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Abstract A generalised W (I1, I2) strain energy function, a generalisation of previously devised response
functions W1 and W2, of binomial form is presented in this work for application to the finite deformation
of isotropic incompressible soft solids. It is shown that the proposed model is the parent to many of the
well-known existing invariants-based models in the literature. The first-order expansion of the model, with six
model parameters, is then applied to extant multiaxial deformation of a wide range of materials, from filled
and unfilled rubbers to hydrogels, liquid crystal elastomers and biomaterials. The model captures the experi-
mental data accurately, with typical relative errors below 4%, while favourably modelling various challenging
mechanical behaviours such as the asymmetry of compression—tension, high nonlinearity of the simple shear
response, deformation softening effects, pronounced Payne effect, the soft elasticity phenomenon, and the
reverse Poynting effect. The predictive capabilities of the model are also demonstrated and verified against
experimental data. Given the analyses and results presented here, the devised model is proposed to serve as a
standard choice for a priori selection for application to the finite deformation of isotropic incompressible soft
materials.

1 Introduction

Since the introduction of the classical neo-Hookean model by Treloar [1] in 1943 and the enhanced model of
Mooney [2] and its generalised form by Rivlin [3] in 1948, numerous developments have been made to the
basic theory and several constitutive models have been presented. The assortment of the existing hyperelastic
strain energy functionsW in the literature, in addition to undermining the notion of universality of thosemodels
as discussed by Destrade et al. [4], has made the a priori selection of a reliable model by engineers and end
users a formidable challenge.1 The most recently published reviews of the state-of-the-art, e.g. [5] in 2023,
still echo the observations of Marckmann and Verron [6] in 2006, as well as those conducted and published
in between (e.g. [7–11] inter alia), that: (i) most models which capture the deformation of a certain class of
soft solids (say, unfilled rubbers) struggle with satisfactorily capturing the deformation behaviour of another
type(s), say filled rubbers; (ii) many models do not provide as good a fit to the multiaxial deformation datasets
of the same specimen with a single set of model parameter values; and (iii) most models do not provide a good
prediction of the behaviour of specimens if calibrated with data from other deformations. Depending on the
emphasis and the angle of approach, each of the cited reviews also confer additional specific shortcomings;

1 Selection of a reliable model for engineering applications from the existing choice of models in the literature has been identified
as a challenge in nearly all of the review articles known to the author, almost word by word, some of which will be cited in the
sequel.
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however, the foregoing three traits are a common conclusion in all of such studies. These results, shared
between microstructural-based and phenomenological models alike, indicate that a standard2 model, much
less a universal one, for a confident all-purpose generic application to the finite deformation of various soft
solids is still lacking in the literature.

The author’s own recent endeavours [12–14] aimed at bridging these gaps, by devising new classes of strain
energy functions that lead to a more accurate modelling of the multiaxial deformation datasets of a wide range
of rubber-like materials, with mechanistically consistent results (i.e. remaining free from the basic ill-posed
effects associated with other models for the same datasets). These efforts culminated in a recently proposed
comprehensive model [15], formulated based on the principal stretches λi (i � 1, 2, 3) of a non-separable
form—see also [16] for more results. In further enhancing those endeavours, a new strain energy function
is presented here, based on the principal invariants Ii (i � 1, 2, 3) of the (left) Cauchy–Green deformation
tensor B, specialised for application to isotropic incompressible (I3 � 1) soft solids. The proposed model is
of the binomial additive form; W (I1, I2) ≡ f (I1) + g(I2), and is a generalisation of the response functions
previously devised by the author (e.g. [17, 18]):

W (I1, I2) �
∑

j�1

3(n j − 1)

2n j
μ j N

[
1

3N (n j − 1)
(I1 − 3)β j − ln

(
I1 − 3N

3 − 3N

)β j
]
+

∑

k�1

Ck

[(
I2
3

)εk

− 1

]
, (1)

where:
⎧
⎨

⎩

n j ,μ j , N ,Ck ∈ R
+,

β j , εk ∈ R,
(2)

are model parameters, and I1 and I2 are the first and second principal invariants of B
(� FFT

)
, respectively.

Note that parameter N controls the limit of extensibility and thus is not subscripted, i.e. is singular valued (see,
e.g. [15]). While the general from of the model W (I1, I2) in Eq. (1) may be expanded to any number of terms
required, here we restrict our attention to the first-term expansion of the model:

W (I1, I2) � 3(n − 1)

2n
μN

[
1

3N (n − 1)
(I1 − 3)β − ln

(
I1 − 3N

3 − 3N

)β
]
+ C2

[(
I2
3

)ε

− 1

]
, (3)

to minimise the possible risk of over-prescribing constitutive parameters and thereby the uniqueness issues
surrounding the obtained fits and the model parameter values [19]. Accordingly, the one-term form of the
model in Eq. (3) contains six model parameters. Note that the coefficient C2 is so denoted to be in keeping
with the classical notation of I2 terms.

The mathematical underpinnings of the proposed model will be further elaborated in Sect. 2, where a more
detailed account of the model background and model parameters will be provided. It will be demonstrated
that most of the invariants-based models in the literature are indeed a subset of this model, i.e. the model in
Eq. (1) or that in Eq. (3) is the parent to most known invariants-based models. In Sect. 3 the application of the
model to multiaxial extant experimental data of a diverse range of isotropic incompressible soft solids will be
presented, including filled and unfilled rubber specimens, silicone rubber samples, extremely soft, cross-linked
and double-network hydrogels, liquid crystal elastomers, and biomaterials, where the favourable agreement
between the model predictions and the experimental data will be demonstrated (with relative errors typically
below 4%). The unfilled rubber datasets are those of the canonical Treloar [20] and Kawabata et al. [21] on
rubber vulcanisates under uniaxial, equi-biaxial and pure shear loadings. Filled rubber datasets are due to
Lahellec et al. [22] on uniaxial and simple shear of a commercial filled rubber compound by Michelin, and a
filled hydrogenated nitrile butadiene rubber (HNBR) specimen under uniaxial deformation due to Hohenberger
et al. [23] with a distinct inflection point in the stress-deformation curve. The silicone rubber datasets are those
of Meunier et al. [24] for unfilled specimens under uniaxial tension and compression, equi-biaxial and pure
shear deformations, and Jiang et al. [25] on general biaxial and equi-biaxial deformations of a commercial
non-reinforced silicone elastomer. Hydrogel datasets are due to Yohsuke et al. [26] and Mai et al. [27] on
multiaxial deformation of polyacrylamide (PAAm) and a double-network hydrogels, respectively, as well as
that of Saadedine et al. [28] on crossed-linked hydrogel specimens with various amounts of added cross-linkers

2 I have borrowed the term ‘standard’ from Dal et al. [10] in this context. Therein they mainly refer to standard methodologies
for identification of the constitutive behaviour of rubber-like materials. My focus here is only on the constitutive model.
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under uniaxial tension. The fits for liquid crystal elastomers are provided for uniaxial tensile (only) deformation
datasets used in [29] originally due to Raistrick et al. [30], that of Tokumoto et al. [31] and the dataset due to
Merkel et al. [32] as used in [33]. The datasets pertaining to biomaterial samples are those of Budday et al.
[34] on uniaxial tension and compression, and simple shear, deformations of human brain tissue, uniaxial
tension–compression of human whole blood clots due to Cahalane et al. [35], and the simple shearing of a
thrombusmimic specimen constructed from bovine blood due to Sugerman et al. [36] measuring the normal (to
the sheared surface) stress component of simple shear deformation and showing the unusual reverse Poynting
effect. We note here that the foregoing datasets are either the established barometers for gauging the basic
performance of a model (such as those of Treloar [20] and Kawabata et al. [21]), or have proved challenging for
the existing models to provide a good fit to as demonstrated in the original cited studies, much less for a single
model to provide accurate fits to all these diverse behaviours and datasets. In Sect. 4 some important points
of discussion will be conferred in relation to the modelling results, including the predictions of other modes
of deformation provided by the model for some of the specimens considered here, and issues surrounding
the convexity of the iso-energy plots. It is concluded in Sect. 5 that given: (i) the notably low relative errors
and markedly high accuracy of the model predictions for the finite deformation of the wide range of soft
solids considered here, (ii) simple mathematical form of the model and (iii) the manageable number of model
parameters, the proposedmodel in Eq. (3)may serve as an a priori standard choice of hyperelastic strain energy
functionW with unified applicability for modelling the constitutive behaviour of isotropic incompressible soft
solids.

2 The model

The idea behind the proposed model in this manuscript stems from the new class of response functions
developed by the author in a preceding paper [17], where a general solution for limiting chain extensibility
response was constructed as a [1/1] rational Padé approximant in I1 of the form:

2W1 ≡ 2
∂W

∂ I1
� 1

n
μ
I1 − 3nN

I1 − 3N
, (4)

which leads to the following explicit generalised neo-Hookean strain energy function [13]:

W (I1) � 3(n − 1)

2n
μN

[
1

3N (n − 1)
(I1 − 3) − ln

(
I1 − 3N

3 − 3N

)]
, (5)

subject to I1 < 3N so that that the ln(�) function remains well defined. Parameter N controls the extensibility
limit and has a structural basis akin to the number of Kuhn’s segments, n is a parameter which controls the rate
of strain hardening, n, N ∈ R

+, andμ is related to the infinitesimal shear modulusμ0 through:μ � μ0
n(1−N )
1−nN .

The favourable agreement between the predictions of this model and the multiaxial deformation data for a
range of filled and unfilled rubber specimens was demonstrated in [13]. While the response function in Eq. (4)
is an improvement to that of the Gent model [37] which is of [0/1] order in I1, a further generalisation of that
response function to an order [β/1] may be achieved by, for example, considering:

2W1 � 1

n
μβ

I1(I1 − 3)β−1 + 3N
[
1 − (I1 − 3)β−1] − 3nN

I1 − 3N
. (6)

Note that the ansatz in Eq. (6) is not the only way of achieving a [β/1] rational response function in I1; however,
it is a particularly useful one as it may be integrated to give the following compact strain energy function:

W (I1) �
∫

W1dI1 � 3(n − 1)

2n
μN

[
1

3N (n − 1)
(I1 − 3)β − ln

(
I1 − 3N

3 − 3N

)β
]
. (7)

While in the mathematical sense β is defined to be β ∈ N, from a phenomenological point of view this
requirement may be relaxed, so that β ∈ R. That is, considering β ∈ R does not violate the first of Beatty’s
[38] empirical inequalitiesW1(I1) > 0 so far as the ln(�) function remains well defined; a sufficient condition
for which is I1 < 3N .

However, the W (I1) function in Eq. (7) is still of the generalised neo-Hookean type, and as a result all the
usual shortcomings of the generalised neo-Hookean strain energy functions may be extended to this function
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too, including the extent of correlation with the data at lower levels of deformation (see, e.g. [39, 40]) and
incompliance with the universal relationships of finite elasticity (see, e.g. [18, 41–43]). These shortcomings
necessitate the inclusion of an I2 adjunct term in the strain energy function W . Of the various choices of an I2
adjunct term that exist in the literature, we devise the general functional from:

W (I2) � C2

[(
I2
3

)ε

− 1

]
, C2 ∈ R

+, ε ∈ R. (8)

From Eq. (8) it is clear that when ε � 1, one gets the classical Mooney–Rivlin I2 term (the multiplier 3 can
be absorbed into the coefficient C2). Limited use of this functional form, for when ε � 0.5, may be seen in
the work of Carroll [44], for which a structural underpinning using the tube topological constraint model was
provided in [18]. It will be shown in Sect. 3 that, further to the structural motivation, the W (I2) function in
Eq. (8) provides a very useful and flexible addition to theW (I1) term for accurately capturing the deformation
of a wide range of soft solids and deformation ranges.

Remark 1 The second of conditions in Eq. (8), i.e. ε ∈ R, may lead to the violation of Beatty’s [38] second
empirical relationship, namely W2 ≥ 0, for when ε < 0. However, we have deliberately not restricted ε to
ε ∈ R

+, since as it will be shown and discussed later, this condition will unnecessarily lead to excluding the
prediction of the reverse Poynting effect in some applications. This occurrence has also been discussed at
length, and reconciled with, by Mihai and Goriely [45]. In that spirit, we do not opt for the overtly restrictive
ε ∈ R

+, and instead consider the condition as laid out in Eq. (8).
What remains to do now is to construct the final from of the W (I1, I2) function, which we consider as a

binomial additive form of W (I1, I2) ≡ f (I1) + g(I2), with the functions f and g defined in Eqs. (7) and (8),
respectively, to arrive at the model in Eq. (3):

W � 3(n − 1)

2n
μN

[
1

3N (n − 1)
(I1 − 3)β − ln

(
I1 − 3N

3 − 3N

)β
]
+ C2

[(
I2
3

)ε

− 1

]
, I1 < 3N ,

subject to the foregoing conditions on parameters n, N , β, C2 andε. Note that the infinitesimal shear modulus
μ0 for this model is:

μ0 � 2[W1(I1 � 3) +W2(I2 � 3)] ⇒ μ0 � μβN

n

1 − n

1 − N
+
2ε

3
C2, (9)

and that μ and C2 are stress-like parameters while n, N , β and ε are dimensionless.

Remark 2 Structurally, parameter N ought to be positive (> 0). However, from a phenomenological point of
view, so long as μ0 remains positive and the first of empirical relationships (i.e. W1 > 0) is not violated, there
is no reason as to why parameters N and n need to be restricted to R

+ space. Indeed, applications may be
found where N , or both N and n, may assume a negative value. One such application has been presented in
[16], and three examples will be presented herein too.

In total, therefore, this model contains six model parameters, and as such is within the territory identified by
Ogden et al. [19], i.e. prone to non-uniqueness issues surrounding the obtained fits andmodel parameter values.
While, as will be shown in Sect. 3, this model provides favourable fits to the wide range of soft solid materials
and deformations considered here, it may still be judicious in some applications to expand the number of model
terms and use the multi-term form of the model as given in Eq. (1). Such applications were not encountered
by the author and will not be pursued here.

Before we proceed, it may be informative to demonstrate that our proposed model is the parent to most
invariants-based (I1, I2) models in the literature.3 Accordingly, some examples are demonstrated in the fol-
lowing:

1. Starting with the classical neo-Hookean model, we note that by setting C2 � 0 and β � 1, in limits when
N → ∞ or n → 1, we obtain:

lim
N→∞W � lim

n→1
W � 1

2
μ(I1 − 3). (10)

3 Known to the author.
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2. Similarly, the polynomial form of the neo-Hookeanmodel is obtained by considering the multi-termmodel
in Eq. (1) and using the same settings, i.e. β j � j and Ck � 0:

lim
n→1

W �
∑

j�1

1

2
μ j (I1 − 3) j . (11)

The relationship in Eq. (11) covers many of the power-series combination of (I1 − 3) j such as Yeoh’s
cubic model [46] etc.

3. Models based on fractional powers of (I1−3) term(s) are also a subset of the proposedmodel, demonstrable
using the same procedure as that in the foregoing. For example, by setting Ck � 0 and β1 � 1 and β2 � 3

4 ,
we obtain at the limit n → 1:

lim
n→1

W � 1

2

[
μ1(I1 − 3) + μ2(I1 − 3)

3
4

]
, (12)

which is a model proposed by Nunes in [47]. This fractional-power expansion of (I1 − 3) terms also
becomes close to the functional form of the model by Lopez–Pamies [48].

4. Another model readily recoverable from that in Eq. (3) is the seminal Mooney–Rivlin model. By setting
β � ε � 1 and at the limit N → ∞ or n → 1 we get:which is the Mooney–Rivlin model on noting that
the C2 coefficient in (13) is equal to 3C2 of that in the former model.

lim
N→∞W � lim

n→1
W � 1

2
μ(I1 − 3) + C2

(
I2
3

− 1

)
, (13)

5. In the limit n → ∞ and setting β � 1 and C2 � 0 we have from Eq. (3):

lim
n→∞W � −3

2
Nμln

(
− I1 − 3N

3N − 3

)
. (14)

We also note from Eq. (9) that:

lim
n→∞,β�1,C2�0

(
μN

n

1 − n

1 − N

)
� μN

N − 1
� μ0, (15)

which renders the relationship in Eq. (14) as:

lim
n→∞W � −3

2
μ0(N − 1)ln

(
− I1 − 3N

3N − 3

)
. (16)

By setting the limiting chain extensibility parameter Jm in the Gent model as: Jm � 3N − 3, Eq. (16) can
be re-written as:

lim
n→∞W � −1

2
Jmμ0ln

(
1 − I1 − 3

Jm

)
, (17)

which is the well-known Gent model [37].

6. On using the multi-term form of the model in Eq. (1), and by setting β1 � 1 and β2 � 4, and ε1 � 1
2 , we

obtain in limits N → ∞ and n1, n2 → 1:

lim
N→∞, n1, n2→1

W � 1

2
μ1(I1 − 3) +

1

2
μ2(I1 − 3)4 + C1

[√
I2
3

− 1

]
, (18)

i.e. the model by Carroll [44] with the change of notation A � 1
2μ1, B � 1

2μ2 and C � C1.

7. Though trivial, we note that earlier subsets of the model in Eq. (3) will be retrieved by setting β � 1 and
C2 � 0, which directly reproduces the model used in [13], and by further setting n � 3 the model in [49]
and [50] is obtained.

More examples may also be recounted; however, we stop here in the interest of concision.
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3 Correlation with experimental data

With themathematical background of themodel set out in the previous section, we now proceed to demonstrate
the application of themodel to thefinite deformation of awide rangeof soft solids, fromfilled andunfilled rubber
specimens to hydrogels, liquid crystal elastomers and biomaterials. The considered experimental datasets
pertaining to these specimens contain various multiaxial deformation modes including uniaxial, (equi-)biaxial,
pure and simple shear deformations. Accordingly, we first derive and present the relevant stress—deformation
relationships.

3.1 Stress—deformation relationships

The Cauchy stress T for an isotropic incompressible material is given by:

T � −pI + 2W1B − 2W2B−1, (19)

where B
(� FFT

)
is the left Cauchy–Green deformation tensor and B−1 is its inverse, p is the arbitrary

Lagrange multiplier enforcing the condition of incompressibility, I is the identity tensor, and W1 and W2 are
the partial derivatives of the strain energy function W with respect to the first and second principal invariants
of B. These are defined as:

I1 � λ21 + λ22 + λ23, I2 � λ−2
1 + λ−2

2 + λ−2
3 , (20)

with I3 � 1 due to incompressibility: λ1λ2λ3 � 1.
It follows that, using the assumption of plane stress (T33 � 0), for uniaxial deformations where λ1 � λ

and λ2 � λ3 � λ−0.5, from model (3) we will have:

Tuni � μβ

n

I1(I1 − 3)β−1 + 3N
[
1 − (I1 − 3)β−1] − 3nN

I1 − 3N

(
λ2 − 1

λ

)
+
2C2ε

3ε
I ε−1
2

(
λ − 1

λ2

)
, (21)

where I1 � λ2 + 2λ−1 and I2 � 2λ+λ−2. The equivalent nominal stress P components may be obtained from
T on using the conversion: T � FP, where F is the deformation gradient tensor, which results in:

Puni � μβ

n

I1(I1 − 3)β−1 + 3N
[
1 − (I1 − 3)β−1] − 3nN

I1 − 3N

(
λ − 1

λ2

)
+
2C2ε

3ε
I ε−1
2

(
1 − 1

λ3

)
. (22)

Similarly, in equi-biaxial deformations where λ1 � λ2 � λ and λ3 � λ−2 we find using the model in Eq. (3):
⎧
⎪⎪⎨

⎪⎪⎩

Teq−bi � μβ
n

I1(I1−3)β−1+3N
[
1−(I1−3)β−1]−3nN

I1−3N

(
λ2 − 1

λ4

)
+ 2C2ε

3ε I ε−1
2

(
λ4 − 1

λ2

)
,

Peq−bi � μβ
n

I1(I1−3)β−1+3N
[
1−(I1−3)β−1]−3nN

I1−3N

(
λ − 1

λ5

)
+ 2C2ε

3ε I ε−1
2

(
λ3 − 1

λ3

)
,

(23)

with I1 � 2λ2 + λ−4 and I2 � λ4 + 2λ−2. For general biaxial deformations in directions 1 and 2, these
relationships become:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(Tbi )1 � μβ
n

I1(I1−3)β−1+3N
[
1−(I1−3)β−1]−3nN

I1−3N

(
λ21 − 1

λ21λ
2
2

)
+ 2C2ε

3ε I ε−1
2

(
λ21λ

2
2 − 1

λ21

)
,

(Tbi )2 � μβ
n

I1(I1−3)β−1+3N
[
1−(I1−3)β−1]−3nN

I1−3N

(
λ22 − 1

λ21λ
2
2

)
+ 2C2ε

3ε I ε−1
2

(
λ21λ

2
2 − 1

λ22

)
,

(24)

where I1 � λ21 + λ22 + (λ1λ2)
−2 and I2 � λ−2

1 + λ−2
2 + (λ1λ2)

2. The equivalent stress components in terms of
the nominal stress P are:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(Pbi )1 � μβ
n

I1(I1−3)β−1+3N
[
1−(I1−3)β−1]−3nN

I1−3N

(
λ1 − 1

λ31λ
2
2

)
+ 2C2ε

3ε I ε−1
2

(
λ1λ

2
2 − 1

λ31

)
,

(Pbi )2 � μβ
n

I1(I1−3)β−1+3N
[
1−(I1−3)β−1]−3nN

I1−3N

(
λ2 − 1

λ21λ
3
2

)
+ 2C2ε

3ε I ε−1
2

(
λ21λ2 − 1

λ32

)
.

(25)
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For the pure shear deformation where λ1 � λ, λ2 � 1 and λ3 � λ−1, the model in Eq. (3) gives:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Tps �
{

μβ
n

I1(I1−3)β−1+3N
[
1−(I1−3)β−1]−3nN

I1−3N + 2C2ε
3ε I ε−1

2

}(
λ2 − 1

λ2

)
,

Pps �
{

μβ
n

I1(I1−3)β−1+3N
[
1−(I1−3)β−1]−3nN

I1−3N + 2C2ε
3ε I ε−1

2

}(
λ − 1

λ3

)
,

(26)

with I1 � I2 � λ2 + 1 + λ−2. Finally, for the case of simple shear, where the deformation gradient is defined
by:

F �
⎡

⎣
1 γ 0
γ 1 0
0 0 1

⎤

⎦, (27)

with γ being the amount of shear, the shear component of the Cauchy stress is computed via:

Tss � 2γ (W1 +W2), (28)

which on using model (3) results in:
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Tss �
{

μβ
n

I1(I1−3)β−1+3N
[
1−(I1−3)β−1]−3nN

I1−3N + 2C2ε
3ε I ε−1

2

}
γ ,

Pss �
{

μβ
n

I1(I1−3)β−1+3N
[
1−(I1−3)β−1]−3nN

I1−3N + 2C2ε
3ε I ε−1

2

}
γ

γ
2 +

√
1+ γ 2

4

,

(29)

where I1 � I2 � 3 + γ 2.
Depending on the source experimental data, either the Cauchy T or nominal P stress—deformation rela-

tionships summarised in the foregoing will be used for fitting with the data in the sequel.

3.2 The fitting process

In keeping with the source data, the majority of the fittings here were carried in the engineering space (i.e.
in P − λ domain), with the exception of some datasets that were originally presented in the Cauchy space.
We note that other domains also exist, such as the generalised Mooney space [51], which facilitate obtaining
robust fits; however, they are not well-versed in the literature. The fitting process used here is similar to
that used in our previous studies [12–16]. Concisely, either the nominal P or Cauchy T stress—deformation
relationships in Eqs. (21) to (26) and (29) were simultaneously fitted to the relevant deformation modes
from each considered dataset. The best fit was sought by minimising the residual sum of squares (RSS)
function defined as: RSS � ∑

r

(
Pmodel − Pexperiment

)2
r , or equivalently in terms of the Cauchy stress as

RSS � ∑
r

(
Tmodel − T experiment

)2
r , where r is the number of data points. This minimisation was performed

via an in-house developed code in MATLAB®, using the genetic algorithm (GA) function. The coefficient of
determination R2 values are reported as a measure of the goodness of the obtained fits, as well as the ensuing

relative error (%) calculated as:
∣∣∣ P

model−Pexperiment

Pexperiment

∣∣∣ × 100 or equivalently
∣∣∣ T

model−T experiment

T experiment

∣∣∣ × 100. Note that

the data point (λ, P) at the undeformed state, i.e. (1,0), was removed from each dataset before the start of the
fitting process to preclude any potential numerical instability that may arise from values of β < 1, i.e. to avoid
division by zero at point λ � 1 (corresponding to P , T � 0) in stress—deformation relationships.

3.3 Fitting results

Using the mathematical relationships and the fitting procedure described, we now present the modelling results
in respect of each class of soft materials considered.
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Table 1 Model parameter values for unfilled rubber vulcanisate specimens due to Treloar [20] and Kawabata et al. [21]

Treloar data [20]

μ [MPa] N [–] n [–] β [–] C2 [MPa] ε [–] R2

Uniaxial
0.39 26.60 4.93 0.69 0.30 0.41

0.999
Equi-biaxial 0.999
Pure shear 0.999

Kawabata et al. data [21]

μ [MPa] N [–] n [–] β [–] C2 [MPa] ε [–] R2

Uniaxial
0.25 0.68 0.89 1.00 0.20 0.47

0.999
Equi-biaxial 0.999
Pure shear 0.998

3.3.1 Unfilled rubber

It has become customary, when comparing the ability of the existing models in the literature, to gauge the
accuracy and predictability of themodels against the canonical experimental data of Treloar [20] andKawabata
et al. [21] on multiaxial deformation of unfilled rubber vulcanisates. The former dataset pertains to vulcanised
sulphur (8%) rubber, and the latter is that of vulcanised isoprene rubber samples. Accordingly, the relationships
in Eqs. (22), (23)2 and (26)2 were simultaneously fitted to the uniaxial, equi-biaxial and pure shear deformation
datasets of each study. The tabulated numerical datapoints for these datasets can be found in [50] and [21],
respectively. The model parameter values for each dataset are presented in Table 1, and the fitting results are
illustrated in Figs. 1 and 2. The R2 values for both datasets are in excess of 0.998, underlining the favourability
of the model correlation with the two canonical datasets.

Starting by Treloar’s data [20] for natural rubber vulcanisates, from the plots in Fig. 1 it is clear that the
model captures the data most favourably, with the relative errors remaining below 4% across most of the
deformation domain, except for the very small deformation levels at the beginning of deformation (i.e. in the
vicinity of λ � 1). With these reassuring results, we move to the data due to Kawabata et al. [21], presented
in Fig. 2.

Similar to the results pertaining to Treloar’s natural rubber vulcanisate specimens, the multiaxial data of
unfilled isoprene rubber vulcanisates due to Kawabata et al. [21] also correlate favourably with the model
predictions. The relative error plots in Fig. 2 indicate that the values of relative error are again typically below
4% across the whole of the deformation domain, except for the small levels around λ � 1 at the beginning of
the deformation. These two canonical datasets provide a reassuring first step in showcasing the ability of the
proposed model for an accurate application to the finite deformation of rubbers.

3.3.2 Filled rubber

Filled rubbers exhibit a distinctly different deformation behaviour than their unfilled counterparts. The intro-
duction of the filler particles is known to distort the mechanical behaviour of the filled rubbers, and this
distortion becomes more pronounced with higher levels of filler [23]. Examples include a shear softening
behaviour; e.g. a downward concavity at low deformations in deformation curves, thought to be associated
with the breakage of filler network [23], and the Payne effect [52], which in severe cases reflects itself as
an inflection point in uniaxial tension and/or compression curves [23]. These behaviours have proved to be
challenging to capture for most of the existing models in the literature4—see, e.g. [16, 23] and [53] for some
comparative examples. Here, we present the application of our proposed model to exemplar datasets which
highlight the aforementioned two behaviours, i.e. the shear softening and the Payne effect. For the former,
we consider the multiaxial deformation dataset of Lahellec et al. [22] involving uniaxial and simple shearing
of a commercial filled rubber compound developed by the Michelin tyres, and for the latter we use the data
due to Hohenberger et al. [23] on uniaxial tension and compression of a filled hydrogenated nitride butadiene
rubber (HNBR) sample. Accordingly, in keeping with the source data, the relationships in Eqs. (22) and (29)2
were fitted to each dataset. The tabulated numerical datapoints for these datasets, extracted from the foregoing

4 A notable exception is that of Lopez–Pamies [48].



A generalised W(I1, I2) strain energy function of binomial form 107

Fig. 1 Modelling results versus the experimental data due to Treloar [20] for unfilled natural rubber vulcanisates under uniaxial,
equi-biaxial and pure shear deformations. The panels on the right show the relative errors. The dotted (red) lines mark the error
level at 4% (see the on-line version for plots in colour)

studies, have been summarised in Appendix A, Tables 9 and 10. The obtained model parameter values are
presented in Table 2, and the fitting results are illustrated in Figs. 3 and 4. The R2 values for both datasets
are in excess of 0.999, indicative of the capability of the model in capturing such challenging mechanical
behaviours.

As the stress—deformation plot in Fig. 3 indicates, the compression—tension behaviour of the considered
filled rubber specimen (HNBR) is highly asymmetrical. The inflection point at compressive stretch is also
noticeable. The model provides a favourable fit, and successfully captures these challenging behaviours. The
relative errors plot also indicates that, similar to the considered unfilled rubber datasets in the previous section,
the relative errors remain typically below 4% for most of the deformation range, except within very small
deformations around λ � 1 ± 0.1.

The plots in Fig. 4 demonstrate the modelling results for the commercial filled rubber data due to Lahellec
et al. [22] under uniaxial and simple shear deformations. Reassuringly, the ensuing relative errors remain under
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Fig. 2 Modelling results versus the experimental data due to Kawabata et al. [21] for unfilled isoprene rubber vulcanisates under
uniaxial, equi-biaxial and pure shear deformations. The panels on the right show the relative errors. The dotted (red) lines mark
the error level at 4% (see the on-line version for plots in colour)

Table 2 Model parameter values for filled rubber samples due to Hohenberger et al. [23] and Lahellec et al. [22]

Hohenberger et al. data [23]

μ [MPa] N [−] n [−] β [−] C2 [MPa] ε [−] R2

Uniaxial tension and compression 4.39 0.985 0.97 0.965 0.02 8.25 0.999
Lahellec et al. data [22]

μ [MPa] N [−] n [−] β [−] C2 [MPa] ε [−] R2

Uniaxial 0.86 0.99 0.98 1.13 1.50 1.56 0.999
Simple shear 0.999
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Fig. 3 Modelling results versus the experimental data due to Hohenberger et al. [23] for a filled rubber specimen (HNBR) under
uniaxial tension and compression. The panels on the right show the relative errors. The dotted (red) line marks the error level at
4% (see the on-line version for plots in colour)

Fig. 4 Modelling results versus the experimental data due to Lahellec et al. [22] for a commercial filled rubber compound
developed by the Michelin under uniaxial and simple shear deformations. The panels on the right show the relative errors. The
dotted (red) line marks the error level at 4% (see the on-line version for plots in colour)

4% again (except for very small amounts of initial shearing), and the model is seen to successfully capture the
softening behaviour (downward concavity).

The combined results of the previous and current sections highlight that the proposed model in Eq. (3)
offers the capability to accurately capture the finite deformation behaviour of both filled and unfilled rubbers,
using a unified model. This is an attractive possibility given the current choice of models in the literature,
where most struggle to model the behaviour of both types of materials.
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3.3.3 Silicone rubber

Although (unreinforced) silicone rubbers appear to exhibit a fairly standardbehaviour underfinite deformations,
some studies [25, 48, 50] have highlighted the shortcomings of the existing models in providing an accurate
fit to such datasets. Accordingly, here we consider the following two datasets on multiaxial deformation of
silicone rubber specimens. The first dataset is due toMeunier et al. [24] on an unfilled compound, under uniaxial
compression and tension, equi-biaxial and pure shear deformations. The second dataset is due to Jiang et al.
[25] on a commercial non-reinforced silicone elastomer under both equi- and general-biaxial deformations.
The significance of this dataset is that general biaxial tests, as opposed to equi-biaxial tests, circumvent the
promulgation of what is known as collinearity in regression (i.e. fitting a model to the data) which hinders
obtaining unique model parameter values [54, 55].

The relationships in Eqs. (22), (23)2 and (26)2 were simultaneously fitted the dataset of Meunier et al. [24],
and Eqs. (23)2 and (25)were fitted simultaneously to that of Jiang et al. [25]. The tabulated numerical datapoints
for these datasets, collated from the foregoing studies, have been summarised in Appendix A, Tables 11 and
12. The obtained model parameters are presented in Table 3, and the fitting results are illustrated in Figs. 5 and
6. The R2 values are in excess of 0.994, signalling the ability of the model in capturing the finite deformation
behaviour of the considered silicone rubber specimens.

While the typical relative errors for this dataset (typically below 8%) is higher than the preceding examples,
the model provides a noticeable improvement in the fits compared with many of the existing models in the
literature to this dataset (see, e.g. [48, 50]). The main episode of increased errors is related to the small
deformations under pure shear (λ < 1.2). Overall, however, the model provides a favourable fit, with R2

values>0.99.

Table 3 Model parameter values for silicone rubber specimens due to Meunier et al. [24] and Jiang et al. [25]

Meunier et al. data [24]

μ [MPa] N [−] n [−] β [−] C2 [MPa] ε [−] R2

Uniaxial
0.25 3.70 1.67 1.00 2.61 0.02

0.999
Equi-biaxial 0.999
Pure shear 0.994

Jiang et al. data [25]

μ [kPa] N [−] n [−] β [−] C2 [kPa] ε [−] R2

Equi-biaxial 357.93 − 10.59 − 8.14 1.51 252.92 − 1.14 0.997
General biaxial 0.995
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Fig. 5 Modelling results versus the experimental data due to Meunier et al. [24] for an unfilled silicone rubber compound under
uniaxial, equi-biaxial and pure shear deformations. The panels on the right show the relative errors. The dotted (red) lines mark
the error level at 8% (see the on-line version for plots in colour)

The plots in Fig. 6 provide the modelling results for the dataset due to Jiang et al. [25]. In keeping with the
previous datasets, here the relative errors are again below the typical 4%, except for the very small deformation
levels at the beginning.
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Fig. 6 Modelling results versus the experimental data due to Jiang et al. [25] for a commercial non-reinforced silicone elastomer
under equi-biaxial and general biaxial deformations. The panels on the right show the relative errors. The dotted (red) lines mark
the error level at 4% (see the on-line version for plots in colour)

3.3.4 Hydrogels

Modelling the mechanical behaviour of hydrogels has gained a renewed attention, given their wide range of
applicability in, for example, biomedical functions (as a medium for 3D cell culture, in situ tissue formation
etc.), and due to the fact that their mechanical properties are tuneable, i.e. by changing the cross-link density or
water content etc. However, because of their (extreme) softness, modelling their behaviour under finite defor-
mations is not a trivial task. To showcase the capability of the proposed model for capturing the deformation
behaviour of these elastomers too, here we consider three datasets pertaining to: (i) a pure hydrogel compound
reinforced with various amounts of crosslinkers under uniaxial deformation due to Saadedine et al. [28]; (ii)
extremely soft polyacrylamide (PAAm) hydrogel specimens under multiaxial deformation due to Yohsuke
et al. [26]; and (iii) a double-network ‘tough’ hydrogel specimen under multiaxial deformation due to Mai
et al. [27]. The tabulated numerical datapoints extracted from [28] have been given in [16], and those from
[26] and [27] are presented in Tables 13 and 14 of Appendix A.

Starting by the reinforced hydrogel samples of Saadedine et al. [28] with various amount of crosslinkers,
here we use the same naming convention for the specimens (i.e. M1, M5, M10 and M40), which indicates the
number of milligrams of the contained crosslinker. Equation (22) was fitted to each dataset. Table 4 shows
the ensuing model parameter values, and the plots in Fig. 7 illustrate the fitting results. The model provides a
favourable fit to the data, with R2 values in excess of 0.999 across all samples, from the softest (i.e. M1 with the
lowest amount of crosslinker) to the hardest (i.e. M40 with the highest amount of crosslinker) samples. Note
that the table also contains the corresponding value of the infinitesimal shear modulus μ0 for each sample,
calculated from the obtained model parameters on using Eq. (9). Reassuringly, with increase in crosslinks, the
calculated shear modulus μ0 also increases.
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Table 4 Model parameter values for the pure hydrogel samples with various amounts of crosslinkers due to Saadedine et al. [28]

μ [kPa] N [−] n [−] β [−] C2 [kPa] ε [−] R2 μ0 [kPa]

M1 specimen 0.76 19.42 1.10 0.58 10.51 0.63 0.999 4.48
M5 specimen 0.61 51.92 0.17 1.00 45.50 0.44 0.999 10.22
M10 specimen 0.61 8.21 0.18 1.13 68.48 0.43 0.999 15.86
M40 specimen 1.52 1.71 0.715 0.83 91.60 0.55 0.999 32.22

Fig. 7 Modelling results versus the experimental data due to Saadedine et al. [28] for a pure hydrogel compound reinforced with
various amounts of crosslinkers under uniaxial deformation. The panels on the right show the relative errors. The dotted (red)
line marks the error level at 4% (see the on-line version for plots in colour)

Table 5 Model parameter values for soft PAAm and double-network ‘tough’ hydrogel specimens due to Yohsuke et al. [26] and
Mai et al. [27], respectively

Yohsuke et al. data [26]

μ [kPa] N [−] n [−] β [−] C2 [kPa] ε [−] R2

Uniaxial
4.51 17.075 4.23 0.94 2.91 0.57

0.999
Equi-biaxial 0.999
Pure shear 0.999

Mai et al. data [27]

μ [MPa] N [−] n [−] β [−] C2 [MPa] ε [−] R2

Uniaxial
0.86 − 0.61 10.15 1.05 0.10 − 3.92

0.995
Equi-biaxial 0.994
Pure shear 0.999

As the plots in Fig. 7 show, the character of the stress—deformation curves changes with the increase in
the amount of crosslinker. However, the model is seen to be well capable of capturing those different curve
shapes, with the typical relative errors of below 4% again. With these reassuring results, we proceed with the
other two hydrogel datasets in the following.

Next we consider the dataset due to Yohsuke et al. [26] on (extremely) soft polyacrylamide (PAAm)
hydrogel specimens, and that of Mai et al. [27] on double-network ‘tough’ hydrogel samples, under uniaxial,
equi-biaxial and pure shear deformations. Accordingly, Eqs. (22), (23)2 and (26)2 were simultaneously fitted
to each dataset. The obtained model parameter values have been presented in Table 5, and Figs. 8 and 9 show
the fitting results. The R2 values possess their typical values with this model, in excess of 0.99.

The fitting results in Fig. 8 indicate the favourable correlation between the model predictions and the
experimental data, with the relative errors below the typical 4% (except at the beginning of the deformation
domain at small stretches). These results pertain to (extremely) soft hydrogels. The plots in Fig. 9, however,
demonstrate the modelling results for tough(er) double-network hydrogel specimens.

Similar to the soft samples of Fig. 8, the fitting results in Fig. 9 indicate the capability of the model in
capturing the finite deformation of (tough) double-network specimens. The relative errors are again around the
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Fig. 8 Modelling results versus the experimental data due to Yohsuke et al. [26] for soft polyacrylamide (PAAm) hydrogel
specimens under uniaxial, equi-biaxial and pure shear deformations. The panels on the right show the relative errors. The dotted
(red) lines mark the error level at 4% (see the on-line version for plots in colour)

same typical level of 4%.We also note an interesting feature that the model appears to be capable of capturing,
and that is the continuous softening in the loading curves. Unlike other hyperelastic models known to the
author, which require to be augmented by a damage/softening variable, the proposed model here appears to
be intrinsically able of capturing the softening via the inter-play between its constitutive parameters.
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Fig. 9 Modelling results versus the experimental data due to Mai et al. [27] for double-network ‘tough’ hydrogel samples under
uniaxial, equi-biaxial and pure shear deformations. The panels on the right show the relative errors. The dotted (red) lines mark
the error level at 4% (see the on-line version for plots in colour)
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Table 6 Model parameter values for the liquid crystal elastomer specimens due to Raistrick et al. [30], Merkel et al. [32] and (iii)
Tokumoto et al. [31]

μ [kPa] N [−] n [−] β [−] C2 [kPa] ε [−] R2

Raistrick et al. [30] data 0.105 ×103 54.19 19.69 3.90 7.78×103 0.29 0.999
Merkel et al. [32] data 0.195 ×103 3.17 1.53 0.72 1.00×103 0.08 0.999
Tokumoto et al. [31] data 7.28 0.93 0.48 1.11 226.62 − 0.45 0.996

3.3.5 Liquid crystal elastomers

The unique class of soft solids, called liquid crystal elastomers (LCEs), obtained by introducing liquid crys-
tallinity into the elastomer polymeric networks [31, 56], exhibit an interesting set of mechanical behaviours.
While some of the more nuanced aspects of those behaviours such as the rotation of nematic director and/or
auxetic response etc. require a more comprehensive modelling approach; see, e.g. the contributions of Mihai
and co-workers [29, 33], here we wish to correlate the datasets obtained from the uniaxial deformation of these
elastomers with our proposed model in Eq. (3), only from the perspective of showcasing the suitability of the
model to act as the hyperelastic base in those more advanced modelling frameworks to the finite deformation
of LCEs.

In this regard, we consider three datasets on various LCE compounds under uniaxial deformation due
to: (i) Raistrick et al. [30] with a monodomain nematic LCE specimen; (ii) Merkel et al. [32] with nematic-
polymerised polydomain elastomers; and (iii) Tokumoto et al. [31] with a polydomain nematic elastomer
exhibiting soft elasticity, i.e. a spontaneous deformation without (or with minimal) additional stress up to a
certain stretch. The tabulated numerical data curated from these studies have been presented in Appendix A,
Table 15. The relationship in Eq. (22) (i.e. the nominal stress) was fitted to the datasets of [30] and [32], while
the Cauchy stress—deformation relationship in Eq. (21) was used for the dataset of [31]. The obtained model
parameter values are given in Table 6, and the fitting results are illustrated in Fig. 10.

As the plots in Fig. 10 indicate, the model captures the basic uniaxial deformation behaviour of these LCE
specimens favourably. The R2 values are in excess of 0.996, and the relative errors for the fist two datasets
are below the typical 4%. For the dataset due to Tokumoto et al. [31], where the soft elasticity phenomenon
occurs, the relative errors are higher. However, the model is capturing the phenomenon well, and is able to
reproduce the trend rather accurately. There are no hyperelastic strain energy functions known to the author
that have been shown to capture this behaviour in LCEs.
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Fig. 10 Modelling results versus the experimental data for various liquid crystal elastomer samples under uniaxial tension due
to: (a) Raistrick et al. [30]; (b) Merkel et al. [32]; and (c) Tokumoto et al. [31]. The panels on the right show the relative errors.
The dotted (red) line marks the error level at 4%. Note that the stress measure in panel (c) is the Cauchy stress (see the on-line
version for plots in colour)

3.3.6 Biomaterials

To present a well-rounded scope for application of the proposed model, we also consider some challenging
datasets pertaining to the finite deformation of some biomaterial samples. These include the familiar dataset
due to Budday et al. [34] on uniaxial tension and compression, and simple shear, deformations of the human
brain tissue. The challenge in modelling this dataset is the highly nonlinear shear response, and the asymmetry
of the tension—compression behaviour. Next we consider the uniaxial tension—compression of human whole
blood clots due to Cahalane et al. [35], which again exhibits a distinctly asymmetric response. Finally, the
simple shearing of a thrombus mimic specimen constructed from bovine blood due to Sugerman et al. [36]
is considered. The challenging behaviour of this dataset is that the normal (to the sheared surface) stress
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Table 7 Model parameter values for the human brain (cortex) tissue due Budday et al. [34]

μ [kPa] N [−] n [−] β [−] C2 [kPa] ε [−] R2

Equi-biaxial 26.63 53.24 0.965 7.74 1.16 11.48 0.998
General biaxial 0.992

Table 8 Model parameter values for the human blood clot and thrombus mimic samples due to Cahalane et al. [35] and Sugerman
et al. [36], respectively

Cahalane et al. data [35]

μ [kPa] N [−] n [−] β [−] C2 [kPa] ε [−] R2

Uniaxial tension and compression 10.37 − 1.74 9.92 0.89 100.05 − 0.06 0.998
Sugerman et al. data [36]

μ [kPa] N [−] n [−] β [−] C2 [kPa] ε [−] R2

Simple shear 5.61 99.95 1.11 2.42 7.03 − 0.25 0.99
Normal stress (P22) 0.87

component of simple shear deformation shows the unusual reverse Poynting effect. These datasets provide a
reasonable basis to test the ability of the model for biomaterials applications too.

Accordingly, Eqs. (22) and (29)1 were simultaneously fitted to the dataset of [34], while for [35] only
Eq. (22) was used. However, for applying the model to the dataset from [36], we must first derive the ensuing
relationship for the normal stress T22 under simple shear using [53]:

T22 � −2γ 2W2, (30)

which, on using Eq. (3), yields:

T22 � − 2

3ε
C2εγ

2 I ε−1
2 , (31)

where I2 has been defined just after Eq. (29). The equivalent nominal stress P22 is obtained via: P22 � T22/λ2,

where we note that λ2 � − γ
2 +

√
1 + γ 2

4 , as:

P22 � − 2

3ε
C2ε

γ 2

− γ
2 +

√
1 + γ 2

4

I ε−1
2 . (32)

The relationships in Eqs. (29)1 and (32) where subsequently fitted to the dataset of Sugerman et al. [36].
The tabulated datapoints of [34] has been presented elsewhere [14], and those for [35] and [36] are given in
Appendix A, Tables 16 and 17, respectively.

Starting with human brain dataset [34], the identified model parameters are listed in Table 7, and the plots
in Fig. 11 demonstrate the modelling results. The R2 values are in excess of 0.99, and the model captures
both the asymmetry of the compression—tension and nonlinearity of the shear response well. While the
resulting relative errors are above the typical 4% of the preceding datasets, we note that challenging nature
of this particular dataset, and the-even-higher relative errors provided by other ‘gold-standard’ models in the
literature. By way of comparison, we reproduce here from [15] the relative error plots for the same dataset
using the three-term Ogden model; see Fig. 11c. It is observed that the proposed model provides improved fits.

The modelling results for the human (whole) blood clot and thrombus mimic specimens are presented in
Fig. 12. Table 8 summarises the model parameter values. The model is seen to capture the distinct asymmetry
of the compression—tension deformation of whole blood clot favourably, with the R2 value in excess of 0.998
and the relative errors typically below 8% (except for small levels of compression). For the thrombus mimic
specimen (from bovine blood), the model captures well the simple shear behaviour, and also correctly predicts
the reverse Poynting effect (the P22 component of the stress in simple shear). However, the quality of the fits,
particularly in the case of latter, can be improved. One way of achieving this improvement is to perhaps opt for
another functional form of the I2 term in Eq. (8), seeing that only the response function W2 appears in T22 or
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Fig. 11 Modelling results versus the experimental data for the human brain (cortex) tissue due Budday et al. [34]: a Uniaxial
compression – tension; b Simple shear; c The relative errors using the 3-term Ogden model for the same dataset (left panel:
uniaxial deformation data; right panel: simple shear data), reproduced from [15] (see the on-line version for plots in colour)

P22 relationships in Eqs. (31) or (32), respectively. However, this premise will not be pursued here. Our main
aim here is to demonstrate that such a relatively simple functional form of the model in Eq. (3) is capable of
capturing a wide range of datasets and challenging deformation behaviours, with a very good accuracy. For
particular datasets/specimens, such as that of the thrombus mimic specimen [36], the proposed framework here
offers the flexibility for choosing specific W (I2) functions to get better fits, on an empirical basis, if required.
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Fig. 12 Modelling results versus the experimental data for: a human (whole) blood clot under uniaxial compression – tension,
due to Cahalane et al. [35]; and b thrombus mimic specimen constructed from bovine blood under simple shear and measuring
the normal component of the stress, due to Sugerman et al. [36]. The panels on the right show the relative errors. The dotted (red)
line marks the error level at 8% (see the on-line version for plots in colour)
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4 Some points of discussion

The application of the proposed model in Eq. (3) to a wide range of soft materials and deformation modes was
presented in the previous section. The correlation between the model and the data was seen to be favourable,
and many challenging aspects of the finite deformation of the various considered specimens were captured
by the model. However, there are some more-nuanced modelling aspects which may prove worthy of further
analysis. Those will be discussed in the following.

4.1 Model predictions

It appears a tempting prospect to have, and use, a model to predict the mechanical behaviour of a subject
material a priori, as opposed to a posteriori simulating that behaviour via fitting the model to the dataset first.
Microstructural-based models can certainly hope to enable such predictions, to the extent that their constitutive
parameters can be independently (of mechanical deformation data) obtained and plugged into the model, so
that they can then truly predict the mechanical response of the material under a given boundary value problem.
Until that hope is realised, due care and attention must be afforded to exercises in which by fitting a model
to a dataset one asserts to be able to predict another deformation behaviour of the same specimen. Such an
exercise, and assertion, is fraught with mathematical and mechanical inconsistencies.

First, numerical examples exist in the literature which clearly show that the global minimum of the min-
imisation objective function (e.g. the RSS function in our case) is not necessarily achieved on using one
deformation dataset, and instead is more likely achieved when multiaxial deformation datasets are used in
simultaneous fittings; see, e.g. Appendix B of [50].Therefore, if a model is fitted only to one deformation
dataset, the obtained model parameter values may not necessarily be the global values of the constitutive
parameters of the material. By luck, and due to potential collinearities in the data [54, 55], a model calibrated
that waymay ‘predict’ another deformation; however, such an event will not be reproducible and/or repeatable.
This problem is further exacerbated by the increase in number of model parameters, as discussed at length by
Ogden et al. [19], in which case even finding a unique optimum fit (and thereby the optimum model parameter
values) is not guaranteed.

Second, and perhaps more importantly, is the problem astutely noted by Holzapfel and Ogden [57]. Their
focus there is on anisotropic models; however, the same notion is also applicable to the isotropic case. Therein
they discuss that by fitting a model to a dataset, one is essentially trying to solve for, and characterise, the
response function of the model through finding the model parameters via the process of minimisation (i.e.
fitting). If, then, the model has one response function, one set of deformation data should suffice for this
characterisation. If a model has two response functions, then two sets of independent deformation datasets are
required, and so on. Therefore, if a model has only one response function, and its mathematical form is such
that the optimal model parameter values can be identified by a single fit, it is only then that one can hope for
being able to predict another deformation behaviour by the model.

Consequently, for a model such as that proposed in Eq. (3), where two response functions W1 and W2 are
present, it needs to be calibrated by at least two independent deformation datasets, before it can be used for
predicting other behaviours of the same material. Accordingly, in this section we demonstrate the predictive
capability of our proposed model, when calibrated with the required number of datasets. As a starting point,
we consider the canonical Treloar dataset [20], where we first calibrate the model with the equi-biaxial and
pure shear datasets, by simultaneous fits using Eqs. (23)2 and (26)2, and subsequently predict the uniaxial
behaviour with the so identified model parameters, using Eq. (22). The result is shown in Fig. 13. It is observed
that the predicted uniaxial behaviour correlates favourably with the data.

Next, we consider predicting an additional behaviour of a specimen using the simultaneous multiaxial
fit carried out in Sect. 3. To this end, we consider the rubber vulcanisate specimens due to Kawabata et al.
[21], where using the identified model parameters in Table 1, obtained by simultaneous fitting of the model to
uniaxial, equi-biaxial and pure shear deformations, we predict the lateral stress—deformation curve in pure
shear. It may be informative to note that the lateral component of the Cauchy stress in pure shear, (T22)ps , for
the proposed model in Eq. (3) is related to the principal stretch λ as:
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Fig. 13 Predicting the uniaxial deformation behaviour of Treloar’s dataset [20] by first fitting the model to equi-biaxial and pure
shear deformations: a fitting results; and b prediction of the uniaxial deformation versus the experimental data. The calibrated
model parameters are: μ � 0.37 [MPa], N � 24.33 [−], n � 2.71 [−], β � 0.795 [−], C2 � 0.24 [MPa], and ε � 0.45 [−].
The R2 value for the predicted uniaxial behaviour is 0.98

(T22)ps � μβ

n

I1(I1 − 3)β−1 + 3N
[
1 − (I1 − 3)β−1] − 3nN

I1 − 3N

(
1 − 1

λ2

)
+
2C2ε

3ε
I ε−1
2

(
λ2 − 1

)
. (33)

Since in pure shear λ2 � 1, we find that the nominal stress (P22)ps—stretch λ relationship is also identical to
that of Eq. (33). The prediction results using Eq. (33) and the model parameter values in Table 1 are compared
against the experimental data of Kawabata et al. [21] in Fig. 14. The affinity between the model predictions
and the data is clear from the plot.

As a further example, here we present another prediction of the lateral stress (P22)ps—stretch λ behaviour
under pure shear deformation of the soft polyacrylamide (PAAm)hydrogel specimens due toYohsuke et al. [26].
This prediction has been obtained on using Eq. (33) and the identified parameter values listed in Table 5 (which
were attained via the simultaneous fit of the model to uniaxial, equi-biaxial and pure shear deformations). The
prediction results are illustrated in Fig. 15. It is again observed that the model predicts the data favourably,
with the value of R2 in excess of 0.985.

Finally, here we present the model predictions of the general biaxial behaviour of the double-network
‘tough’ hydrogel samples due to Mai et al. [27]. In Sect. 3 we presented the identified model parameters on
simultaneous fitting of the model to the uniaxial, equi-biaxial and pure shear deformation datasets—see Table
5. Using those values, and the relationships in Eq. (25), the behaviour of the specimens under a general biaxial
deformation was predicted. The plots in Fig. 16 compare the model predictions versus the experimental data.
The model is again observed to predict the data favourably, with R2 values in excess of 0.99.

We conclude that subject to it being calibrated appropriately, the proposed model in Eq. (3) is well capable
of predicting the other deformation behaviours of soft materials, exemplified here for various deformations
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Fig. 14 Predicting the lateral behaviour under pure shear deformation of the isoprene rubber vulcanisate specimens due to
Kawabata et al. [21]. Model predictions have been generated on using Eq. (33) and the model parameter values in Table 1. The
R2 value for the predicted behaviour is 0.997

Fig. 15 Predicting the lateral behaviour under pure shear deformation of PAAm hydrogel specimens due to Yohsuke et al. [26].
Model predictions have been generated on using Eq. (33) and themodel parameter values in Table 5. TheR2 value for the predicted
behaviour is 0.985

Fig. 16 Predicting the general biaxial behaviour of the double-network hydrogel samples due toMai et al. [27].Model predictions
have been generated on using Eq. (25) and the model parameter values in Table 5. The R2 values for the predicted behaviours are
in excess is 0.99 (see the on-line version for plots in colour)
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Fig. 17 The iso-energy plots in (λ1, λ2) plane using the identified parameter values for the hydrogel specimens of Mai et al. [27]
in Table 5. The plots verify the convexity of the strain energy function

modes including uniaxial, general biaxial and pure shear deformations, on using the canonical datasets of
Treloar [20] and Kawabata et al. [21], and for various elastomers such as hydrogels [26, 27].

4.2 Issues surrounding the empirical inequalities and convexity

Of the datasets modelled in this work, we note those of [25, 27] and [35], for which the identified values of
model parameter N (and also n in the case of [25]) were negative. Following Remark 2, it can be easily verified
that such values do not result in an unphysical consequence or behaviour. For example, the ensuing values
of the infinitesimal shear modulus μ0 given by Eq. (9) using the values listed in Tables 3, 5 and 8 for the
specimens of [25, 27] and [35], are 363.34 kPa, 0.04 MPa and 1.49 kPa, respectively. As a case in point, we
also present the iso-energy plots of the resulting W function of Eq. (3) using the identified model parameter
values in Table 5 for hydrogel specimen of [27]. These are shown in Fig. 17, and verify the convexity of the
iso-energy plots.

Similarly, we note the datasets of [25, 27, 31, 35] and [36], for which the identified value of ε is negative. In
view of Remark 1, for those datasets, the empirical relationship W2 ≥ 0 is not satisfied. For the three datasets
[25, 27] and [35], as was discussed in the foregoing, no unphysical consequences arise. It can be verified that
the other two datasets, namely those of [31] and [36], do not report unphysical values for the infinitesimal shear
modulus either, with the values of μ0 being 47.52 kPa and 0.175 kPa, respectively. As regards to convexity,
Fig. 18 presents the iso-energy plots of the ensuing strain energy function W for these two datasets, using the
identified model parameter values in Tables 6 and 8. For the Sugerman et al. data [36], the convexity of the
iso-energy plots is evident (Fig. 18a). This further reinforces the point made in Remark 1, that by allowing
ε ∈ R rather than restricting it toR+ space, features such as the reverse Poynting effect can be captured without
inflicting any unwanted ill-posed effects. However, for the Tokumoto et al. [31], the iso-energy plots are only
piece-wise convex (Fig. 18b). This is expected though, since a consequence of lack of convexity is the loss
of one-to-one correspondence between the deformation and stress pairs (see, e.g. [58]). As the experimental
data and modelling results for this dataset indicate—see Fig. 10c, this one-to-one correspondence is clearly
lost within the domain of deformation, where the soft elasticity phenomenon occurs. Therefore, the ensuing
strain energy function would have been expected to lose convexity in this domain. The modelling results hence
appear to be consistent.



A generalised W(I1, I2) strain energy function of binomial form 125

Fig. 18 The iso-energy plots in (λ1, λ2) plane for: a thrombus mimic due to Sugerman et al. [36]; and b LCE specimen of
Tokumoto et al. [31]

4.3 A further generalisation of the model

It is possible to achieve more generalised functional forms of the model in Eq. (3) on using other I2 functions
than that used in Eq. (8). An ad hoc example, inspired by the functional form of the W (I1) part of the model
in Eq. (7) may be:

W (I2) � 3(m − 1)

m
C2

{
1

3(m − 1)

[(
I2
3

)ε

− 1

]
+ ln

(
I2
3

)ε}
, (34)

subject to the same conditions on the parameters: m, C2 ∈ R
+; ε ∈ R. The adjunct I2-term in Eq. (34) helps

the ensuing W (I1, I2) model to be parent to additional models (in addition to all the invariants-based models
recounted in Sect. 2; just before Sect. 3), such as that of Pucci and Saccomandi [39] and the Gent-Thomas
model [59]. Note that:

lim
m→∞W (I2) � 3C2εln

(
I2
3

)
, (35)

which, on considering 3C2ε ≡ C2, is the I2-term in those models. However, with the extra model parameter
that such generalisation introduces compared with the model in Eq. (3), no noticeable (if any) improvement
was observed in the quality of fits to the considered datasets here. Therefore, from a modelling perspective,
there may not be much point, or advantage, on pursuing further invariants-based generalisation of the model
in Eq. (3); except that from a mathematical point of view a more universal model may be obtained.

Another adjustment may be to consider a variant of the W (I1) function in Eq. (7), in the form:

W (I1) � 3(n − 1)

2n
μN

[
1

3N (n − 1)

(
I β
1 − 3β

)
− ln

(
I1 − 3N

3 − 3N

)β
]
. (36)

It can be verified that at the limit n → 1, the multi-term functional form of Eq. (36) reduces to:

lim
n→∞W (I1) �

∑

i

1

2
μi

(
I βi
1 − 3βi

)
, (37)

which is akin to themodel by Lopez–Pamies [48], and forwhenβi ∈ N is akin to theArruda–Boyce [60]model.
However, we note that the functional form in Eq. (36) then will not be a direct parent to polynomial forms of
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the neo-Hookean function such as that of Yeoh’s cubic model [46]. Therefore, this functional form does not
offer an advantage over that of Eq. (7) considered in this study, in terms of providing a more comprehensive
universality. We did not also find a discernible difference between the quality of fits when incorporating this
functional form into the model, versus those provided here.

5 Concluding remarks

A generalised W (I1, I2) strain energy function of binomial form was presented in this work for application
to the finite deformation of isotropic incompressible soft solids. The model is a generalisation of a previously
devised model that has a [1/1] rational response function [13] in I1, to the current general [β/1] order, and
the generalisation of the Carroll-type I2 function [44] to a general power ε. The ensuing model with six
parameters, Eq. (3), was then applied to the multiaxial deformation of a wide range of materials, from filled
and unfilled rubbers to hydrogels, liquid crystal elastomers and biomaterials. It was shown that the model
captures the experimental data accurately, with typical relative errors of below 4% in the engineering space.
Various challengingmodelling aspects such as the asymmetry of compression—tension, highnonlinearity of the
simple shear response, deformation softening effects, pronounced Payne effect, the soft elasticity phenomenon,
and the reverse Poynting effect, were demonstrated to be favourably captured by the model. When calibrated
appropriately, the model predictions were shown to closely match the experimental data too. It was further
shown that the proposed model here is the parent to many of the well-known existing invariants-based models
in the literature. There are very few, if any, models in the current literature that embody these features with
relatively low number of model parameters, and are capable of such width and depth of application. Given the
analyses and results presented here, the devised model is proposed as a standard choice for a priori selection
for application to the finite deformation of isotropic incompressible soft materials. Further generalisation of
the model may be achieved by enhancing the functional form of the current model using the principal stretches
λi , and will be investigated in a future work.
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Table 9 Tabulated numerical datapoints collated from Hohenberger et al. [23]

λ [−] P [MPa]

0.71 − 7.375
0.75 − 6.375
0.81 − 5.00
0.87 − 3.75
0.91 − 2.875
0.95 − 1.81
0.985 − 0.75
1.00 0
1.02 1.015
1.06 2.095
1.10 2.98
1.175 3.555
1.26 4.13
1.375 4.76
1.46 5.21
1.58 5.97
1.70 6.73
1.82 7.555
1.94 8.44
2.10 9.75

Table 10 Tabulated numerical datapoints collated from Lahellec et al. [22]

Uniaxial Simple shear

λ [−] Puni [MPa] γ [−] Pss [MPa]

1.00 0 0 0
1.01 0.14 0.02 0.07
1.04 0.43 0.04 0.15
1.075 0.70 0.07 0.27
1.11 0.88 0.11 0.37
1.15 1.04 0.14 0.44
1.19 1.19 0.18 0.50
1.23 1.33 0.21 0.55
1.26 1.46 0.25 0.61
1.30 1.585 0.29 0.66
1.34 1.705 0.32 0.72
1.38 1.81 0.36 0.78
1.42 1.91 0.39 0.84
1.45 2.01 0.43 0.895
1.49 2.11 0.46 0.95
1.53 2.22 0.50 1.01
1.57 2.335 0.535 1.06
1.60 2.46 0.57 1.115
1.64 2.59 0.61 1.17

0.64 1.21
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Table 11 Tabulated numerical datapoints collated from Meunier et al. [24]

Uniaxial Equi-biaxial Pure shear

λ [−] Puni [MPa] λ [−] Peq−bi [MPa] λ [−] Pps [MPa]

0.39 − 2.39 1.00 0 1.00 0
0.45 − 1.64 1.045 0.105 1.01 0.04
0.52 − 1.185 1.10 0.18 1.045 0.10
0.61 − 0.80 1.18 0.28 1.09 0.14
0.66 − 0.585 1.235 0.33 1.15 0.19
0.72 − 0.42 1.34 0.41 1.21 0.245
0.78 − 0.29 1.445 0.48 1.29 0.30
0.85 − 0.18 1.54 0.54 1.38 0.35
0.91 − 0.095 1.68 0.65 1.48 0.40
0.955 − 0.04 1.78 0.74 1.57 0.45
1.00 0 1.81 0.77 1.67 0.50
1.05 0.04 1.85 0.82 1.76 0.55
1.11 0.10 1.96 1.01 1.845 0.60
1.18 0.14 2.07 1.32 1.92 0.65
1.265 0.20 1.98 0.70
1.36 0.245 2.03 0.75
1.46 0.30 2.09 0.80
1.56 0.35
1.665 0.40
1.76 0.45
1.85 0.50
1.93 0.55
2.04 0.65
2.09 0.70

Table 12 Tabulated numerical datapoints collated from Jiang et al. [25]

Equi-biaxial General biaxial

λ [−] Peq−bi [kPa] λ1 [−] (Pbi )1 [kPa] λ2 [−] (Pbi )2 [kPa]

1.00 0 1.00 0 1.00 0
1.03 62.38 1.03 62.74 1.03 55.73
1.08 120.975 1.05 95.95 1.08 116.685
1.13 176.74 1.07 125.48 1.12 171.42
1.185 232.50 1.085 147.62 1.18 224.405
1.23 268.415 1.11 172.61 1.25 282.135
1.29 313.78 1.13 195.60 1.31 322.19
1.34 351.589 1.15 223.27 1.37 362.25
1.39 387.50 1.19 258.33 1.42 398.82
1.45 430.98 1.22 284.01 1.46 431.91
1.50 472.56 1.25 305.155 1.50 459.78

Table 13 Tabulated numerical datapoints collated from Yohsuke et al. [26]

Uniaxial Equi-biaxial Pure shear

λ [−] Puni [kPa] λ [−] Peq−bi [kPa] λ [−] Pps [kPa]

1.00 0 1.00 0 1.00 0
1.13 2.08 1.07 2.10 1.06 1.52
1.32 4.08 1.165 4.11 1.16 2.88
1.61 6.32 1.30 6.37 1.29 4.48
2.00 8.80 1.37 7.34 1.37 5.44
2.49 11.76 1.50 8.87 1.605 7.52
2.75 13.44 1.61 10.00 1.80 8.96
3.00 15.04 1.80 11.81 1.99 10.16
3.43 18.08 1.99 13.47 2.17 11.20
3.75 20.72 2.165 15.16 2.46 12.92
4.00 22.80 2.45 18.145 2.74 14.48
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Table 14 Tabulated numerical datapoints collated from Mai et al. [27]

Uniaxial Equi-biaxial Pure shear

λ [−] Puni [kPa] λ [−] Peq−bi [kPa] λ [−] Pps [kPa]

1.00 0 1.00 0 1.00 0
1.12 0.045 1.09 0.05 1.08 0.03
1.20 0.09 1.16 0.105 1.195 0.10
1.32 0.18 1.20 0.15 1.24 0.125
1.40 0.23 1.28 0.225 1.32 0.19
1.60 0.36 1.36 0.31 1.40 0.25
1.80 0.445 1.40 0.34 1.52 0.34
1.88 0.47 1.48 0.40 1.60 0.39
2.00 0.50 1.56 0.445 1.68 0.43
2.08 0.52 1.60 0.46 1.80 0.47
2.20 0.53 1.67 0.47 1.88 0.49

Table 15 Tabulated numerical datapoints for liquid crystal elastomers

Raistrick et al. data [30] Merkel et al. data [32] Tokumoto et al. data [31]

λ [−] Puni [MPa] λ [−] Puni [MPa] λ [−] Tuni [kPa]

1.00 0 1.00 0 1.00 0
1.08 0.44 1.10 0.10 1.20 17.78
1.13 0.64 1.205 0.15 1.405 21.48
1.17 0.76 1.30 0.18 1.59 22.22
1.23 0.88 1.40 0.205 1.80 22.96
1.27 1.00 1.50 0.23 2.00 26.67
1.33 1.08 1.605 0.25 2.19 35.555
1.37 1.20 1.70 0.27 2.39 54.81
1.43 1.28 1.805 0.30 2.58 85.925
1.47 1.32 1.91 0.32 2.78 115.555
1.53 1.40 2.01 0.35 2.99 142.22
1.58 1.48 2.11 0.385 3.175 171.85
1.63 1.52 2.18 0.41 3.38 201.48
1.67 1.56 3.58 232.59
1.73 1.64 3.78 266.67
1.78 1.68
1.83 1.72
1.87 1.80
1.92 1.88
1.98 1.96
2.02 2.04
2.07 2.16
2.11 2.24
2.15 2.36
2.18 2.52
2.22 2.68
2.29 2.96
2.32 3.20
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Table 16 Tabulated numerical datapoints collated from Cahalane et al. [35]

λ [−] P [kPa]

0.205 − 37.33
0.265 − 21.78
0.35 − 11.56
0.45 − 4.57
0.58 − 1.85
0.69 − 0.86
1.00 0
1.10 0.93
1.22 2.00
1.30 2.67
1.40 3.33
1.535 4.44
1.70 5.56

Table 17 Tabulated numerical datapoints collated from Sugerman et al. [36]

γ [−] Tss [kPa] P22 [kPa]

− 0.5 − 0.92 0.335− 0.45 − 0.60 0.215− 0.40 − 0.385 0.14
− 0.305 − 0.18 0.06
− 0.25 − 0.11 0.03
− 0.20 − 0.05 0.015− 0.16 − 0.04 0.01
− 0.11 − 0.01 0.002
0 0 0
0.09 0.01 0.002
0.16 0.04 0.01
0.20 0.06 0.02
0.25 0.12 0.045
0.305 0.22 0.075
0.39 0.49 0.16
0.45 0.74 0.24
0.5 1.09 0.36

References

1. Treloar, L.R.G.: The elasticity of a network of long-chain molecules - II. Trans. Faraday Soc. 39, 241–246 (1943). https://
doi.org/10.1039/TF9433900241

2. Mooney, M.: A theory of large elastic deformation. J. Appl. Phys. 11, 582–592 (1940). https://doi.org/10.1063/1.1712836
3. Rivlin, R.S.: Large elastic deformations of isotropic materials IV. Further developments of the general theory. Philos. Trans.

R. Soc. Lond. A 241, 379–397 (1948). https://doi.org/10.1098/rsta.1948.0024
4. Destrade, M., Saccomandi, G., Sgura, I.: Methodical fitting for mathematical models of rubber-like materials. Proc. R. Soc.

A 473, 20160811 (2017). https://doi.org/10.1098/rspa.2016.0811
5. Ricker, A., Wriggers, P.: Systematic fitting and comparison of hyperelastic continuummodels for elastomers. Arch. Comput.

Methods Eng. 30, 2257–2288 (2023). https://doi.org/10.1007/s11831-022-09865-x
6. Marckmann, G., Verron, E.: Comparison of hyperelastic models for rubber-like materials. Rubber Chem. Technol. 79,

835–858 (2006). https://doi.org/10.5254/1.3547969
7. Steinmann, P., Hossain, M., Possart, G.: Hyperelastic models for rubber-like materials: consistent tangent operators and

suitability for Treloar’s data. Arch. Appl. Mech. 82, 1183–1217 (2012). https://doi.org/10.1007/s00419-012-0610-z
8. Hossain,M., Steinmann, P.:More hyperelasticmodels for rubber-likematerials: consistent tangent operators and comparative

study. J. Mech. Behav. Mater. 22, 27–50 (2013). https://doi.org/10.1515/jmbm-2012-0007
9. Hossain, M., Amin, A.F.M.S., Kabir, M.N.: Eight-chain and full-network models and their modified versions for rubber

hyperelasticity: a comparative study. J. Mech. Behav. Mater. 24, 11–24 (2015). https://doi.org/10.1515/jmbm-2015-0002
10. Dal, H., Açıkgöz, K., Badienia, Y.: On the performance of isotropic hyperelastic constitutivemodels for rubber-likematerials:

a state of the art review. Appl. Mech. Rev. 73, 020802 (2021). https://doi.org/10.1115/1.4050978
11. He, H., Zhang, Q., Zhang, Y., Chen, J., Zhang, L., Li, F.: A comparative study of 85 hyperelastic constitutive models for both

unfilled rubber and highly filled rubber nanocomposite material. Nano Mater. Sci. 4, 64–82 (2022). https://doi.org/10.1016/
j.nanoms.2021.07.003

https://doi.org/10.1039/TF9433900241
https://doi.org/10.1063/1.1712836
https://doi.org/10.1098/rsta.1948.0024
https://doi.org/10.1098/rspa.2016.0811
https://doi.org/10.1007/s11831-022-09865-x
https://doi.org/10.5254/1.3547969
https://doi.org/10.1007/s00419-012-0610-z
https://doi.org/10.1515/jmbm-2012-0007
https://doi.org/10.1515/jmbm-2015-0002
https://doi.org/10.1115/1.4050978
https://doi.org/10.1016/j.nanoms.2021.07.003


A generalised W(I1, I2) strain energy function of binomial form 131

12. Anssari-Benam, A., Bucchi, A., Horgan, C.O., Saccomandi, G.: Assessment of a new isotropic hyperelastic constitutive
model for a range of rubber-like materials and deformations. Rubber Chem. Technol. 95, 200–217 (2022). https://doi.org/
10.5254/rct.21.78975

13. Anssari-Benam, A., Horgan, C.O.: A three-parameter structurally motivated robust constitutive model for isotropic incom-
pressible unfilled and filled rubber-like materials. Eur. J. Mech. A Solids 95, 104605 (2022). https://doi.org/10.1016/j.
euromechsol.2022.104605

14. Anssari-Benam, A., Destrade, M., Saccomandi, G.: Modelling brain tissue elasticity with the Ogden model and an alternative
family of constitutive models. Philos. Trans. R. Soc. A. 380, 20210325 (2022). https://doi.org/10.1098/rsta.2021.0325

15. Anssari-Benam, A.: Large isotropic elastic deformations: on a comprehensivemodel to correlate the theory and experiments
for incompressible rubber-like materials. J. Elast. 153, 219–244 (2023). https://doi.org/10.1007/s10659-022-09982-5

16. Anssari-Benam,A.:Comparativemodelling results between a separable and anon-separable formof principal stretches–based
strain energy functions for a variety of isotropic incompressible soft solids: Ogden model compared with a parent model.
Mech. Soft Mater. 5, 2 (2023). https://doi.org/10.1007/s42558-023-00050-z

17. Anssari-Benam, A.: On a new class of non-Gaussian molecular based constitutive models with limiting chain exten-
sibility for incompressible rubber-like materials. Math. Mech. Solids 26, 1660–1674 (2021). https://doi.org/10.1177/
10812865211001094

18. Anssari-Benam, A., Bucchi, A., Saccomandi, G.: On the central role of the invariant in nonlinear elasticity. Int. J. Eng. Sci.
163, 103486 (2021). https://doi.org/10.1016/j.ijengsci.2021.103486

19. Ogden, R.W., Saccomandi, G., Sgura, I.: Fitting hyperelastic models to experimental data. Comput. Mech. 34, 484–502
(2004). https://doi.org/10.1007/s00466-004-0593-y

20. Treloar, L.R.G.: Stress-strain data for vulcanised rubber under various types of deformation. Trans. Faraday Soc. 40, 59–70
(1944). https://doi.org/10.1039/TF9444000059

21. Kawabata, S., Matsuda, M., Tei, K., Kawai, H.: Experimental survey of the strain energy density function of isoprene rubber
vulcanizate. Macromolecules 14, 154–162 (1981). https://doi.org/10.1021/ma50002a032

22. Lahellec, N., Mazerolle, F., Michel, J.C.: Second-order estimate of the macroscopic behavior of periodic hyperelastic
composites: theory and experimental validation. J. Mech. Phys. Solids 52, 27–49 (2004). https://doi.org/10.1016/S0022-
5096(03)00104-2

23. Hohenberger, T.W., Windslow, R.J., Pugno, N.M., Busfield, J.J.C.: A constitutive model for both low and high strain nonlin-
earities in highly filled elastomers and implementation with user-defined material subroutines in ABAQUS. Rubber Chem.
Technol. 92, 653–686 (2019). https://doi.org/10.5254/rct.19.80387

24. Meunier, L., Chagnon, G., Favier, D., Orgeas, L., Vacher, P.: Mechanical experimental characterisation and numerical
modelling of an unfilled silicone rubber. Polym. Test. 27, 765–777 (2008). https://doi.org/10.1016/j.polymertesting.2008.05.
011

25. Jiang, M., Dai, J., Dong, G., Wang, Z.: A comparative study of invariant-based hyperelastic models for silicone elastomers
under biaxial deformation with the virtual fields method. J. Mech. Behav. Biomed. Mater. 136, 105522 (2022). https://doi.
org/10.1016/j.jmbbm.2022.105522

26. Yohsuke, B., Urayama, K., Takigawa, T., Ito, K.: Biaxial strain testing of extremely soft polymer gels. Soft Matter 7,
2632–2638 (2011). https://doi.org/10.1039/C0SM00955E

27. Mai, T.-T., Matsuda, T., Nakajima, T., Gong, J.P., Urayama, K.: Distinctive characteristics of internal fracture in tough double
network hydrogels revealed by various modes of stretching. Macromolecules 51, 5245–5257 (2018). https://doi.org/10.1021/
acs.macromol.8b01033

28. Saadedine, M., Zaïri, F., Ouali, N., Mesbah, A.: A micromechanics-based model for visco-super-elastic hydrogel-based
nanocomposites. Int. J. Plast. 144, 103042 (2021). https://doi.org/10.1016/j.ijplas.2021.103042

29. Mihai, L.A., Mistry, D., Raistrick, T., Gleeson, H.F., Goriely, A.: A mathematical model for the auxetic response of liquid
crystal elastomers. Phil. Trans. R. Soc. A 380, 20210326 (2022). https://doi.org/10.1098/rsta.2021.0326

30. Raistrick, T., Zhang, Z., Mistry, D., Mattsson, J., Gleeson, H.F.: Understanding the physics of the auxetic response in a liquid
crystal elastomer. Phys. Rev. Res. 3, 023191 (2021). https://doi.org/10.1103/PhysRevResearch.3.023191

31. Tokumoto, H., Zhou, H., Takebe, A., Kamitani, K., Kojio, K., Takahara, A., Bhattacharya, K., Urayama, K.: Probing the in-
plane liquid-like behavior of liquid crystal elastomers. Sci. Adv. 7, eabe9495 (2021). https://doi.org/10.1126/sciadv.abe9495

32. Merkel, D.R., Shaha, R.K., Yakacki, C.M., Frick, C.P.: Mechanical energy dissipation in polydomain nematic liquid crystal
elastomers in response to oscillating loading. Polymer 166, 148–154 (2019). https://doi.org/10.1016/j.polymer.2019.01.042

33. Mihai, L.A., Goriely, A.: A pseudo-anelastic model for stress softening in liquid crystal elastomers. Proc. R. Soc. A 476,
20200558 (2020). https://doi.org/10.1098/rspa.2020.0558

34. Budday, S., Sommer, G., Birkl, C., Langkammer, C., Haybaeck, J., Kohnert, J., Bauer, M., Paulsen, F., Steinmann, P., Kuhl,
E., Holzapfel, G.A.: Mechanical characterization of human brain tissue. Acta Biomater. 48, 319–340 (2017). https://doi.org/
10.1016/j.actbio.2016.10.036

35. Cahalane, R.M.E., de Vries, J.J., de Maat, M.P.M., van Gaalen, K., van Beusekom, H.M., van der Lugt, A., Fereidoonnezhad,
B., Akyildiz, A.C., Gijsen, F.J.H.: Tensile and compressive mechanical behaviour of human blood clot analogues. Ann.
Biomed. Eng. (2023). https://doi.org/10.1007/s10439-023-03181-6

36. Sugerman, G.P., Kakaletsis, S., Thakkar, P., Chokshi, A., Parekh, S.H., Rausch, M.K.: A whole blood thrombus mimic:
constitutive behavior under simple shear. J. Mech. Behav. Biomed. Mat. 115, 104216 (2021). https://doi.org/10.1016/j.
jmbbm.2020.104216

37. Gent, A.N.: A new constitutive relation for rubber. Rubber Chem. Technol. 69, 59–61 (1996). https://doi.org/10.5254/1.
3538357

38. Beatty, M.F.: Topics in finite elasticity: hyperelasticity of rubber, elastomers, and biological tissues - with examples. Appl.
Mech. Rev. 40, 1699–1734 (1987). https://doi.org/10.1115/1.3149545

39. Pucci, E., Saccomandi, G.: A note on the Gent model for rubber-like materials. Rubber Chem. Technol. 75, 839–852 (2002).
https://doi.org/10.5254/1.3547687

https://doi.org/10.5254/rct.21.78975
https://doi.org/10.1016/j.euromechsol.2022.104605
https://doi.org/10.1098/rsta.2021.0325
https://doi.org/10.1007/s10659-022-09982-5
https://doi.org/10.1007/s42558-023-00050-z
https://doi.org/10.1177/10812865211001094
https://doi.org/10.1016/j.ijengsci.2021.103486
https://doi.org/10.1007/s00466-004-0593-y
https://doi.org/10.1039/TF9444000059
https://doi.org/10.1021/ma50002a032
https://doi.org/10.1016/S0022-5096(03)00104-2
https://doi.org/10.5254/rct.19.80387
https://doi.org/10.1016/j.polymertesting.2008.05.011
https://doi.org/10.1016/j.jmbbm.2022.105522
https://doi.org/10.1039/C0SM00955E
https://doi.org/10.1021/acs.macromol.8b01033
https://doi.org/10.1016/j.ijplas.2021.103042
https://doi.org/10.1098/rsta.2021.0326
https://doi.org/10.1103/PhysRevResearch.3.023191
https://doi.org/10.1126/sciadv.abe9495
https://doi.org/10.1016/j.polymer.2019.01.042
https://doi.org/10.1098/rspa.2020.0558
https://doi.org/10.1016/j.actbio.2016.10.036
https://doi.org/10.1007/s10439-023-03181-6
https://doi.org/10.1016/j.jmbbm.2020.104216
https://doi.org/10.5254/1.3538357
https://doi.org/10.1115/1.3149545
https://doi.org/10.5254/1.3547687


132 A. Anssari-Benam

40. Puglisi, G., Saccomandi, G.: Multi-scale modelling of rubber-like materials and soft tissues: an appraisal. Proc. R. Soc. A
472, 20160060 (2016). https://doi.org/10.1098/rspa.2016.0060

41. Horgan, C.O., Saccomandi, G.: Simple torsion of isotropic, hyperelastic, incompressible materials with limiting chain
extensibility. J. Elast. 56, 159–170 (1999). https://doi.org/10.1023/A:1007606909163

42. Saccomandi, G.: Universal results in finite elasticity. In: Fu, Y.B., Ogden, R.W. (eds.) Nonlinear Elasticity: Theory and
Applications, pp. 97–134. Cambridge University Press, Cambridge (2001). https://doi.org/10.1017/CBO9780511526466.
004

43. Wineman, A.: Some results for generalized neo-Hookean elastic materials. Int. J. Non-Linear Mech. 40, 271–279 (2005).
https://doi.org/10.1016/j.ijnonlinmec.2004.05.007

44. Carroll, M.M.: A strain energy function for vulcanized rubbers. J. Elast. 103, 173–187 (2011). https://doi.org/10.1007/
s10659-010-9279-0

45. Mihai, L.A., Goriely, A.: Positive or negative Poynting effect? The role of adscititious inequalities in hyperelastic materials.
Proc. R. Soc. A 467, 3633–3646 (2011). https://doi.org/10.1098/rspa.2011.0281

46. Yeoh, O.H.: Characterisation of elastic properties of carbon-black-filled rubber vulcanizates. Rubber Chem. Technol. 63,
792–805 (1990). https://doi.org/10.5254/1.3538289

47. Nunes, L.C.S.: Mechanical characterization of hyperelastic polydimethylsiloxane by simple shear test. Mater. Sci. Eng. A
528, 1799–1804 (2011). https://doi.org/10.1016/j.msea.2010.11.025

48. Lopez-Pamies, O.: A new I1-based hyperelastic model for rubber elastic materials. C. R. Mecanique 338, 3–11 (2010).
https://doi.org/10.1016/j.crme.2009.12.007

49. Anssari-Benam, A., Bucchi, A.: Modelling the deformation of the elastin network in the aortic valve. J. Biomech. Eng. 140,
011004 (2018). https://doi.org/10.1115/1.4037916

50. Anssari-Benam, A., Bucchi, A.: A generalised neo-Hookean strain energy function for application to the finite deformation
of elastomers. Int. J. Non-Linear Mech. 128, 103626 (2021). https://doi.org/10.1016/j.ijnonlinmec.2020.103626

51. Anssari-Benam, A., Bucchi, A., Destrade, M., Saccomandi, G.: The generalised mooney space for modelling the response
of rubber-like materials. J. Elast. 151, 127–141 (2022). https://doi.org/10.1007/s10659-022-09889-1

52. Payne, A.R., Whittaker, R.E.: Low strain dynamic properties of filled rubbers. Rubber Chem. Technol. 44, 440–478 (1971).
https://doi.org/10.5254/1.3547375

53. Anssari-Benam, A., Horgan, C.O.: On modelling simple shear for isotropic incompressible rubber-like materials. J. Elast.
147, 83–111 (2021). https://doi.org/10.1007/s10659-021-09869-x

54. Choi, H.S., Vito, R.P.: Two-dimensional stress-strain relationship for canine pericardium. J. Biomech. Eng. 112, 153–159
(1990). https://doi.org/10.1115/1.2891166

55. Brossollet, L.J., Vito, R.P.: A new approach to mechanical testing and modeling of biological tissues, with application to
blood vessels. J. Biomech. Eng. 118, 433–439 (1996). https://doi.org/10.1115/1.2796028

56. Park, S., Oh, Y., Moon, J., Chung, H.: Recent trends in continuum modeling of liquid crystal networks: a mini-review.
Polymers 15, 1904 (2023). https://doi.org/10.3390/polym15081904

57. Holzapfel, G.A., Ogden, R.W.: On planar biaxial tests for anisotropic nonlinearly elastic solids: a continuum mechanical
framework. Math. Mech. Solids 14, 474–489 (2009). https://doi.org/10.1177/1081286507084411

58. Ogden, R.W.: Non-linear Elastic Deformations. Dover Publications Inc, New York (1997)
59. Gent, A.N., Thomas, A.G.: Forms for the stored (strain) energy function for vulcanized rubber. J. Polym. Sci. 28, 625–628

(1958). https://doi.org/10.1002/pol.1958.1202811814
60. Arruda, E.M., Boyce, M.C.: A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials.

J. Mech. Phys. Solids 41, 389–412 (1993). https://doi.org/10.1016/0022-5096(93)90013-6

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

https://doi.org/10.1098/rspa.2016.0060
https://doi.org/10.1023/A:1007606909163
https://doi.org/10.1017/CBO9780511526466.004
https://doi.org/10.1016/j.ijnonlinmec.2004.05.007
https://doi.org/10.1007/s10659-010-9279-0
https://doi.org/10.1098/rspa.2011.0281
https://doi.org/10.5254/1.3538289
https://doi.org/10.1016/j.msea.2010.11.025
https://doi.org/10.1016/j.crme.2009.12.007
https://doi.org/10.1115/1.4037916
https://doi.org/10.1016/j.ijnonlinmec.2020.103626
https://doi.org/10.1007/s10659-022-09889-1
https://doi.org/10.5254/1.3547375
https://doi.org/10.1007/s10659-021-09869-x
https://doi.org/10.1115/1.2891166
https://doi.org/10.1115/1.2796028
https://doi.org/10.3390/polym15081904
https://doi.org/10.1177/1081286507084411
https://doi.org/10.1002/pol.1958.1202811814
https://doi.org/10.1016/0022-5096(93)90013-6

	A generalised W(I_1,I_2) strain energy function of binomial form with unified applicability across various isotropic incompressible soft solids
	Abstract
	1 Introduction
	2 The model
	3 Correlation with experimental data
	3.1 Stress—deformation relationships
	3.2 The fitting process
	3.3 Fitting results
	3.3.1 Unfilled rubber
	3.3.2 Filled rubber
	3.3.3 Silicone rubber
	3.3.4 Hydrogels
	3.3.5 Liquid crystal elastomers
	3.3.6 Biomaterials


	4 Some points of discussion
	4.1 Model predictions
	4.2 Issues surrounding the empirical inequalities and convexity
	4.3 A further generalisation of the model

	5 Concluding remarks
	References




