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Abstract This paper investigates the dynamic behavior of micro/nanobeams made of two-dimensional func-
tionally graded porous material (2DFGPM) under accelerated, decelerated, and uniform moving harmonic
load, using surface elasticity and modified couple stress theories. The key feature of this formulation is that it
deals with a higher order shear deformation beam theory. The non-classical equilibrium equations are devel-
oped using Lagrange’s equation and the concept of physical neutral surface. The equations of motion are
derived using the same approach, accounting for the porosity effect and the modified power-law distribution of
material properties. The trigonometric Ritz method is used with sinusoidal trial functions for the displacement
field, and the Newmark method is applied to obtain the dynamical response of 2DFGPM nanobeams. The
results are compared with previous studies, and the impact of critical parameters such as gradation indices,
volume fraction ratio, pattern of porosity, velocity, frequency, andmotion type of the applied force are explored.
This study highlights the importance of considering the porosity effect, as neglecting it can lead to significant
errors in the predicted results. Additionally, the study found that the accelerated and decelerated motions of
the applied load have a greater impact on the dynamical deflection of 2DFGPM nanobeams than the uniform
motion. The findings of this study can provide guidance for the optimal design of micro/nanobeams subjected
to a moving force with multifunctional properties.

1 Introduction

Functionally gradedmaterials (FGMs) are compositematerials composed of two ormore distinctmaterialswith
specific gradients leading to a desired continuous change of their properties in specific spatial direction(s).
FGMs can provide advantages such as higher strength, higher stiffness, higher thermal resistance, higher
corrosion resistance, and elimination of residual stresses and interlaminar shear stress [1, 2]. The distinctive
properties of FGMs make them highly sought after as structural components in a wide range of engineering
disciplines, including nuclear, aerospace, automotive, marine, biomedical, and optical engineering, leading to
their rapid adoption [3]. As a consequence, numerous studies have been performed using analytical, semi-
analytical, and numerical techniques to explore the mechanical behavior of unidimensional FGM (UDFGM)
structures, such as transversely FGM (TFGM) and axially FGM (AFGM), along with the thickness and length
directions, respectively, (see in Refs. [4–11]).

In the last decades, the design and investigation of nanomaterials and nanostructures have been extensively
increased due to their superiormechanical, thermal, and electrical properties. Nanostructures like beams, shells,
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rods, and plates at the nanoscale have been recently used in numerous applications in micro/ nanoscale devices
such as sensors and actuators. Since the classical continuum mechanics theory (CLCMT) is size-independent,
it cannot capture the size effect on the behavior of micro/nanostructures [12–16]. In this regard, molecular
dynamic approaches and size-dependent continuummechanics theories are employed to incorporate the effect
of small-scale inmicro/ and nanostructures [17, 18]. However, numerical simulations usingmolecular dynamic
approaches are generally complex and computationally expensive, especially for complicated structures. Thus,
several non-classical continuum mechanics theories (NCCMTs), including additional material length scale
parameters (MLSPs), have been proposed to model the size-dependent phenomenon in miniaturized systems.
Critical reviews on the modeling of micro/nanostructures based on different NCCMTs have been presented by
[19, 20].

The determination of the microstructural MLSPs is the most challenging aspect of the NCCMTs. The
modified couple stress theory (MCST) proposed by Yang et al. [21] has the advantage of involving only one
additional MLSP for isotropic materials. In the present study, the MCST is adapted to include the impact
of microstructure on the predicted response. Moreover, for a large ratio of surface area to bulk volume, the
free energy of surface atoms becomes comparable to that of the bulk part, and thus, the surface energy has a
crucial influence on the characteristics and behavior of small-scale structures. The Gurtin–Murdoch surface
elasticity theory (GM-SET) [22, 23] has been successfully employed in the analysis of homogeneous and FGM
structures.

The functionally gradedporousmaterials (FGPMs) are used inmany industrial fields to fabricate lightweight
structures with high stiffness. The performance of micro/nanostructures can be controlled by setting artificial
porosities inside the structure, such as electronic devices, sensors, and solar cells [24]. Also, the voids and
porosities cannot be avoided in the continuum because of the technical problems encountered in the fabrication
of FGMs leading to reduced strength. Thus, several works have been performed to explore the mechanical
behavior of FGPM micro/nanobeams [25–33], plates, [34–41], shells [42], and sandwich structures [43]

Structures and components in advanced machines require advanced composites with continuously varying
properties in more than one direction to satisfy the requirements of temperature and stress distributions in two
ormore directions, Nemat-Alla [44].With the rapid advancement in nanomechanics, themechanics of 2DFGM
micro/nanosized beams have been explored using the MCST [45–51], differential nonlocal elasticity theory
(DNET) [52–55], and differential nonlocal strain gradient theory (DNSGT) [56–61]. However, considering
the surface effect on 2DFGM nanobeams, only a fewmodels have been recently developed. Adopting the GM-
SET with DNET, the vibration of Power law 2DFGM Timoshenko nanobeam was studied by Lal & Dangi
[62] using the differential quadrature method (DQM). The surface constants were graded in the transverse
direction only and a constant nonlocal parameter was assumed, which means an inconsistent gradation of
the material constants. An extensively studied the mechanics of 2DFGM Euler–Bernoulli and Timoshenko
micro/nanobeams usingMCST andGM-SET [63–65]. In these studies, and unlike [62], all the bulk and surface
material constants were graded in both the transverse and longitudinal directions via a power law.

Analyzing structures’ response under moving mass/load is essential for many practical engineering appli-
cations, such as bridges, tunnels, and rail. The vibration problems of a homogenous beam due to a moving load
were extensively studied in [66–69]. The dynamical performance of a moving force was studied by [70–73]
for TFGM beams and [74–76] for AFGM beams. Considering the features of 2DFGM, the free and forced
vibrations of exponential 2DFGM beams under a moving force were explored by Simsek [77] using Ritz and
the implicit time integration methods. Nguyen et al. [78] utilized the finite element method (FEM) and New-
mark method to study the dynamics of a moving force of a power-law 2DFGM Timoshenko beam. Yang et al.
[79] explored the vibration to a moving load of an exponential 2DFGM tapered Timoshenko beam employing
the meshfree boundary-domain integral equation together with the 2D elasticity theory. Employing the Ritz
method andGram-Schmidt orthogonalization procedure, FG graphene nanoplatelet-reinforced beam dynamics
acted by multiple moving loads based on third-order shear deformation beam theory (SDBT) was explored by
[80]. Recently, Nguyen et al. [81] utilized FEM and Newmark method to study the response of a sandwich
Timoshenko beam with power-law 2DFGM face layers due to a moving load. This work was extended by Vu
et al. [82] to investigate the response of 2DFGM sandwich beams resting on a partial elastic foundation via a
quasi-3D theory. The effects of centrifugal and Coriolis forces on the dynamics of inclined 2DFGM sandwich
beams using SDBT were presented by Nguyen et al. [83]. For the double-2DFGM porous beam system, the
vibration performance to moving load was studied by Chen et al. [84], adopting Ritz and Newmark methods.

Including the scale-effect phenomena of micro/nanoscale beams acted by moving loads, Hosseini & Rah-
mani [85] studied the dynamics of simply-supported TFGM Euler–Bernoulli nanobeams under a constant
moving force utilizing the DNET. Adopting the DNET and GM-SET, the effects of a viscoelastic foundation
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Fig. 1 Sketch of a 2DFGPM nanobeam with surface layers exposed to a moving load with even and uneven porosity distributions

on the steady-state response of Euler–Bernoulli nanobeam due to a thermal environment and a moving force
were examined by Ghadiri et al. [86] using the multiple scales method. In Barati & Shahverdi [87], vibration
to a uniform moving load of TFGM nanobeams in an elastic medium was investigated using DNET. Adopting
the NSGT, the dynamical performance of a moving force of TFGM nanobeams was studied by Babaei [88] and
Esen et al. [89]. Regarding 2DFGM nanobeams, Rajasekaran and Khaniki [90] used the MCST to study the
vibration of 2DFGM nonuniform microbeams, with different gradation schemes, resting on an elastic founda-
tion and acted by a moving force/mass using the FEM andWilson-theta method. Zhang and Liu [91] employed
the MCST to examine the vibration of power-law 2DFGM porous Reddy microbeams excited by a moving
force. Based on the MCST, Liu et al. [92] used FEM to study the dynamics of power-law 2DFGMmicrobeams
under a temperature rise and a moving force. Recently, Attia et al. [93] developed a closed-form solution using
Laplace transform to study the dynamic response of sigmoid 2DFGM microbeams under moving harmonic
load and thermal environmental conditions for a simply-supported boundary condition. Adopting the MCST
and GM-SET, the dynamical performance of a moving load of perfect 2DFGM nanobeams was studied by
Attia and Shanab [94].

The main objective of the present study is to develop an integrated microstructure-surface energy-based
model for predicting the size-dependent dynamical response of porous 2DFGPMnanobeams under accelerated,
decelerated, and uniform moving load based on a higher-order shear deformation beam theory for the first
time. Towards this end, GM-SET and MCST are adopted to capture the contributions of the surface energy
and microstructure, respectively. The modified power-law function is adopted to express the gradation in both
transverse and longitudinal directions for all thematerial properties of the bulk and surface layers. Both even and
uneven distribution patterns of porosity are presented. Considering Poisson’s effect and the physical neutral axis
concept, Lagrange’s equation is exploited to derive the non-classical governing equations. Trigonometric Ritz
and Newmark methods are applied to obtain the dynamical response of 2DFGPM nanobeam under a moving
load with uniform, accelerated, and decelerated motions. For verification purposes, the predicted results are
comparedwith the previous studies. Numerical studies proved the significant influence of the gradation indices,
volume fraction ratio, and distribution pattern of porosity, moving velocity, motion type, and frequency of the
moving load, microstructure, and surface energy on the dynamic response of 2DFGPM nanobeams.

2 Mathematical formulation

Consider a straight uniform 2DFGPM beamwith length L , width b, and thickness h, as demonstrated in Fig. 1,
in a Cartesian coordinate system (x , y, z) that denotes the geometrical neutral plane (midplane). The beam
is excited by a moving harmonic load with a velocity v and an acceleration a. The beam is composed of a
mixture of ceramic “c” and metallic “m” constituents, where the lowermost (x � 0, z � −h/2) and uppermost
(x � L , z � h/2) surfaces of the nanobeam are pure metal and pure ceramic, respectively.
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Including the porosity effect, the material properties describing the bulk and surface continuums of
2DFGPM nanobeam can be expressed via a modified power-law in both length and thickness directions
[49, 90]. For even distribution of porosity:
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where the superscripts “s” and “B” denotes, respectively, to the surface layers and the bulk of the beam.
The bulk parameters are E , ν, and ρ, which denote Young’s modulus, Poisson’s ratio, and the mass density,
respectively. The surface parameters are residual stress τ s , elastic constants λs , μs , and the mass density ρs . l
is the MLSP capturing the influence of microstructure on the beam bulk. kx and kz are the power law gradation
indices in the longitudinal and transverse directions, respectively. For even and uneven porosities, α denotes
the porosity volume fraction ratio.

In Eqs. (1–6), one can recover the distributions of porous AFGM and TFGM by setting kz � 0, kx �� 0 and
kx � 0, kz �� 0, respectively. A homogeneous pure ceramic beam is obtained when kx � kz � 0. Also, for a
perfect material, the porosity ratio α � 0.

The physical neutral plane (PNP) of a 2DFGPM beam deviates from the geometrical neutral plane due to
the nonsymmetric distribution of its elastic properties about the midplane (GNP), as demonstrated in Fig. 1.
The deviation en(x) between the positions of GNP and PNP is given by [49, 63]

en(x) �
∫ h/2

−h/2

∫ b/2
−b/2z

[
λB(x , z) + 2μB(x , z)

]
dydz

∫ h/2
−h/2

∫ b/2
−b/2

[
λB(x , z) + 2μB(x , z)

]
dydz

, zn(x) � z − en(x) (7)

where λB and μB are the classical Lamé’s constants of the bulk material,

λB(x , z) � EB(x , z)ν(x , z)

(1 + ν(x , z))(1 − 2ν(x , z))
and μB(x , zm) � EB(x , z)

2(1 + ν(x , z))
(8)

Ignoring the Poisson’s effect yields
[
λB(x , z) + 2μB(x , z)

] ≡ EB(x , z) as adopted in [56, 57, 91].
From Eq. (7), it is observed that the deviation en in a 2DFGPM beam depends on the x-coordinate. For

simplicity, we used the Cartesian coordinates to approximate the zn-coordinate instead of the curvilinear
coordinates.
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2.1 Kinematics and constitutive relations

In this study, a general higher-order shear deformation theory is used to express the kinematics of the 2DFGPM
nanobeam, in which the displacement field is

ux (x , z, t) � u(x) + f (zn)
∂w(x ,t)

∂x + R(zn)φ(x , t), uy(x , z, t) � 0, uz(x , z, t) � w(x , t) (9)

where u and w are the axial and transverse displacements at the midplane in x and z directions, respectively,
φ is the transverse shear strain, and t denotes time. Accounting for the PNP concept, the shear-strain function
is given by

rn(x) �
∫ h/2

−h/2

∫ b/2
−b/2R(z)

[
λB(x , z) + 2μB(x , z)

]
dydz

∫ h/2
−h/2

∫ b/2
−b/2

[
λB(x , z) + 2μB(x , z)

]
dydz

, R(zn) � R(z) − rn(x) (10)

Various beam theories can be satisfied by an appropriate selection of the functions f (zn) and R(zn).
Adopting the third-order parabolic shear deformable beam theory (PSDBT) [95]

f (zn) � −zn and R(zn) � zn − 4z3n
3h2

(11)

In the framework of the generalized elasticity theory in combination with the MCST, Yang et al. [21], the
infinitesimal green strain tensor ε, classical Cauchy stress tensor σ B , symmetric curvature tensor χ , and the
deviatoric part of the couple stress tensor m are given by [96, 97]

ε � 1

2

[
∇u + (∇u)T

]
(12a)

σ B � λB(x , z)tr(ε)I + 2μB(x , z)ε (12b)

χ � 1

2

[
∇θ + (∇θ)T

]
, θ � 1

2
curl(u) (13a)

m �
[
2l2(x , z)μB(x , z)

]
χ (13b)

where u and θ represent the vectors of the displacement and rotation fields, respectively. In this study, the
gradation of the MLSP in the longitudinal and transverse directions is considered including the porosity effect,
Eqs. (2, 4).

According to the GM-SET [22, 23], the surface layer of bulk material is of zero thickness and fulfills
different constitutive equations involving the surface parameters, i.e., residual surface stress τ s and the surface
elastic constants λs and μs . In this theory, the in-plane (σ s) and out-of-plane (σ s

nα) surface stress tensors are
given as follows, respectively, [22, 23]

σ s± � 2
[
μs±(x) − τ s±(x)

]
ε± +

[
τ s±(x) +

[
λs±(x) + τ s±(x)

]
tr
(
ε±)]I + τ s±(x)∇su± (14a)

σ s±
nα � τ s±(x)u±

n,α ,α � 1, 2 (14b)

In Eqs. (14), the signs (+) and (−) stand for the upper and lower surface layers of the 2DFGPM beam at
z � +h/2 and z � −h/2, respectively. ni denotes the components of the outward unit normal vector n to the
beam lateral surface.

The nonzero components of the strain and the symmetric curvature tensors can be obtained using Eqs. (9),
(11), (12a), and (13a) as

εxx � ∂u
∂x − zn

∂2w
∂2x

+ R(zn)
∂φ
∂x , γxz � γzx � 2εxz � ∂R(zn)

∂zn
φ (15)

χxy � χyx � 1
2

(
1
2

∂R(zn)
∂zn

∂φ
∂x − ∂2w

∂x2

)
, χyz � χzy � 1

4
∂2R(zn)

∂z2n
φ (16)

In light of Eqs. (12b) and (13b), the nonzero components of the classical stress and the deviatoric part of
the couple stress tensors are [64, 65]

σ B
xx � EB(x , z)εxx , σ B

xz � μB(x , z) ∂R(zn)
∂z φ; EB(x , z) � [λB(x , z) + 2μB(x , z)

]
(17)
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myx � mxy � 2Q(x , z)χxy , mzy � myz � 2Q(x , z)χzy ;Q(x , z) � l2(x , z)μB(x , z) (18)

The surface stresses are obtained by substituting Eqs. (9) and (15) into Eqs. (14),

σ s±
xx � τ s±(x) + Es±(x)ε±

xx ;E
s±(x) � λs±(x) + +2μs±(x)

σ s±
x∫ � [2μs±(x)ε±

xz − τ s±(x) ∂w
∂x

]
ny ≡ σ s±

xz ny ,

σ s±
∫x �

[
2μs±(x)ε±

zx − τ s±(x) ∂ux
∂z

]
ny ≡ σ s±

zx ny ,

σ s±
nx � τ s±(x)usn,x ≡ [τ s±(x) ∂w

∂x

]
nz

(19)

where ny and nz are the y- and z- components of the unit outward normal vector n to the beam lateral surface,
respectively, i.e., with θ is the angle between the y-axis and the normal vector n, then ny � cosθ and nz �
sinθ . The subscript “∫” represents the direction of the unit tangent vector s on the beam boundary.

It is essential to emphasize the fact that the in-plane shear stress tensor defined by Eq. (19) is not symmetric,
and thus the values of σ s

xz and σ s
zx are different [98, 99]. Many authors have employed the GM-SET claiming

symmetric in-plane shear stress tensor in their variational models.

2.2 Variational formulation

Employing the generalized elasticity theory in combination with GM-SET and MCST, the total strain energy
(U) of isotropic elastic 2DFGPM deformed nanobeam can be written as follows [49, 63]:

(20)U � 1

2
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[
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]
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∮

�
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where A and � are, respectively, the cross-sectional area and the boundary of the beam. Substitution of Eqs.
(17–19) into Eq. (18) yields
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2
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0
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2
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2
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In light of Eqs. (17–19, 21), the total strain energy in Eq. (21) can be obtained in terms of the displacement
components as

U � 1

2
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0

{[
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∂x

)2

− 2Bxx (x)
∂u

∂x

∂2w

∂2x
+
[
Dxx (x) + Axz(x)

]
(

∂2w

∂x2

)2

+ 2Exx (x)
∂u

∂x

∂φ

∂x

− 2

[

Fxx (x) +
1

2
Dxz(x)

]
∂2w

∂2x

∂φ

∂x
+

[

Hxx (x) +
1

4
Bxz(x)

](
∂φ

∂x

)2
]

+

[

Bxz(x) +
1

4
Exz(x)

]

φ2

+

[

Cs0
∂u

∂x
− Cs1

∂2w

∂2x
+ Cs2

∂φ

∂x

]

+ Csn
(

∂w

∂x

)2
}

dx (23)

in which,
{
Axx (x) Bxx (x) Dxx (x) Exx (x) Fxx (x) Hxx (x)

}

≡ { AB
xx (x) + As

xx (x) BB
xx (x) + Bs

xx (x) DB
xx (x) + Ds

xx (x) EB
xx (x) + Es

xx (x) FB
xx (x) + Fs

xx (x) HB
xx (x) + Hs

xx (x)
}

(24a)
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(24b)Bxz (x) � BB
xz (x) + Bs

m (x) − 1

2
Bs
t (x)

with

{
AB
xx (x) BB

xx (x) DB
xx (x) EB

xx (x) FB
xx (x) HB

xx (x)
} �
∫ b

2

− b
2

∫ h
2

− h
2

EB(x , z)
{
1 zn z2n R(zn) zn R(zn) R2(zn)

}
dzdy (25a)

BB
xz(x) �

∫ b
2

− b
2

∫ h
2

− h
2

μB(x , z)

(
∂R(zn)

∂zn

)2

dzdy (25b)

{
Axz(x) Bxz(x) Dxz(x) Exz(x)

} �
∫ b

2

− b
2

∫ h
2

− h
2

[
l2(x , z)μB(x , z)

]{

1
(

∂R(zn)
∂zn

)2
∂R(zn)

∂zn

(
∂2R(zn)

∂zn2

)2
}

dzdy

(25c)
{
As
xx (x) B

s
xx (x) D

s
xx (x) E

s
xx (x) F

s
xx (x) H

s
xx (x)

} �
∮

�

Es(x , z)
{
1 zn z2n R(zn) zn R(zn) R2(zn)

}
dS

(25d)
{Cs0(x) Cs1(x) Cs2(x) Csn(x)

} �
∮

�

τ s(x , z)
{
τ s(x , z) znτ s(x , z) R(zn)τ s(x , z) n2zτ

s(x , z)
}
dS (25e)

{
Bs
t (x) B

s
m(x)
} �
∮

�

(
∂R(zn)

∂zn

)2

n2y
{
τ s(x , z) μs(x , z)

}
dS (25f)

Accounting for the surface mass density, the kinetic energy of the 2DFGPM nanobeams can be expressed
as

T� 1

2

∫ L

0

∫

A
ρB(x , z)

[(
∂ux
∂t

)2

+

(
∂uz
∂t

)2
]

d Adx+
1

2

∫ L

0

∮

�

ρs(x , z)

[(
∂ux
∂t

)2

+

(
∂uz
∂t

)2
]

dSdx
(26)

Performing the integration by parts yields

T � 1

2

∫ L

0

[(

IA(x)
∂u

∂t
− IB(x)

∂2w

∂x∂t
+ IE (x)

∂φ

∂t

)
∂u

∂t
+ IA(x)

(
∂w

∂t

)
∂w

∂t

−
(

IB(x)
∂u

∂t
− ID(x)

∂2w

∂x∂t
+ IF (x)

∂φ

∂t

)
∂2w

∂x∂t
+

(

IE (x)
∂u

∂t
− IF (x)

∂2w

∂x∂t
+ IH (x)

∂φ

∂t

)
∂φ

∂t

]

dx (27)

in which the mass moments of inertia are

{
IA(x) IB(x) ID(x) IE (x) IF (x) IH (x)

} �
∫ b

2

− b
2

∫ h
2

− h
2

ρB(x , z)
{
1 zn z2n R(zn) zn R(zn) R2(zn)

}
dzdy

+
∮

�

ρs(x , z)
{
1 zn z2n R(zn) zn R(zn) R2(zn)

}
dS (28)

A general form for the virtual work done by the forces applied on the current beam in the context of the
MCST and GT-SET can be expressed as [63, 96]

δW �
∫

�

(f · δu + fc · δθ)d� +
∮

�

(
t.δu + s.δθ

)
dS (29)

where f and fc are, respectively, the resultant per unit volume of the body force and body couple and t and s
represent the resultant per unit area of traction and the surface couple, respectively. When the body couple and
surface couple are ignored, no compressive force is applied, and assuming that the externally applied harmonic
load P(x , t) moves with a variable velocity ignoring its inertial effect, and employing zero initial conditions,
we can obtain the virtual work as

δW �
∫ L

0

{
fuδu + P(x , t)δw(xQ(t)) + qδw

}
dx +

{

Nδu + V δw − (Mc + Mnc
)∂δw

∂x
− Mcδφ

}L

0
(30)
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where fu and q denote the components of the distributed load in x- and z-directions, respectively. At the beam
ends, N and V are the applied axial and lateral forces, respectively, Mc and Mnc are, respectively, classical
and non-classical external bending moments.

The applied external moving concentrated harmonic load is given as

P(x , t) � P0sin
(
� f t
)
δ
(
x − xQ(t)

)
(31)

where δ(.) denotes the Dirac-delta function, P0 and � are respectively the amplitude and frequency of the
applied load. The function describing the location of the load measured from the left end of the beam (x � 0)
is defined as

xQ(t) � x0 + vt + 0.5at2, 0 ≤ xQ ≤ L (32)

where x0, v, and a are the initial position, initial velocity, and the constant acceleration, respectively, of the
moving load, i.e.,

a �
⎧
⎨

⎩

v2

2L , t f � 2L/v for accelerated motion
0, t f � L/v for uniform motion

− v2

2L , t f � 2L/v for decelerated motion
, 0 ≤ t ≤ t f (33)

Finally, the total energy of the 2DFGPM nanobeam is given as

L � T − (U +W) (34)

3 Solution procedure

In this section, Lagrange’s equation is employed to get the system of equations of motion. For this purpose,
the trigonometric Ritz method (TRM) is applied first by approximating the displacement functions (x , t) u
(x , t), and φ(x , t) by a series of trigonometric functions that satisfy the geometric boundary conditions of
simply-supported 2DFGPM nanobeams as:

{
w(x , t) u(x , t) φ(x , t)

} �
{

M∑

r�1
Ar (t)θwr (x)

M∑

r�1
Br (t)θur (x)

M∑

r�1
Cr (t)θφr (x)

}

(35)

where Ar , Br , and Cr are the unknown time-dependent coefficients. The admissible trigonometric functions
are

{
θwr (x) θur (x) θφr (x)

} �
{

sin
( rπx

L

) dθwr (x)
dx

dθwr (x)
dx

}
(36)

Substitution of Eqs. (23, 27, 30) into Eq. (34), and then using the Lagrange’s equations given by Eq. (37)

d

dt

(
∂L

∂q̇k

)

− ∂L

∂qk
� 0, k � 1, 2, 3, . . . , 3M (37)

yields the following system of equilibrium equations:

[K]{qk(t)} + [M]{q̈k(t)} � {Ft}− {FSE} (38)

in which,

qk �
⎧
⎨

⎩

Ak(t), k � 1, 2, . . . M
Bk(t), k � M + 1, . . . 2M
Ck(t), k � 2M + 1, . . . 3M

(39)

The stiffness [K] and mass [M] matrices in Eq. (38) are given by

⎡

⎣
K11(r , k) K12(r , k) K13(r , k)
K21(r , k) K22(r , k) K23(r , k)
K31(r , k) K32(r , k) K33(r , k)

⎤

⎦ �
∫ L

0

⎡

⎢
⎢
⎣

Dxxθ
′ ′
wr θ

′ ′
wk + Csnθ

′
wr θ

′
wk −Bxxθ

′
ur θ

′ ′
wk −Fxxθ

′
φr θ

′ ′
wk

−Bxxθ
′ ′
wr θ

′
uk Axxθ

′
ur θ

′
uk Exxθ

′
φr θ

′
uk

−Fxxθ
′ ′
wr θ

′
φk Exxθ

′
ur θ

′
φk Hxxθ

′
φr θ

′
φk + Bxzθφr θφr

⎤

⎥
⎥
⎦dx

(40a)
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{
Dxx Fxx Hxx Bxz

} � {Dxx + Axz Fxx + 1
2Dxz Hxx + 1

4 Bxz Bxz + 1
4 Exz

}
(40b)

⎡

⎢
⎢
⎢
⎢
⎢
⎣

M11(r , k) M12(r , k) M13(r , k)

M21(r , k) M22(r , k) M23(r , k)

M31(r , k) M32(r , k) M33(r , k)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

�
∫ L

0

⎡

⎢
⎢
⎢
⎢
⎢
⎣

IAθwrθwk + IDθ
′
wrθ

′
wk −IBθurθ

′
wk −IFθφrθ

′
wk

−IBθ
′
wrθuk IAθurθuk IEθφrθuk

−IFθ
′
wrθφk IEθurθφk IHθφrθφk

⎤

⎥
⎥
⎥
⎥
⎥
⎦

dx (41)

In Eq. (38), the force vectors
{
Ft
}
and
{
FSE
}
represent, respectively, the external moving load and the

self-excitation due to surface energy effect,
{
Ft} � { [P0sin

(
� f t
)
θwr
(
xQ
)]

k×1 [0]k×1 [0]k×1
}T

, k � 1, 2, . . . M (42)
{
FSE
}

� 0.5
∫ L

0

{
−Cs1θ

′ ′
wr Cs0θ

′
ur Cs2θ

′
φr

}T
dx (43)

To this end, the implicit time integration Newmark method, [100, 101], is utilized to solve the equations
in Eq. (38). After obtaining the time-dependent coefficients {Ar (t), Br (t), Cr (t)}, the displacement, velocity,
and acceleration of the beam are determined at any time t , 0 < t < t f with t f � L/v for uniform motion and
t f � 2L/v for accelerating and decelerating motions.

In the present analysis, the following non-dimensional quantities are used:

w(x , t) � w(x , t)

D0
, D0 � P0L3

48Em I
, ω1 � ω1L

2

√
ρcbh

Ec I
, v � v

Vc
, Vc � Lω1

π
, τ � t

t f
(44)

where w(x , t) and D0 are the normalized dynamic deflection and the static deflection of a pure metal beam
under a mid-span constant load P0, respectively. ω1 is the non-dimensional fundamental frequency of free
vibration, v is the normalized velocity. Vc denotes the critical velocity, at which the peaks of the maximum
deflections occur. τ is the non-dimensional time (0 ≤ τ ≤ 1), i.e., the load moves away from the beam when
τ > 1, leading to a free vibration response. Additionally, for the Newmark procedure, 2000-time increments
are adopted in all the forthcoming dynamic analyses.

4 Model validation

This section is devoted to verifying the accuracy and convergence of the present model and solution procedure
by comparing the current results with some previous works. Four different examples are presented for a simply-
supported (SS) beam. Firstly and based on the classical analysis, Fig. 2 compares the present dimensionless
central dynamic deflection of a SS homogeneous beam with Abu-Hilal et al. [102] for accelerated a > 0,
decelerated a < 0, and uniform a � 0 types of motion of the applied load at v � 1 and � f � 0.99875
ω1. Secondly, the peak values of the maximum normalized deflections (w p) and the corresponding absolute
velocities (vp) of a SS TFGM beam are predicted and compared with [70, 78] based on Euler–Bernoulli (EBT)
and Timoshenko beam theories (TBT), respectively. The beam is composed of a mixture of SUS304 steel
(metal) and Al2O3 (ceramic) with the following properties:Em � 210 GPa, Ec � 390 GPa, ρB

m � 7800 kg/m3,
ρB
c � 3960 kg/m3, νc � νm � 0.3 and h � 0.9m, b� 0.4m, and L � 20m. At an excitation frequency� f � 0,

Table 1 shows that the present results agree with the published ones based on the classical formulation. Thirdly,
using the PSDBT and MCST, Fig. 3 compares the predicted dimensionless frequency (ω1) of free vibration
of a SS 2DFGM microbeam with [103]. The properties are taken as Em � 201.04 GPa, Ec � 349.55 GPa νm
� 0.3262, νc � 0.24, ρB

m � 8166 kg/m3, and ρB
c � 3800 kg/m3 and lm � lc � 0.25h and the geometrical

parameters are h � b � 15 ¯m, and L � 100 h.
Finally, consider a SS 2DFGPM SUS304/Al2O3 microbeam having the material properties mentioned

above with the gradient indices kx � kz � 0.5, and the MLSP lm � lc � 0.5h, [91]. The beam has thickness
h � 10¯m, width b � 1¯m, and length L � 20h. The dimensionless central deflections are plotted in Fig. 4 at
v � 0.2 for even and uneven porosity distributions. The maximum dynamical magnification factors, i.e., peak
values of the maximum normalized deflections (w p), and the corresponding dimensionless velocities (v p) are
detected and compared with [91] as tabulated in Table 2 at a porosity ratio α � 0.1 in the uneven case. From
the comparison studies presented in Figs. 2, 3, 4 and Tables 1 and 2, the newly developed model and solution
methodology can accurately predict the dynamical behavior of a moving force of SS 2DFGPM beams.
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Fig. 2 Comparison of the dimensionless central dynamic deflection of a SS homogeneous beam due to different types of motion
of the applied load

Table 1 Comparison of the peak values of maximum normalized dynamic deflection w p and corresponding absolute velocity vp
for a SS TFGM beam using the classical analysis

Source kz � 0.2 kz � 0.5 kz � 1.0 kz � 2.0 Pure Al Pure Al2O3

w p Present (PSDBT) 1.0407 1.1510 1.2575 1.3458 1.7424 0.9384
Nguyen et al. [78] (TBT) 1.0402 1.1505 1.2566 1.3446 1.7420 0.9380
Simsek and Kocatürk [70] (EBT) 1.0344 1.1444 1.2503 1.3376 1.7324 0.9328

vp Present (PSDBT) 219 195 177 163 131 250
Nguyen et al. [78] (TBT) 222 197 178 163 131 251
Simsek and Kocatürk [70] (EBT) 222 198 179 164 132 252

Fig. 3 Comparison of the dimensionless fundamental frequency of a SS 2DFGM microbeam using MCST

Table 2 Comparison of the peak values of maximum normalized dynamic deflection w p and corresponding dimensionless
velocity v p for a SS 2DFGPM microbeam with uneven porosity using MCST (kx � kz � 0.5, lm � lc � l, α � 0.1)

Source l/h � 0 l/h � 0.1 l/h � 0.25 l/h � 0.5 l/h � 1

w p Present 1.3320 1.2723 1.0298 0.6128 0.2340
Zhang and Liu [91] 1.3271 1.2658 1.0296 0.6154 0.2363

v p Present 0.6089 0.6101 0.6126 0.6113 0.6100
Zhang and Liu [91] 0.6050 0.6050 0.6008 0.6050 0.6092
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Fig. 4 Comparison of the dimensionless central dynamic deflection of a SS 2DFGPM microbeam using MCST (kx � kz � 0.5,
lm � lc � 0.5h, v � 0.2) at various porosity ratios for a even and b uneven distributions

Table 3 Material properties of bulk and surface continuums of 2DFGPM Al/Si nanobeam

Phase Bulk continuum Surface continuum

Young’s
modulus
E (GPa)

Poisson’s ratio
ν

mass density
ρB (kg/m3)

Residual
stress
τ s (N/m)

Elastic constants
(N/m)

Mass density
ρs (kg/m2)

μs λs

Aluminum
(metal)

90 0.23 2700 0.5689 – 5.4251 3.4939 5.461

Silicon
(ceramic)

210 0.24 2331 0.6056 – 2.7779 – 4.4039 3.1688

5 Numerical results and discussion

In this section, the influences of different key parameters on the dynamical response of 2DFGPM nanobeams
under a moving harmonic load are extensively explored, i.e., the transverse and axial gradient indices, distri-
bution and volume fraction ratio of porosity, velocity, frequency, and motion type of the moving force, and the
small-scale due to the microstructure and surface energy. Consider a simply-supported 2DFGPM nanobeam
made of aluminum (Al) and silicon (Si) with the material properties in Table 3, [63, 64, 104]. Since the MLSP
differs from one material to another, it is unrealistic to assume a constant MLSP in FGMs or ignore porosity’s
impact on its effective value.

Unfortunately, the open literature includes no available experimental data for theMLSP of FGMAl/Si, and
therefore, theMLSP of silicon -to-that of aluminum ratio (lc/lm) can be assumed, thus, we take lm � 2 h/3 and lc
� 3 lm /4 for, respectively, metal and ceramic phases [47, 65, 105]. The dimensions of the nanobeam are h � b�
10 nm and L � 20h. All material and geometrical parameters are kept unchanged throughout the forthcoming
results, except other values are determined. Figure 5 depicts the dependency of the distances, indicating the
location of the physical neutral axis (en and rn), on the axial gradient index and porosity distribution of the
2DFGPM beam.

5.1 Influence of the gradation indices

Figures 6 and 7 illustrate the variation of the maximum normalized central dynamic deflection (dynamic
magnification factor, wmax (L/2, t)) versus the dimensionless moving velocity at different values of kz and kx ,
respectively. Both even and uneven distributions are considered at α � 0.1. For a straightforward exploration
of the non-classical small-scale effects, we employed the full non-classical couple stress-surface energy model
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Fig. 5 Influence of the axial gradient index on the deviations en and rn along the beam length for perfect, even, and uneven cases
(kz � 1)

“CSSE” and the three special cases: classical “CL”, couple stress “CS”, and surface energy “SE” formulations
in the absence of surface energy and microstructure (l � 0, τ s � μs � λs � ρs � 0), surface energy (τ s � μs

� λs � ρs � 0), and microstructure (l � 0), respectively.
It is depicted from Figs. 6 and 7 thatwmax (L/2, t) in the entire time history both increases and decreases, it

then increases to reach the peak value when the velocity reaches a specific value, and then afterwmax gradually
decreases as the moving load velocity increases [106]. The velocity at which wmax attains its peak value is
denoted as the beam critical velocity [107]. At lower velocities of the moving load, the repeated increase, and
decrease of thewmax is due to the beam oscillations. For different velocities and gradient indices, incorporating
the non-classical effects reduce the predicted wmax . The CL formulation gives the highest wmax , followed by
SE, CS, and CSSE formulations, respectively, which is attributed to the stiffness-hardening effect by the couple
stress and surface energy. A stiffer nanobeam can resist the moving load more than the soft one. For the same
porosity ratio, a higherwmax is noticedwith the even distribution of porosity. Generally, the trends of the curves
are independent of the gradient indices, porosity distribution, and the adopted non-classical formulations.

Table 4 provides the extracted peak dynamic magnification factors using the non-classical formulations-to-
that using on the classical formulation (wr

p �wNC
p /wCL

p ) and their corresponding ratios of the critical velocities
(vrp � vNC

p /vCL
p ). From Table 4 and Figs. 6 and 7, it can be discerned that rising kz or kx shows a considerable

rise in the maximum normalized dynamic deflections, which is observed for the different formulations. This
is because the volume fraction of metal constituent increases by increasing the gradient indices, and thus the
effective rigidity of the beam decreases. Even distribution of porosity yields higherw p and lower vp than those
of uneven distribution. Additionally, the dynamical response is more sensitive to varying kx than kz . Further-
more, it is noticed that employing the non-classical formulation has a noticeable influence on the predicted
response of the 2DFGPM nanobeam under investigation, as all the non-classical microstructure and surface
energy parameters are spatially dependent via the gradient indices and the porosity ratio. Also, increasing the
gradient indices enlarges the non-classical effects, especially for the uneven distribution. However, applying
the CL formulation considerably overestimates w p and underestimates vp.

Figure 8 displays themutual effect of the thickness and length gradient indices on themaximum normalized
central dynamic deflection wmax due to an accelerated moving load for v � 0.8, 1.2, and 1.4 and α � 0.1.
Under the same conditions, the predicted wmax are tabulated in Table 5. Also, for the different studied moving
velocities and the employed formulations, wmax remarkably increases by increasing the gradient indices. The
highest and lowest values ofwmax of the nanobeam are achievedwith almost puremetal (kx � kz � 10) and pure
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Fig. 6 Influence of the transverse gradient index on the variation of the maximum normalized central dynamic deflection with
the velocity of an accelerated moving load (kx � 0.5), (__) even, (- -) uneven porosity

ceramic (kx � kz � 0) materials, respectively. Figures 9 and 10 show that for both CL and CSSE formulations,
the gradation indices, porosity distribution, and moving velocity considerably affect the amplitude of dynamic
deflection. The shapes of the time histories curves are slowly affected by the gradation indices and the porosity
distribution and strongly affected by the moving velocity. The number of vibration cycles of the nanobeam is
enlarged at low velocities of the moving load because the moving load velocity -to- the critical velocity ratio
becomes low. According to Figs. 6, 7, 8, 9 and 10, it is extracted that the selection of the gradient indices and
porosity distribution can control the dynamical response of 2DFGPM nanobeams.

5.2 Influence of distribution and ratio of porosity

Based on CL and CSSE analyses, Fig. 11 shows the effect of the ratio and distribution of porosity on the
variation of the dimensionless maximum central deflection versus the dimensionless time at v � 0.4, � f �
0.4 ω1, and kx � kz � 1. According to the mathematical formulation in Eqs. (1–4), introducing the porosity
effect decreases the effective properties of 2DFGPM nanobeam, and thus, its total rigidity is significantly
reduced, as shown in Fig. 12, which increases the predicted dynamic deflection. Figure 12 shows the effective
stiffness Dxx (x), Eq. (22a), versus the length of 2DFGPM nanobeam at all the cases illustrated in Fig. 11.
It is obvious that the stiffness of CSSE cases are greater than the corresponding CL cases. As a result, the
predicted deflection of CSSE is less than the classical ones. Moreover, the even porosity distribution has a
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Fig. 7 Influence of the axial gradient index on the variation of the maximum normalized central dynamic deflection with the
velocity of an accelerated moving load (kz � 0.5), (__) even, (- -) uneven porosity

more significant effect on the nanobeam stiffness. Generally speaking, porous materials are less stiff than non-
porous materials due to the presence of voids (pores) within their structure. These pores reduce the effective
cross-sectional area of the material, leading to lower resistance to deformation under a load. Additionally,
porosity decreases the density resulting in a decrease in its inertia, which influences the predicted dynamic
response. Regarding Figs. 11, 12, it is depicted that for CL and CSSE formulations, the dynamic deflection
associated with the uneven distribution is much lower than that associated with the even one. Also, the porosity
ratio increment significantly influences the response for the even distribution than the uneven one (see Fig. 12).
Since the porosity effect is included in the evaluation of graded MLSP and surface parameters, employing the
CSSE formulation enhances the porosity ratio impact on the dynamical response.

5.3 Influence of the moving load acceleration

Figure 13 depicts the dynamical response of a 2DFGPMnanobeamwith even porosity at different loadmotions,
i.e., accelerated a > 0, uniform a � 0, and decelerated a<0. The moving load has a frequency � f � ω1 and a
velocity v � 0.1, 0.4. CL and CSSE formulations are considered at kx � kz � 1 and α � 0.1. It is noticeable
that the load uniform motion yields the lowest maximum dynamic deflection compared with the decelerated
and accelerated motions, regardless of moving velocity. Also, vibration cycles due to the accelerated motion
are much lower than that of the decelerated and uniform ones, especially at the low values of dimensionless
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Fig. 8 Mutual influence of the two gradient indices on the dynamic magnification factor under an accelerated moving load
considering even and uneven distributions (α � 0.1) at different dimensionless moving velocities

time and moving velocity. With time progress, vibration cycles are almost identical for both accelerated and
decelerated types. These differences in the dynamic response are attributed to the different kinematics of
each motion type. The deflection amplitudes of accelerated and decelerated motions are identical when the
dimensionless time reaches unity but still much greater than those obtained by the uniform motion. For all
motion types, the vibration cycles are significantly reduced at higher moving velocities. Employing the CSSE
analysis significantly decreases the dynamic deflection and does not influence vibration cycles.
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Fig. 9 Influence of kz on the dimensionless central deflection versus time under a uniform moving load (kx � 0.5, α � 0.1) at v
� 0.1, 0.4, and 0.8, (__) even, (- -) uneven porosity

Fig. 10 Influence of kx on the dimensionless central deflection versus time under a uniform moving load (kx � 0.5, α � 0.1) at
v � 0.1, 0.4, and 0.8, (__) even, (- -) uneven porosity
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Table 5 Maximum dimensionless central deflection -to- the corresponding classical deflection wr
max (L/2, t) of the 2DFGPM

nanobeam

v kz Porosity CS formulation SE formulation CSSE formulation

Axial gradient index kx

0.0 0.5 1 4 0.0 0.5 1 4 0.0 0.5 1 4

0.1 0.0 Even 0.5400 0.4824 0.4474 0.3892 0.8301 0.7981 0.7680 0.6848 0.4861 0.4299 0.3941 0.3297
Uneven 0.5210 0.4678 0.4359 0.3835 0.8270 0.7966 0.7688 0.6942 0.4697 0.4178 0.3853 0.3277

0.5 Even 0.4692 0.4364 0.4169 0.3842 0.7865 0.7589 0.7356 0.6766 0.4160 0.3831 0.3625 0.3242
Uneven 0.4556 0.4257 0.4082 0.3790 0.7858 0.7602 0.7391 0.6868 0.4051 0.3752 0.3566 0.3228

1 Even 0.4442 0.4215 0.4079 0.3831 0.7611 0.7386 0.7199 0.6726 0.3896 0.3666 0.3518 0.3225
Uneven 0.4331 0.4124 0.4001 0.3781 0.7626 0.7420 0.7251 0.6832 0.3815 0.3605 0.3472 0.3213

4 Even 0.4295 0.4153 0.4053 0.3832 0.7253 0.7106 0.6981 0.6667 0.3691 0.3550 0.3446 0.3212
Uneven 0.4195 0.4066 0.3976 0.3780 0.7305 0.7171 0.7058 0.6781 0.3631 0.3501 0.3408 0.3202

0.6 0.0 Even 0.5400 0.4799 0.4437 0.3875 0.8296 0.7977 0.7674 0.6841 0.4860 0.4276 0.3909 0.3282
Uneven 0.5211 0.4655 0.4325 0.3820 0.8265 0.7961 0.7682 0.6935 0.4696 0.4157 0.3823 0.3264

0.5 Even 0.4692 0.4350 0.4149 0.3833 0.7859 0.7583 0.7349 0.6758 0.4159 0.3818 0.3606 0.3233
Uneven 0.4556 0.4244 0.4064 0.3782 0.7852 0.7596 0.7384 0.6860 0.4050 0.3740 0.3550 0.3220

1 Even 0.4442 0.4206 0.4065 0.3824 0.7604 0.7379 0.7191 0.6717 0.3895 0.3657 0.3505 0.3218
Uneven 0.4332 0.4116 0.3989 0.3774 0.7619 0.7413 0.7243 0.6824 0.3814 0.3597 0.3461 0.3206

4 Even 0.4295 0.4147 0.4043 0.3825 0.7244 0.7098 0.6973 0.6658 0.3690 0.3544 0.3436 0.3204
Uneven 0.4196 0.4060 0.3967 0.3774 0.7296 0.7163 0.7050 0.6772 0.3630 0.3495 0.3399 0.3195

0.8 0.0 Even 0.5402 0.4792 0.4433 0.3877 0.8276 0.7965 0.7664 0.6820 0.4856 0.4266 0.3902 0.3279
Uneven 0.5213 0.4649 0.4322 0.3822 0.8245 0.7948 0.7671 0.6913 0.4692 0.4148 0.3817 0.3261

0.5 Even 0.4694 0.4347 0.4147 0.3834 0.7836 0.7565 0.7331 0.6732 0.4155 0.3811 0.3600 0.3229
Uneven 0.4558 0.4242 0.4063 0.3784 0.7828 0.7577 0.7366 0.6834 0.4046 0.3733 0.3545 0.3217

1 Even 0.4444 0.4204 0.4064 0.3825 0.7578 0.7357 0.7169 0.6689 0.3891 0.3651 0.3500 0.3213
Uneven 0.4333 0.4115 0.3988 0.3776 0.7593 0.7390 0.7221 0.6796 0.3810 0.3591 0.3456 0.3203

4 Even 0.4297 0.4147 0.4043 0.3826 0.7214 0.7070 0.6945 0.6626 0.3685 0.3537 0.3430 0.3200
Uneven 0.4199 0.4061 0.3967 0.3776 0.7267 0.7135 0.7022 0.6740 0.3626 0.3490 0.3394 0.3191

1.4 0.0 Even 0.5402 0.4804 0.4452 0.3890 0.8271 0.7960 0.7658 0.6818 0.4853 0.4275 0.3917 0.3288
Uneven 0.5213 0.4660 0.4340 0.3835 0.8240 0.7944 0.7665 0.6911 0.4690 0.4156 0.3831 0.3270

0.5 Even 0.4694 0.4354 0.4159 0.3842 0.7829 0.7558 0.7325 0.6729 0.4153 0.3815 0.3609 0.3235
Uneven 0.4559 0.4248 0.4073 0.3791 0.7821 0.7571 0.7360 0.6831 0.4044 0.3737 0.3552 0.3221

1 Even 0.4444 0.4209 0.4072 0.3831 0.7570 0.7350 0.7162 0.6684 0.3889 0.3653 0.3505 0.3217
Uneven 0.4334 0.4120 0.3996 0.3782 0.7585 0.7383 0.7214 0.6791 0.3808 0.3594 0.3460 0.3206

4 Even 0.4298 0.4150 0.4048 0.3832 0.7203 0.7060 0.6936 0.6619 0.3683 0.3538 0.3433 0.3203
Uneven 0.4199 0.4064 0.3972 0.3781 0.7256 0.7125 0.7013 0.6733 0.3624 0.3491 0.3397 0.3194

1.6 0.0 Even 0.5402 0.4791 0.4441 0.3886 0.8264 0.7960 0.7665 0.6833 0.4852 0.4263 0.3908 0.3288
Uneven 0.5213 0.4647 0.4329 0.3830 0.8233 0.7945 0.7671 0.6924 0.4690 0.4145 0.3822 0.3269

0.5 Even 0.4695 0.4345 0.4151 0.3838 0.7823 0.7561 0.7333 0.6740 0.4152 0.3808 0.3602 0.3233
Uneven 0.4558 0.4240 0.4066 0.3788 0.7814 0.7572 0.7367 0.6840 0.4042 0.3730 0.3546 0.3220

1 Even 0.4443 0.4203 0.4066 0.3828 0.7562 0.7352 0.7167 0.6692 0.3886 0.3648 0.3499 0.3215
Uneven 0.4334 0.4113 0.3990 0.3779 0.7576 0.7384 0.7219 0.6798 0.3807 0.3588 0.3454 0.3204

4 Even 0.4298 0.4145 0.4042 0.3829 0.7196 0.7059 0.6936 0.6622 0.3682 0.3533 0.3427 0.3200
Uneven 0.4199 0.4060 0.3967 0.3778 0.7248 0.7124 0.7014 0.6734 0.3622 0.3485 0.3391 0.3191

5.4 Influence of the moving load velocity

The maximum normalized central dynamic deflection-dimensionless moving velocity (wmax–v) curves of a
2DFGPM nanobeam at different frequency ratios (r� � � f /ω1) are illustrated in Fig. 14 at α � 0.1 and
kx � kz � 1. It is noticeable that the maximum difference in the dynamical responses obtained by even
and uneven porosities is at their peaks and this difference becomes insignificant as v increases. The higher
moving velocity means faster moving load, i.e., load requires lower traveling time to reach the right end of the
beam, and thus, low fluctuations in the deflection are observed. Increasing r� from 0.1 to 0.4 rises the critical
moving velocity, after which the fluctuations are almost eliminated. As r� increases, the peak value of wmax
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Fig. 11 Influence of the porosity volume fraction ratio and distribution on the variation of the dimensionless central deflection
versus the dimensionless time under a uniform moving load based on CL and CSSE formulations (kx � kz � 1)

Fig. 12 Effective stiffness Dxx(x) (Eq. (22a)) with respect to the length of 2DFGPM nanobeam (kx � kz � 1) for a CL-even,
b CL-uneven, c CSSE-even, and d CSSE-uneven porosity

and its associated v are increased. Furthermore, the inclusion of the non-classical effects via CS, SE, CSSE
formulations remarkably decreases the dynamic deflection over time regardless v and r�, whereas the overall
trends of the response are almost the same. The largest and smallest dynamic deflections are obtained using
CL and CSSE formulations, respectively. Additionally, for the examined 2DFGPM beam, the microstructure
is much more significant than that of the surface effect.
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Fig. 13 Influence of the type of applied load motion on the variation of the dimensionless central deflection versus the dimen-
sionless time based on CL and CSSE formulations and even porosity at v � 0.1, 0.4 (� f � ω1, α � 0.1, kx � kz � 1)

5.5 Influence of the moving load frequency

Figure 15 displays themaximumnormalized central deflection of the 2DFGPMnanobeamversus the frequency
of an accelerated moving load (� f ) at v � 0.2. Various gradation indices are considered at α � 0.1. By
increasing � f up to a specific value that corresponds to the fundamental frequency of the nanobeam (ω1), the
maximum central deflection increases with small fluctuations until reaching its peak. Resonance phenomenon
occurs when � f and ω1 are the same, i.e., r� � 1. As r� increases beyond unity, the deflection is dramatically
decreased and diminishes at very high values of r�, regardless of the employed formulation and the gradient
indices. Increasing the gradient indices in the transverse and/or longitudinal directions rises themetallic volume
fraction, and the beam frequency decreases. Therefore, rising the gradation indices remarkably increases the
peakmaximum central dynamical deflection, which occurs at low frequencies. It is depicted that employing the
non-classical formulations significantly decreases the maximum deflection and increases the beam frequency.

To examine the impact of� f on the deflection-time relationship of the 2DFGPMnanobeam, the normalized
central deflection is plotted versus the frequency ratio and thedimensionless time (w(L/2, t)—r�—τ ) inFig. 16
for r� ≤ 0.2 and r� ≥ 0.2. Smaller r� than 0.2 results in lower amplitudes of the central deflection using
both classical and non-classical analyses, Fig. 16(i). From Fig. 16 (ii) increasing r� until reaching unity, the
normalized deflection approaches its highest value. Further increase in r� more than unity, i.e., � f becomes
higher than ω1, reduces the periodic load, and then, the deflection amplitude is considerably decreased. As r�
equals about 3, the periodic load almost vanishes, and in turn, the dynamical deflection is almost eliminated.
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Fig. 14 Effect of the moving load frequency on the variation of the maximum normalized central deflection versus the dimen-
sionless moving velocity under an accelerated load (α � 0.1, kx � kz � 1), (__) even, (- -) uneven porosity

6 Conclusions

This study investigates the dynamical response of 2DFGPM nanobeams under accelerated, decelerated, and
uniform harmonic loads. A new non-classical beammodel is presented that incorporates the impacts of surface
energy and microstructure using PSDBT, while accounting for porosity effects and 2D gradation of material
parameters. The model considers the exact location of the physical neutral axis and equilibrium equations are
obtained using Lagrange’s equation. Numerical analysis is performed using the trigonometric Ritz method
and Newmark method, with four examples solved and compared to previous studies. The study extensively
investigates and analyzes the impact of various factors on the dynamical behavior of a simply-supported
2DFGPM nanobeam, including power-law gradient indices, distribution and volume fraction ratio of porosity,
velocity, frequency, and motion type of the load, microstructure, and surface energy. The study concludes
that the presented model is valid and effective, and provides important insights into the behavior of 2DFGPM
nanobeams. Some important conclusions can be summarized as follows:

1. Results show that porosity reduces the overall rigidity and inertia of the nanobeam, causing an increase in
dynamic deflection as the porosity ratio rises. Even porosity has a greater influence than uneven porosity,
and neglecting the porosity effect leads to significant errors in predicted results.

2. Accelerated and decelerated motions of the applied load significantly influence the dynamical deflection
of 2DFGPM nanobeam than the uniform motion. The vibration cycles are considerably increased under
an accelerated load, especially at a low moving velocity.
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Fig. 15 Maximum normalized central deflection versus the load frequency of an accelerated moving load at different gradation
indices, (α � 0.1, v � 0.2), (__) even, (- -) uneven porosity

3. The dynamical response of 2DFGPM nanobeams is similarly affected by both transverse and axial power-
law gradient indices, independent of the employed formulation and parameters of themoving load. Increas-
ing the gradient indices leads to an increase in normalized dynamical deflection and maximum deflection
while reducing the critical velocity. The effect of gradient indices is observed to increase when adopting
classical analysis.

4. The dynamical deflection of the 2DFGPM nanobeam increases as the moving velocity rises to its critical
value. However, beyond this critical value, the predicted deflection is significantly reduced, irrespective of
the gradation indices, porosity, and formulation type. Moreover, the vibration cycles decrease considerably
with an increase in moving velocity.

5. The non-classical size-dependent impact on the dynamical response is enlarged by increasing the gradient
indices because the MLSP and surface parameters are spatially dependent through the same gradient
indices.

6. As the frequency ratio increases, the dynamical deflection of the 2DFGPM nanobeam increases and
approaches its highest value when the resonance phenomenon occurs. Also, the moving velocity affects
the sensitivity of the dynamic response to the frequency.

The study highlights the importance of considering non-classical effects due to microstructure and surface
energy and the potential for constructing the distribution of porosity and constituentmaterials to achieve desired
performance under specific conditions. Importantly, ignoring the non-classical effects due to microstructure
and surface energy leads to non-negligible errors in the dynamical analysis of 2DFGPM nanobeams.
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Fig. 16 Normalized central deflection of 2DFGPM nanobeam versus the frequency ratio and the dimensionless time under an
accelerated moving load (even porosity, α � 0.1, kx � kz � 1, v � 0.2)
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70. Şimşek, M., Kocatürk, T.: Free and forced vibration of a functionally graded beam subjected to a concentrated moving
harmonic load. Compos. Struct. 90, 465–473 (2009)

71. Gan, B.S., Kien, N.D., Ha, L.T.: Effect of intermediate elastic support on vibration of functionally graded Euler-Bernoulli
beams excited by a moving point load. J. Asian Architect. Build. Eng. 16, 363–369 (2017)

72. Esen, I.: Dynamic response of a functionally graded Timoshenko beam on two-parameter elastic foundations due to a
variable velocity moving mass. Int. J. Mech. Sci. 153, 21–35 (2019)

73. Wang, Y., Xie, K., Fu, T., Shi, C.: Vibration response of a functionally graded graphene nanoplatelet reinforced composite
beam under two successive moving masses. Compos. Struct. 209, 928–939 (2019)

74. Şimşek, M., Kocatürk, T., Akbaş, Ş: Dynamic behavior of an axially functionally graded beam under action of a moving
harmonic load. Compos. Struct. 94, 2358–2364 (2012)

75. Wang, Y., Wu, D.: Thermal effect on the dynamic response of axially functionally graded beam subjected to a moving
harmonic load. Acta Astronaut. 127, 171–181 (2016)

76. Xie, K., Wang, Y., Fu, T.: Dynamic response of axially functionally graded beam with longitudinal–transverse coupling
effect. Aerosp. Sci. Technol. 85, 85–95 (2019)
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