonian fluids, while decreasing α we
observe a very pronounced plug-like profile, which is more typical of shear-thinning fluids.

To understand the slope variation of the velocity profile across the cylinder gap (for different α values), we
also plotted the corresponding normalized shear rate, in Fig. 4. This way we have an idea of how much higher
shear rates near the wall are for low values of α.

Figures 5a, b show the normalized shear and normal stress profiles, for β = 1, α = 0.5, 1 and 3 for
εWi2 = 3.2. For the three cases, the dimensionless normal stress is always positive and the dimensionless
shear stress shows a quasi-linear profile, being positive near the inner cylinder and negative in the vicinity of
the outer cylinder. The shear stress is smaller for low values of α since the values of b decrease with decreasing
α (see also Eq. (15)).

Figures 6a, b and c show the influence of β on the velocity profile. The results are similar to those for the
variation of α. For a small value of εWi2 (Fig. 6a), the velocity profiles almost overlap for all values of β, but
as εWi2 is increased (Fig. 6b, c), the velocity and the flow rate increase as we decrease β. That effect is more
pronounced for small values of β.
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Fig. 5 Normalized shear and normal stress profiles, for β = 1, α = 0.5, 1 and 3 and εWi2 = 3.2. a Normalized shear stress; b
normalized normal stress

Fig. 6 Velocity profiles for α = 1, β = 0.5, 1 and 3; a εWi2 = 0.05 and 1; b εWi2 = 1 and 3.2; c εWi2 = 3.2 and 5

The role of β is more complex than that of α. β is used as an argument of the Mittag-Leffler function and to
normalize K (σzz). This mixed effect of β on the rate of destruction of junctions results in smoother variations
of velocity due to the variation of β.

We also study the variations of b with εWi2 (see Fig. 7). We considered three different values of α,
0.5, 1and 3 and calculated b for different εWi2. We see that the value of b decreases with the increase of
εWi2, and that for α = 3, the variation is almost linear. Notice that, when α = 0.5, the reduction is more
pronounced. Figure7 shows that b decreases with the increase of the fluid elasticity, a trend also observed on
the velocities profiles of Fig. 6, since the b represents the radial position of the maximum value for the velocity
profile. Therefore, the point of maximum velocity approaches the inner cylinder wall as the elasticity of the
fluid increases, because of the direct relationship between elasticity and shear-thinning of the shear viscosity.

4.3 Problem 2

This problem is harder to solve because for a given value of the flow rate, U , we have to find b and εWi2

(εWi2 = ε (λUc/δ)
2 = ε

(−λδPz/ηp
)2) from a system of two strongly nonlinear equations. The first equation

come from the outer wall boundary condition,

�(β)

2

∞∑

j=0

1

� (α j + β)

(
εWi2

2

) j
⎡

⎣
2 j+1∑

k=0

(
2 j + 1

k

)
(−1)k

(
b2R

2
)2 j+1−k [

fk j (a, R)
]
⎤

⎦ = 0; (27)
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Fig. 7 Variation of b with the variation εWi2, for α = 0.5, 1 and 3. The closed circle corresponds to value of b obtained for a
Newtonian fluid [1,19]

Fig. 8 Normalized velocity profiles for β = 1 and α = 0.75, 1 and 1.25. a εWi2U = 0.05; b εWi2U = 0.2 and 0.25

and the second from the imposed non-dimensionless flow rate

�(β)

R
2
(1 − a2)

∞∑

j=0

1

� (α j + β)

(
εWi2

2

) j
⎡

⎣
2 j+1∑

k=0

(
2 j + 1

k

)
(−1)k

(
b2R

2
)2 j+1−k [

hk j (a, R)
]
⎤

⎦ − WiU
Wi

= 0,

(28)

where hk j (a, R) = R − aR if k = j and hk j (a, R) = R
2(k− j)+1−(aR)2(k− j)+1

2(k− j)+1 if k �= j . Note that U/Uc =
WiU/Wi , as in Eq. (26).

Since one of the goals of this work is to provide a tool for validating future numerical implementations
of this constitutive model in general numerical codes, the Mathematica codes used to obtain the solution are
provided as supplementary material.

Figure8 shows the normalized velocity profiles for β = 1, α = 0.75, 1 and 1.25, a = 0.5, and, for three
different values of εWi2U : 0.05, 0.2 and 0.25.

For the lowest εWi2U (Fig. 8a), the velocity profiles are similar, with higher velocities for lower values of α,
and, the plug-like profile typical of non-Newtonian fluids is less pronounced due to the low elasticity. Again,
this confirms the idea that the lower values of α lead tomore plug-like profiles due to the intense shear-thinning.

This effect is more pronounced in Fig. 8b, where we compare the results for two moderate values of
elasticity. The combination of a higher εWi2U and a lower value of α leads to a less parabolic velocity profile.

The combined effect of elasticity and parameters α and β leads to a complex relationship. Physically, we
have that a higher rate of destruction of junctions in the network (lower α) allows for a faster creation of a
new network. For Problem 1, this resulted in a higher flow rate, giving the idea that, this high destruction rate
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results in less resistance of the flow. When the flow rate is imposed, we observe that the information from the
boundary conditions travels at a slower velocity, allowing for a more plug-like profile to be possible.

5 Conclusions

We derived an analytical solution for the velocity profile in series form for the annular flow of a gPTT fluid.
A semi-analytic solution is derived for the case where the flow rate is imposed.

We show the influence of the model parameters on the velocity and stress profiles. As expected, the flow
velocity increases with the decrease of α and β for the same εWi2, resulting in a more pronounced plug-like
profile. The influence of β is less pronounced due to its double influence on the proposed rate of destruction
of junctions (it is a parameter of the Mittag-Leffler function and is also used as a normalization factor).

The analytical and semi-analytical solutions presented in this work are useful for the validation of CFD
codes and also provide a better understanding of the model behaviour in simple shear flows.
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