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Abstract A new and unified approach is proposed toward accurately analyzing overall elastoplastic responses
of axially loaded bars and finite bending beams until failure. Results are presented for various constituent
materials such as metals, reinforced concretes and reinforced composites, etc. Novelties in three respects are
incorporated: (a) new uniaxial stress–strain functions are first presented in explicit forms for the purpose
of accurately characterizing non-symmetric tensile and compressive behaviors of axially loaded bars from
hardening to softening; (b) explicit solutions to both the varying neutral axis and the flexural moment of finite
bending beams are then obtained directly in terms of these two uniaxial functions; and, hence, (c) the complex
bending problem of various beams until failure is in a unified manner reduced to a simple issue of fitting two
uniaxial functions to tension and compression data from uniaxial testing, thus bypassing the analytical and
numerical complexity of various existing approaches. Numerical examples of model predictions are provided
for typical constituent materials, including aluminium, meso-scopic heterogeneous concrete and ultra-high
performance fiber-reinforced concrete with reinforcing rebars. Good agreement is achieved simultaneously
with all experimental data for bars and beams made of these materials.

1 Introduction

Bars and beams are used as significant structural members subject to axial loading and flexural loading in
engineering structures. Various kinds ofmaterialsmay serve as their constituentmaterials, such asmetals, fiber-
reinforced composites, reinforced polymers, and even biological materials, etc., and, moreover, reinforcing
rebars may be introduced, such as steel bars and glass fiber-reinforced polymer bars, etc. Beside usual metal
bars and metal beams, typical examples are various reinforced concrete columns and reinforced concrete
beams. To ensure reliability and safety in service, it is of significance to present a complete and accurate study
for full-range elastoplastic responses of such bars and beams until failure.

To accomplish the above objective, complexities in three respects should be effectively treated. Firstly,
various constituent materials, such as concretes and composites etc., display much varied elastoplastic fea-
tures with markedly different uniaxial tensile and compressive behaviors (cf., e.g., [1]). These effects can
also be observed for metals and ceramics in the elastic, plastic, and creep ranges (cf., e.g., [2,3] and the
literature therein). In particular, such different features in tension and compression of bars are further compli-
cated with non-symmetric hardening and softening behaviors. Secondly, non-homogeneous stresses over each
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cross-section of a bending beam accordingly manifest themselves with complex non-symmetric tensile and
compressive features. Thirdly, strongly coupling issues are expected with finite strain effects at various stages
of softening until failure.

A complete treatment of the first issue above needs to accurately represent complex non-symmetric hard-
ening and softening effects in axially loaded bars until failure, while the second issue above is closely related
to the first. In fact, non-symmetric tensile and compressive behaviors imply that the neutral axis over each
cross-section of a bending beam is not fixed but constantly varying, and the tension and the compression zone
demarcated by this axis are also constantly varying. As such, the varying neutral axis as a moving boundary
needs to be first determined toward analyzing the stress distributions over both the tension and the compression
zone. Moreover, finite strain effects further bring in coupling complexities in both kinematic and constitutive
analyses.

Toward approximately treating the above complexity, various approaches have been established mainly
based either on fracturemechanics or on damagemechanics. Representative results are briefly described below.

With fracture-based approaches, various models were introduced towards simulating development of
macro-cracks. Reference may be made to, e.g., the crack band model [4], the two-parameter fracture model
[5], the equivalent fracture model [6], the size effect model [7], the complete fracture model [8], and many
others. On the other hand, various damage variables characterizing evolution of micro-defects were postulated
and calculated towards simulating gradual degradation in strength, such as the energy damage mode [9], the
geometric damage model [10], the stress- and strain-based damage model [11], the plastic damage model
[12,13], the multi-scale failure model [14], and so on. Such constitutive models have been used in analyzing
complex responses of bars and beams. Recent results may be found in, e.g., [15–22], etc.

Usually, cumbersome numerical schemes need to be implemented in treating various complicated constitu-
tive models with damaging and cracking effects, as shown in, e.g., [23–26]. For each given value of the flexural
curvature, the neutral axis position need to be determined in repeatedly performing the sectional analysis (see,
e.g., [27,28]), in which sophisticated models with a number of ad hoc parameters are used toward simulating
non-symmetric tensile and compressive behaviors at various stages of cracking, etc.

With various existing approaches, both modeling analyses and numerical procedures are carried out in an
approximate sense of the infinitesimal strain analysis, irrespective of the fact that finite strain effects should
be taken into account for analyzing full-range responses until failure. It appears that results with finite strain
effects are confined to particular cases. Earlier, finite elastoplastic bending of plate strips was studied in [29]
for the incompressible perfectly elastoplastic case and in [30] for the compressible perfectly elastoplastic case,
as well as in [31] for the power-type work-hardening case. Later on, results were derived in [32] for the linear
combined hardening case. Most recently, fatigue failure effects of metal beams under cyclic flexural loading
have been studied in [33].

This study is intended for a unified and explicit finite strain analysis for full-range responses of axially
loaded bars and finite bending beams until failure. This analysis will be carried out in a broad sense applicable
to various elastoplastic constituent materials, such as metals, concretes, reinforced polymers and reinforced
composites, etc. New results will be furnished in three respects. First, two uniaxial stress–strain response
functions will be presented in explicit forms for the purpose of accurately characterizing non-symmetric
tensile and compressive behaviors of axially loaded bars with complex transitions from hardening to softening.
Second, explicit solutions to both the varying neutral axis and the flexural moment of finite bending beams will
be derived directly from these two uniaxial functions. Third, usual complexities in constitutive modeling and
numerical implementation will accordingly be bypassed without simulating either micro-defects or macro-
cracks. Moreover, model predictions for three cases of the constituent material will be provided and compared
with test data for both bars and beams, including aluminium, meso-scopic heterogeneous concrete, and ultra-
high performance fiber-reinforced concrete with glass fiber-reinforced polymer rebars.

The context will be arranged in four sections. In Sect. 2, two uniaxial stress–strain response functions
will be presented in explicit forms towards accurately characterizing non-symmetric tensile and compressive
responses of axially loaded bars from hardening to softening. In Sect. 3, explicit solutions to both the varying
neutral axis and the bending moment will be obtained directly from these two uniaxial functions. In Sects. 3
and 4, numerical examples will be provided towards validating model predictions with comparisons to test
data. Finally, results and future studies will be discussed in Sect. 5.
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2 Accurate analyses for non-symmetric responses of bars

As mentioned before, stress–strain responses of various axially loaded bars until failure exhibit much varied
elastoplastic features with considerable differences in tension and compression. Accordingly, non-symmetric
tensile and compressive stress–strain curves are generated with several parts distinct in nature from hardening
to softening. In fact, after an initial part of almost linear shape emerges a curvilinear hardening part with the
stress going up to a maximum value known as the ultimate strength and then follows a curvilinear softening
part with the stress going down to vanish. Moreover, for concretes and composites etc., the softening part
contains a nearly flat part with a lower stress value known as the residual strength. Details may be found in
Figs. 6 and 7 later.

For constituent materials such as concretes and reinforced composites etc., each feature in the above is
distinct in tension and compression, including the shape and the slope of either the hardening or the softening
part, the transition from hardening to softening, and, in particular, the ultimate and the residual strength, etc.,
as shown in Figs. 6 and 7.

In what follows, all such details will be accurately characterized by presenting non-symmetric stress–
strain functions in explicit forms. These two forms will be constructed by combining a few hyperbolic tangent
functions, which is an extension of the idea in constructing a simple form of the yield strength in [34]. Other
types of functions constructed by mechanical and mathematical formalisms are given, e.g., in [3,35], and the
literature therein.

2.1 Stress–strain function in tension

Let h ≥ 0 and σ ≥ 0 be the axial Hencky strain and the axial Cauchy stress in tension. An explicit form of the
stress–strain function in tension is given as follows:

σ = f ∗(h) = (a∗h + b∗tanh(ω∗h))
1 − tanhα∗ ( h

s∗ − 1
)

1 + tanhα∗

+ c∗
(
tanhβ∗ + tanhβ∗ ( h

s∗ − 1
))2

(tanhβ∗ + 1)2
e−m∗h, (h ≥ 0) (1)

for the full-range response of an axially loaded bar from hardening to softening until failure. Each parameter
therein is positive. The parameters a∗, b∗, c∗ are of the same dimension as the stress, while other parameters
are dimensionless. Details are explained below.

Equation (1) is intended for a unification in treating metals and concretes. Indeed, it is not on a rational
but on an ad hoc basis in essence. It is well designed based on the idea that appropriate combinations of
hyperbolic tangent functions with their unique transition features may be used to well represent complex
transitions from hardening with positive slopes to softening with negative slopes for various materials such as
metals and concretes etc. and, in particular, that would also be the case with additional transitions related to
the residual strength at the softening stage. It appears that, with Eq. (1), a unified treatment for elastoplastic
response features of both metals and concretes may for the first time be achieved in a sense of ensuring good
correlations between model predictions and experimental data. It is this unification that leads to a unified study
for non-symmetric tensile and compressive responses of various bars and beams made of metals and concretes,
etc.

The geometric features of the tensile stress–strain curve represented by Eq. (1) are controlled by the three
hyperbolic tangent functions therein together with given values of the parameters. Of them, the function

y = tanh(ωx)

rapidly grows from 0 to 1 and then keeps almost constant, as illustrated in Fig. 1 for ω = 500, 1000, 2000,
while the function

y = tanh
(
η

( x
r

− 1
))

rapidly changes from −1 to 1 within a narrow interval centered at x = r , as shown in Fig. 2 for η = 2, 3, 9
with r = 0.0025.
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Fig. 1 Three cases of the hyperbolic tangent function y = tanh(ωx)

Fig. 2 Three cases of the hyperbolic tangent function y = tanh(η(x/0.0025 − 1)))
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Table 1 Parameter values in fitting uniaxial data for Al 99,5w in [31]

Parameter a (MPa) b (MPa) ω α s c (MPa) β

C & T 520 50 1290 0.277 0.16 0 0

With the above properties of the three hyperbolic tangent functions in Eq. (1), various stress–strain curves of
the features in the foregoing may be generated with various parameter values. The meanings of the parameters
are explained as follows.

The parameters a∗, b∗, ω∗ jointly prescribe the shape and the slope of the hardening part in tension and,
in particular, the initial slope at h = 0, i.e., Young’s modulus, is given by

E = d f ∗

dh

∣∣
∣∣
h=0

= a∗ + ω∗b∗. (2)

On the other hand, the parameters α∗ and s∗ specify the transition effect from hardening to softening in tension
and, in particular, the location of the ultimate tensile strength, while the parameters α∗, β∗, c∗ determine the
shape and the slope of the softening part in tension. Of them, the parameter c∗ is the limiting value of Eq. (1)
as h exceeds s∗, namely, the tensile residual strength. Finally, the parameter m∗ ensures that the stress goes to
vanish as the strain becomes large, as required by Eq. (12) later on.

2.2 Stress–strain function in compression

Let h ≤ 0 and σ ≤ 0 be the axial Hencky strain and the axial Cauchy stress in compression. In parallel with
Eq. (1), an explicit form of the stress–strain function in compression is given as follows:

σ = f∗(h) = (a∗h + b∗tanh(ω∗h))
1 + tanhα∗

(
h
s∗ + 1

)

1 + tanhα∗

− c∗

(
tanhβ∗ − tanhβ∗

(
h
s∗ + 1

))2

(tanhβ∗ + 1)2
em∗h, (h ≤ 0). (3)

As in Eq. (1), each parameter in Eq. (3) is positive. The meanings of the parameters may be explained by
replacing “tension" with “compression" in the last subsection. In particular, the counterpart of Eq. (2) is as
follows:

E = d f∗
dh

∣
∣∣
∣
h=0

= a∗ + ω∗b∗. (4)

This and Eq. (2) together lead to the relationship:

a∗ + ω∗b∗ = a∗ + ω∗b∗ = E . (5)

2.3 Comparisons with test data

The value of each parameter in Eqs. (1, 3) is determined in fitting sufficient experimental data for uniaxial
tension and compression of bar specimens. As illustrative examples and for the calculations to be carried
out in the next section, here uniaxial data for three constituent materials are taken into account, including
Al 99,5w (cf., [31]), ultra-high-performance fiber-reinforced concrete (UHPFRC) (cf., [18]) and meso-scale
heterogeneous concrete (MSHC) (cf., [36]). Two sets of the parameters as given in Eqs. (1, 3) are identified in
matching these data and the parameter values are listed in Tables 1, 2, and 3. Comparisons with test data are
depicted in Figs. 3, 4, 5, 6, and 7 for tension and compression, respectively.

Both hardening and softening parts are depicted in Figs. 6 and 7 with comparisons to data. However, since
no softening data are available, the softening parts in Figs. 3, 4, and 5 with the parameter values in Tables 1
and 2 are given in a sense of extrapolation. Here, failure effects with the stress going to vanish are not shown
and, hence, values of both m∗ and m∗ are set to be 0.
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Table 2 Parameter values in fitting uniaxial data for UHPFRC in [18]

Parameter a (MPa) b (MPa) ω α s c (MPa) β

Compression 49,000 0 0 3.3 0.0069 0 0
Tension 3000 11.5 4000 0.13 0.0008 0 0

Table 3 Parameter values in fitting uniaxial data for MSHC in [36]

Parameter a (MPa) b (MPa) ω α s c (MPa) β

Compression 3500 45 900 9 0.0037 28 12
Tension 4800 9.8 4000 1.2 0.000137 0.26 4

Fig. 3 Fitting uniaxial data for Al 99,5w in [31]

Fig. 4 Fitting uniaxial tension data for UHPFRC in [18]

2.4 Remarks

The two stress–strain functionsmay be given in new forms by combining piecewise linear splines [37].Without
involving any unknown parameters, such new forms can accurately and automatically match any given test
data, thus bypassing issues both in selecting suitable functional forms and in finding out suitable parameter
values. Further remarks will be given in Sect. 5.

3 Explicit solutions to finite bending of beams

As indicated in the introduction section, complexities in both constitutive modeling and numerical implemen-
tation are usually involved in analyzing non-elastic bending responses of beams, and that would particularly be
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Fig. 5 Fitting uniaxial compression data for UHPFRC in [18]

Fig. 6 Fitting uniaxial tension data for MSHC in [36]

Fig. 7 Fitting uniaxial compression data for MSHC in [36]

the case in the presence of finite strain effects. Here, it will be shown that such complexities may be bypassed by
obtaining direct solutions to the varying neutral axis position and the bending moment. Toward this objective,
it will be disclosed that, for finite elastoplastic bending of a beam until failure, the stress distributions over
the tension and the compression zone can be directly prescribed by the stress–strain functions characterizing
uniaxial tensile and compressive behaviors of the constituent material from hardening to softening, as just
given in the last section.

The study will be done within a general constitutive framework of finite elastoplastic deformations with
failure effects (cf., e.g., [38–40]). In so doing, the derived results are of wide applicability for various elasto-
plastic constituent materials, such as metallic materials, granular materials, reinforced polymers and reinforced
composites, etc.



6568 Q.-P. Liu et al.

3.1 Elastoplastic formulation with failure effects

We first introduce the Eulerian rate formulation of finite strain elastoplasticity in a broad sense (cf., e.g., [38–
40]). In what follows, the Cauchy stress, the deformation gradient and the stretching tensor are designated
respectively by σ , F and D with

D = 1

2

(
Ḟ · F−1 + (

Ḟ · F−1) T
)

.

Here and in the following, the superimposed dot signifies the material time derivative.
The starting point is the additive separation of the stretching tensor:

D = De + Dp. (6)

Objective Eulerian rate constitutive equations should be formulated for the elastic and the plastic part, De

and Dp, in conjunction with a yield function demarcating the elastic and the plastic state. To ensure wide
applicability, here the flow rule governing the plastic part Dp is allowed to be fully general, while the elastic
part is governed by (cf., e.g., [41])

De = 1 + ν

E

◦
σ − ν

E
tr(σ̇ )I (7)

for small elastic strain. Here and henceforth, E and ν are Young’s modulus and the Poisson ratio of the

constituent material and
◦
σ is the co-rotational logarithmic stress rate. Details may be found in the foregoing

references. With the logarithmic stress rate, Eq. (7) in the elastic unloading case is exactly integrable to really
deliver a hyperelastic model, i.e., the Hencky model. The latter can well represent the elastic behavior within a
moderate strain range, albeit the elastic strain is small for hard solids such as metals and concretes, etc. Details
may be found in [41].

In a broad sense, the yield function is of the general form:

ϕ = g(σ ) − q̃(κ, ϑ). (8)

In this respect, recent results may be found in, e.g., [42,43].
In Eq. (8), q̃(κ, ϑ) > 0 is the yield strength that is dependent upon both the plastic work κ and the stress

mode invariant ϑ . Of them, the plastic work κ is specified by

κ̇ = σ : D p, (9)

while the stress mode invariant ϑ is given by

ϑ = √
6 J3 J

−1.5
2 ,

where Jn = trσ̃ n, (n = 2, 3)with the deviatoric stress σ̃ . The invariantϑ herein yields 1 and -1 for the uniaxial
tension and compression cases, respectively, vanishes for pure shear and, in general, is bound to −1 ≤ ϑ ≤ 1.

Depending on the particular definition of the invariants of the stress deviator, ϑ is according to

ϑ = − sin 3θ

associated with the so-called Lode angle θ , where θ is the angle between the projection of σ on the π-plane
and the nearest pure shear line.

The parameter μ actually introduced by Lode in his dissertation1 [44,45]

μ = 2σ2 − σ1 − σ3

σ1 − σ3
, σ1 ≥ σ2 ≥ σ3, −1 ≤ μ ≤ 1,

where the σi (i = 1, 2, 3) are the principal values of σ , is related to this angle via (refer, e.g., to [46])

μ = √
3 tan θ, −π

6
≤ θ ≤ π

6
.

1 Lode introduced this parameter (and a second one in a corresponding way for the strains) to discuss the influence of the
intermediate principal stresses (or strains) on different yield conditions and constitutive laws.
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In passing, we note that these special formulas are bound to the sequence σ1 ≥ σ2 ≥ σ3. Similar relations can
be given for the other segments of the yield locus. Therefore, we will here refer to ϑ as a generalized Lode
parameter.2

This result can also be achieved if the principal values of the stresses are replaced by cylindrical coordinates.
A simple trigonometrical calculation can transform the common invariants into a set of alternative invariants
(σm, σeq, ϑ) (cf, e.g., [43,49,50]), where σm is the mean stress and σeq the von Mises equivalent stress.

Instead of the usual plastic work κ in Eq. (9), the yield strength q̃ may be formulated equivalently in terms
of another evolving variable ξ , as indicated in [51]. As such, Eq. (8) is recast as follows:

ϕ = g(σ ) − q(ξ, ϑ). (10)

Here, the evolving variable ξ is introduced by the following relationship:

κ̇ = q

E

(
E − q ′) ξ̇ (11)

with q ′ = ∂q/∂ξ . The evolution equation for ξ may be given directly, as is the case for metals in [51].
As indicated in [39,40], failure effects may be automatically incorporated as inherent response features into

finite strain elastoplasticity models, whenever the yield strength tends to vanish with constant development of
the plastic flow, as formulated below:

lim
ξ→∞ q(ξ, ϑ) = 0. (12)

Both g(σ ) and q(ξ, ϑ) in Eq. (10) are allowed to be of fully general forms. A particular form of the yield
function for granular materials is the Drucker–Prager function [52]:

ϕ = √
J2 + α I1 − q(ξ),

where α is a parameter related to the internal friction angle of granular materials.

3.2 Yield strengths in tension and compression

Now we direct attention to the uniaxial tension and compression cases with ϑ = ±1. For these particular
cases, we intend to demonstrate that the yield strength q(ξ, ϑ) in Eq. (10), designated by

q∗ = q(ξ, 1), q∗ = q(ξ,−1), (13)

are determined just from the uniaxial tensile and compressive stress–strain response functions of an axially
loaded bar of the constituent material.

In fact, let λ, η, σ be the axial stretch, the lateral stretch and the axial Cauchy stress in an axially loaded
bar, respectively, and let e be a unit vector in the axial direction. Then, the stretching and the Cauchy stress
tensor for an axially loaded bar are of the forms:

D = λ̇

λ
e ⊗ e + η̇

η
(I − e ⊗ e), σ = σ e ⊗ e. (14)

At the yielding state, the condition ϕ = 0 is met. Without losing generality, the stress function g(σ ) in Eq.
(10) is formulated such that it just yields the normal stress ±σ for the uniaxial stress tensor as given in Eq.
(14). As such, with Eq. (13) the yield condition ϕ = 0 produces

σ = q∗(ξ̄ ) for tension σ ≥ 0, (15)

σ = −q∗(ξ̄ ) for compression σ ≤ 0. (16)

Here, ξ̄ is used to denote the value of the evolving variable ξ (cf., Eq. (11)) in the uniaxial loading case.
With Eq. (6), the evolution equation (9) may be recast in a new form below:

κ̇ = σ : (
D − De) . (17)

2 We finally note that the first approach to generalize the Lode parameter μ towards an invariant ϑ with cubic and quadratic
terms probably goes back to Fromm [47]. In this context, we also refer to [48].
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Then, the plastic work for an axially loaded bar, signified by κ̄ , is prescribed by

˙̄κ = σ(ḣ − σ̇ /E) (18)

with Young’s modulus, E , of the constituent material and the axial Hencky strain:

h = ln λ. (19)

Hence, from Eqs. (11, 15, 16, 18) it may be inferred that the variable ξ̄ is just given by the magnitude of the
axial Hencky strain h, i.e.,

ξ̄ = |h|.
This and Eqs. (15, 16) jointly produce

σ = q∗(h) for tension h ≥ 0, (20)

σ = −q∗(−h) for compression h ≤ 0. (21)

On the other hand, the axial stress responses σ in tension and compression are given by the uniaxial tensile
and compressive stress–strain functions (cf., Eqs. (1, 3)) that need to be determined from test data, namely,

σ = f ∗(h) for tension h ≥ 0,

σ = f∗(h) for compression h ≤ 0,

as in Sect. 2. Thus, from this and Eqs. (20, 21) it follows that

q∗(h) = f ∗(h) for tension h ≥ 0, (22)

q∗(−h) = − f∗(h) for compression h ≤ 0. (23)

As may be evidenced from the above, finite strain effects are characterized by the axial Hencky strain
h = ln λ. Essential roles of the Hencky strain may be found in, e.g., [41].

3.3 Stress distributions at finite bending

Now, a beam at finite bending is taken into account, which is of circular sector shape with the height 2a and the
width b (cf., Fig. 8 below). Let (e1, e2, e) be three fixed orthonormal vectors directed respectively in the height,
the longitudinal and the width direction of the beam at its initial state and (er , eθ , e) be three orthonormal
vectors in the current radial, circumferential and width direction, respectively. Each current cross-section at
bending is rotated through an angle, θ , around an axis in the e-direction. Then, the following relationships may
be established:

er = e1 cos θ + e2 sin θ, eθ = −e1 sin θ + e2 cos θ.

Generally, the deformation gradient at bending is of the form:

F = λr er ⊗ e1 + λθ eθ ⊗ e2 + λ e ⊗ e. (24)

In the above, λθ , λr , and λ are the normal (circumferential), the radial and the lateral stretch at position z (cf.,
Fig. 8a below) over the current cross-section, respectively. Here, Eq. (24) is given in a broad sense. For pure
bending, they are derived from the displacement field as follows:

λr = r ′(X), λθ = r θ ′(Y ), λ = z̄′(Z),

where the (X, Y, Z) are the Cartesian coordinates in the height, the longitudinal and the width direction of
the beam at its initial state, respectively, and the (r, θ, z̄)3 are the corresponding cylindrical polar coordinates
in the radial, circumferential and width direction of the bent beam. Here, the prime denotes differentiation,

3 To avoid any confusionwith the coordinate z at the undeformed beam cross-section (see Fig. 8a), the coordinate z̄ is introduced
here instead of the usual notation.
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e.g., f ′(X) = d f/dX . Since they will play no roles in the sequel, the above relationships derived from the
displacement field will no longer be mentioned. In what follows, the stretching tensor

D = λ̇r

λr
er ⊗ er + λ̇θ

λθ

eθ ⊗ eθ + λ̇

λ
e ⊗ e (25)

will come into play.
Next, the nature of the stress distributions is analyzed as follows. Both the normal stress σθ and the radial

stress σr are induced over the beam cross-section. Let z0 ≤ 0 and R be respectively the neutral axis position
and the curvature radius at the neutral plane, as shown in Fig. 8. Then, from the equilibrium condition in the
radial direction it may be deduced:

dσr
dr

+ σr − σθ

r
= 0.

Hence, the integration over the current cross-section (cf., Fig. 8) from r = R−a− z0 to r ≤ R+a− z0 yields

σr =
∫ r
R−a−z0

σθdr

r
.

It is noted that σr attains its maximum value A at the neutral axis position, i.e., at r = R. From this it follows
that

|σr | <
1

R

∣
∣∣
∣

∫ R

R−a−z0
σθdr

∣
∣∣
∣ <

a + z0
R

A <
a

R
A,

with z0 ≤ 0.
From the above, it may be concluded that, whenever the curvature radius is large as compared to the half

height a, the radial stress σr is small for a small ratio a/R. In fact, outside the elastic zone, σr is negligible (cf.,
e.g., [30]) as compared to σθ . In a similar way, we can also estimate the influence of the stress σz̄ in the width
direction as small. In fact, the two stresses merely represent the second-order effects and, hence, by neglecting
the relatively small radial stress and the stress in the width direction, either of which has no contribution to the
bending moment given later in Eq. (35), the Cauchy stress outside the elastic zone is of the form:

σ = σθ eθ ⊗ eθ . (26)

It is worthwhile to point out that the above results have been derived in a broad sense for various cases
of the finite bending. In fact, the three stretches in Eqs. (24, 25) are allowed to be fully general, in which the
plane-strain bending with λ = 1 for a wide plate strip is included as a particular case. Furthermore, various
cases of thin and medium-thin beams with small ratio a/R may be treated in a unified manner.

Further results may be derived following the same procedures in the last subsection. Firstly, the yield
condition ϕ = 0 produces

σθ = q∗(ξ̂ ) for σθ ≥ 0, (27)

σθ = −q∗(ξ̂ ) for σθ ≤ 0, (28)

where ξ̂ is used to denote the value of the evolving variable ξ (cf., Eq. (11)) at position z over the current
cross-section (cf., e.g., Fig. 8a).

Next, from Eqs. (17, 25, 26) the following may be deduced:

˙̂κ = σθ (ḣθ − σ̇θ /E) (29)

with the normal (circumferential) Hencky strain at position z:

hθ = ln λθ . (30)

Moreover, from Eqs. (11, 29) it may be inferred that the variable ξ̂ is just given by the magnitude of the normal
Hencky strain hθ , i.e., ξ̂ = |hθ |. This and Eqs. (27, 28) jointly produce

σθ =
{
q∗(hθ ) for hθ ≥ 0,
−q∗(−hθ ) for hθ ≤ 0, (31)
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Fig. 8 Bending with varying neutral axis

Eventually, from Eqs. (21, 22, 30) the following correlation is established:

σθ =
{
f ∗(hθ ) for hθ ≥ 0,
f∗(hθ ) for hθ ≤ 0. (32)

With the yield condition ϕ = 0, actually the above correlation is first established for the normal stress
within the two plastic zones in tension and compression, namely, for hθ beyond certain elastic limits. Within
these limits, i.e., for the elastic zone centered at the neutral axis, the stress is given simply by σ = Ehθ , which
is covered in Eqs. (1, 3) with Eq. (5).

3.4 Explicit solutions

For a uniform rectangular beam with its cross-section of height 2a and width b, a Cartesian coordinate system
Oxz over the current beam cross-section at bending is shown in Fig. 8a, where the Oz-axis is in the height-
direction and the Ox-axis in the width-direction. In a course of bending, each beam cross-section with its
normal rotating keeps planar.

Let z0 and γ respectively denote the neutral axis position and the flexural curvature at the neutral plane, as
shown in Fig. 8b with R = γ −1 the radius of curvature, and, as before, let θ be the bending angle of the beam
cross-section. Then, the normal stretch at position z is given by

λθ = (R + z − z0)θ

Rθ
= 1 + γ (z − z0) .

Hence, the normal Hencky strain (cf., Eq. (30)) at position z is as follows:

hθ = ln λθ = ln (1 + γ (z − z0)) . (33)

The rebar reinforcement in the tension zone is taken into consideration. Let z j∗, s j , A j∗ be the position,
the number, the area of the j-th row of rebars with j = 1, 2, . . . , n. With the correlation Eq. (32), it may be
inferred that the force equilibrium over the cross-section leads to

b
∫ z0

−a
f∗(hθ )dz + b

∫ a

z0
f ∗(hθ )dz +

n∑

j=1

s∗ j (E∗ j h∗ j − f∗(h∗ j ))A∗ j = 0. (34)

In the above, the stress in each rebar is given by Hooke’s law, i.e., E j∗h∗ j , in which E j∗ and h∗ j are Young’s
modulus of the rebar and the Hencky strain at position z∗ j , respectively.
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Fig. 9 Comparing predictions for bending moment with data in [31]

Moreover, again with the correlation Eq. (32), the bending moment M is obtained as follows:

M = b
∫ z0

−a
(z − z0) f∗(hθ )dz + b

∫ a

z0
(z − z0) f

∗(hθ )dz +
n∑

j=1

s∗ j (z∗ j − z0)(E∗h∗ j − f∗(h∗ j ))A∗ j .

(35)

With the explicit solutions derived in the above, the neutral axis position z0 is directly determined from
Eq. (34) and, then, the bending moment M is directly calculated from Eq. (35).

3.5 Remarks

In a course of bending, both the tension zone and the compression zone over beam cross-section are constantly
changing with the varying neutral axis. According to various existing approaches, the stress distributions over
such varying zones need to be determined based on various constitutive models with damaging or cracking
effects. As such, complexities need to be treated. In fact, the stress function g(σ ) and the yield strength q(ξ, ϑ)
in Eq. (10) could not be known in exact forms and, in particular, the flow rule for Dp, which is even non-
associated for granular media such as concretes etc., could not be exactly formulated, let alone the fact that
either micro-defects or macro-cracks should be simulated. As a result, complicated formulations have to be
postulated from different standpoints in various existing approaches.

With the explicit solutions Eqs. (34, 35), now the above uncertainties and complexities are not involved,
in which the stress distributions in both the tension and the compression zone are directly calculated from the
uniaxial tensile and compressive stress–strain functions of the constituent material until failure, as given in
Eqs. (1, 3). Perhaps essentially, forms of the latter may be directly prescribed with experimental data from
uniaxial testing of bar specimens, as shown in Sect. 2.3.

4 Model predictions with comparisons to data

A few numerical examples will be provided for bending responses of beams made of Al 99,5w [31], ultra-
high-performance fiber-reinforced concrete (UHPFRC) with reinforcing rebars [18], as well as meso-scale
heterogeneous concrete [36], respectively. Model predictions are calculated from Eqs. (34, 35) without involv-
ing any other adjustable parameters except for those in Tables 1, 2, and 3.

4.1 Plate strip made of Al 99,5w

Results are calculated for a plate strip made of Al 99,5w of the height 1cm and the width 10cm. The parameter
values are listed in Table 1. Here, the uniaxial behaviors in tension and compression are symmetric and no
rebar reinforcement is involved. Predictions for the bending moment are calculated from Eqs. (34, 35) with
Eqs. (1, 3) and compared with test data in [31], as depicted in Fig. 9.
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Fig. 10 Comparing predictions for bending moment with data for UH-G5 in [18]

Fig. 11 Comparing predictions for neutral axis position with data for UH-G5 in [18]

4.2 UHPFRC beam with GFRP rebars

Results are calculated for UHPFRC beam of the width 200mm and the height 270mm with five glass fiber-
reinforced polymer (GFRP) rebars in two rows. In this case, the uniaxial behaviors of UHPFRC in tension and
compression are of highly non-symmetric nature, as shown in Figs. 4 and 5. The five rebars are arranged in
two rows numdered i = 1, 2 with z∗i , s∗

i , E
∗
i and A∗

i the position, the number, Young’s modulus and the area
of the rebars in the i th row and details for the two rows of GFRP rebars are as follows:

z∗1 = 70mm, s∗
1 = 2, E∗

1 = 51.3GPa, A∗
1 = 126.7mm2,

z∗2 = 105mm, s∗
2 = 3, E∗

2 = 51.3GPa, A∗
2 = 126.7mm2.

The parameter values are listed in Table 2. Predictions for the neutral axis position and the bendingmoment
are calculated from Eqs. (34, 35) with Eqs. (1, 3) and compared with test data in [18], as shown in Figs. 10 and
11.

4.3 MSHC beam

Results are calculated for meso-scale heterogeneous concrete (MSHC) beam of the width 200mm and the
height 370mm. Uniaxial softening data are not available for the foregoing two cases. Here, with sufficient
data [36] for both hardening and softening, it is evident that the uniaxial behaviors of MSHC in tension and
compression are not only highly non-symmetric but display complex softening effects with different residual
strengths.

The parameter values are listed in Table 3. Predictions for the neutral axis position and the bendingmoment
are calculated from Eqs. (34, 35) with Eqs. (1, 3) and depicted in Figs. 12 and 13. In the case at issue, test data
for bending response are unavailable.
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Fig. 12 Predictions for bending moment of MSHC beam in [36]

Fig. 13 Predictions for neutral axis position of MSHC beam in [36]

Fig. 14 Stress distributions over tension and compression zones of MSHC beam [36] at maximum moment

Furthermore, the tensile and compressive stress distributions over beam cross-section with the tension zone
and the compression zone are depicted in Fig. 14 for the case at the maximum bending moment. In this case, it
may be seen that softening is already induced in a large part of the tension zone. In fact, that may be the case
for a bending moment under the maximum value.

5 Concluding remarks

A unified and explicit study has been presented for non-symmetric tensile and compressive responses of both
axially loaded bars and flexural beams until failure. Accurate results have been obtained in a direct sense of
simulating neither micro-defects nor macro-cracks. As a consequence, the present study bypasses complexities
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and uncertainties in both constitutive modeling and numerical implementation involved in various existing
approaches. Numerical examples suggest that model predictions are in good agreement simultaneously with
all data for both uniaxial testing and bending.

Further results may be obtained with unique and unified forms of uniaxial stress–strain functions in [37].
Such new forms are constructed by smoothly combining piecewise linear splines and can accurately and
automatically match any given test data, in a direct sense with involving no unknown parameters. Furthermore,
full-range bending responses need to be simulated with comparisons to sufficient test data until bending failure.
Most recently [33], the correlation in Eq. (33) has been used in a direct approach toward analyzing cyclic fatigue
effects of metal beams. Further study needs to be done for cyclic bending behaviors of reinforced composite
beams.
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