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Abstract In this paper a selected type of elasto-viscoplastic constitutive equations is considered. The vis-
coplastic model which was proposed by Marquis is generalized by allowing multiple terms describing the
isotropic and the kinematic hardening. Furthermore, the presented model formulation enables one to use an
arbitrary equivalent plastic strain function to describe the isotropic hardening behavior. What is more, the
backstress evolution equation which was proposed by Marquis was modified so that any equivalent plastic
strain function can be used in the recovery term now. The general form of the generalized constitutive model
obtained this way was subsequently implemented into the finite element method (FEM). For that purpose, the
radial-return mapping algorithm was utilized. The consistent tangent operator was derived for the considered
class of models and is presented in the paper. A developed user material subroutine (UMAT) which allows one
to use the viscoplastic models under consideration in the FEM program CalculiX is attached in the appendix
section. A number of numerical simulationswere conducted in order to verify the performance of the developed
UMAT code.

1 Introduction

The classical small strain plasticity theory finds a wide range of applications in the engineering analysis. This
theory is based on the Huber–von Mises–Hencky (HMH) yield criterion and is most commonly utilized to
capture the mechanical properties of metals, e.g., [22]. One of the simplest versions of this theory assumes
the so-called isotropic hardening rule, i.e., the expansion of the yield surface in the stress space which occurs
during the plastic straining. Linear, piecewise linear and nonlinear relations are used to describe the evolution
of the yield stress. A slightly more sophisticated approach assumes the usage of kinematic hardening rule,
i.e., the translation of the yield surface which occurs during straining. The so-called backstress variable which
defines the translation of the yield surface center is, in the simplest case, taken to evolve according to the linear
equation proposed by Prager [17]. Furthermore, a group of mixed-hardening models exists which combine the
two aforementioned behaviors. The constitutive models listed above are available in practically every software
which is utilized for engineering analysis, e.g., [6,9,11,15]. In the case of cyclic loadings, the nonlinear
kinematic hardening rules, such as the Armstrong–Frederick (A-F) rule [1], allow to achieve a substantially
better agreement between the model predictions and the experimental results.

In order to capture such effects as strain rate sensitivity, creep or stress relaxation, a flow plasticity model
must be generalized by formulating the so-called viscoplastic model. One of the classical formulations in this
field is the constitutive model by Perzyna [16] and presents itself an extension of the flow plasticity model with
isotropic hardening. A viscoplastic model assuming the mixed-hardening rule was proposed by Chaboche [5].
This model is a generalization of the previously proposed Chaboche–Rousselier elastoplastic model [3,4] and
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is more suitable for predicting material response when subjected to cyclic loadings. One possible extension of
the Chaboche viscoplastic model was introduced in the work by Benallal andMarquis [2]. The proposedmodel
assumes utilizing a nonlinear kinematic hardening rule which was obtained by modifying the A-F equation. A
function of the equivalent plastic strain was added to the so-called recovery term in the backstress evolution
equation. In the original formulation by Marquis, this multiplier was taken in the form of an exponential law.
Furthermore, it was assumed that the kinematic hardening behavior is captured by a single backstress variable,
whereas the isotropic hardening is governed by the nonlinear rule developed by Voce [21]. The viscous effects
follow a nonlinear power law.

In this study a generalization of the viscoplastic model by Marquis is proposed. It is assumed that the
kinematic hardening can be described by any defined number of backstress variables, whereas the backstress
evolution law proposed byMarquis is extended by allowing the usage of any selected function of the equivalent
plastic strain as the additional multiplier in the evolution law’s recovery term. Furthermore, the model is
generalized by allowing the isotropic hardening behavior to be described by arbitrary function of the equivalent
plastic strain.

In the case of more advanced constitutive equations, the analytical solutions to boundary value problems
are available for a limited number of cases only. Thus, in order to obtain solutions it is necessary to utilize
numerical methods such as the finite element method (FEM), for instance. For that purpose, a numerical
calculations algorithm has to be developed for the considered constitutive model.

In the work by Zienkiewicz and Cormeau [24], an algorithm for the finite element (FE) implementation of
elasto-viscoplastic constitutive equationswas proposed. Different variants of the associated and non-associated
flow rulewere considered. The cases ofHMHandTresca yield conditionswith the assumption of ideal plasticity
were analyzed. Furthermore, in one of the proposedmodel formulations theHMHyield conditionwith isotropic
hardening was used. The aforementioned constitutive equations were utilized to solve several test problems
using the introducedmodel integration algorithm.Moreover, an extended version of the constitutive model was
proposed which included additional terms accounting for the viscoelastic effects. These studies were continued
as reported in [25] by analyzing other viscoplastic model formulations which would utilize the Drucker–Prager
or the Coulomb–Mohr yield conditions.

A reviewof the elastoplastic constitutivemodels alongwith their integration using the radial-returnmapping
algorithm was presented in [7] with the main focus on the models utilizing the isotropic hardening. The
Newton–Raphson (N-R) method was used for solving the nonlinear equations which result from the algorithm.
The case of nonlinear stress–strain relation in the elastic range was considered as well. In [8] a modified
version of the radial-return algorithm was proposed which is correct for any defined number of internals
variables which simulate the loading history effects. The nonlinear equation system which follows from the
applied model discretization algorithm was solved using the N-R method. The proposed methodology was
utilized to implement into FEM various elastoplastic and elasto-viscoplastic constitutive models. In [10] the
FE implementation of two alternative viscoplastic models was discussed, i.e., the Perzyna and the so-called
consistency model. A comparative study was conducted.

In the paper by Yang and Feng [23], a viscoplastic model was considered in which additive decomposition
of the plastic strain was assumed, i.e., into the steady state and the viscoplastic parts. A numerical integration
algorithm was developed for the constitutive model under consideration which was subsequently used to
implement the model into the FE analysis program ABAQUS.

Simo and Taylor [19] used the radial-return mapping algorithm to derive the consistent tangent operators
for elastoplastic models with mixed hardening behavior. In particular, the nonlinear isotropic hardening was
assumed, whereas the kinematic hardening was simulated with a modified linear Prager rule. In the previous
work by Suchocki [20], the FE implementation of the cyclic elastoplasticity was discussed. In particular,
some generalizations of the Chaboche–Rousselier elastoplastic model were analyzed. Kullig andWippler [14]
developed a numerical integration algorithm for the viscoplastic Chaboche model including a static recovery
term in the backstress evolution equation.

In this work the FE implementation of the proposedMarquis viscoplasticmodel generalization is discussed.
The considered constitutive equation makes use of the modified A-F rule to capture the kinematic hardening
behavior. Implementing this particular model formulation into FEM has not been thoroughly discussed in the
literature yet. The radial-return mapping algorithm was used to integrate the considered constitutive model.
A general formula for the fourth-order consistent tangent operator was derived and is presented in the paper.
To the best of author’s knowledge, the specific forms of the tangent operator and the stress update procedure
obtained for the considered class of viscoplastic constitutive models have not been reported in the literature
yet. The derived operator along with the relations for the stress were utilized to implement the model into
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the non-commercial, open-source FE program CalculiX. This was achieved by taking advantage of UMAT
(UserMATerial) subroutine option which is provided by CalculiX, c.f. [9]. In order to verify the performance
of the developed UMAT subroutine, numerous FE simulations were performed. Selected results are included
in this work. In the case of processes with the homogeneous stress and strain fields, such as uniaxial ten-
sion/compression (UT/UC), equibiaxial tension/compression (BT/BC) and simple shear (SS), the developed
discrete version of the model was used to derive equation systems which describe the aforementioned defor-
mations. The obtained equations were subsequently utilized to write proper programs in Scilab [18]. These
programs allow one to calculate the material’s stress response for a given deformation process and strain
history. Thus, the homogeneous deformations previously analyzed in CalculiX using the developed UMAT
code were simulated again in Scilab with the prepared scripts. The results produced using these two different
methods were compared to verify the performance of the UMAT subroutine. A perfect agreement was found
between the results generated by CalculiX and those obtained in Scilab. Additionally, some results achieved
when analyzing stress relaxation, creep and nonhomogeneous deformations are included. A notched flat bar
subjected to cyclic biaxial tension/compression and a thick-walled tube loaded by internal pressure were ana-
lyzed. The developed UMAT subroutine’s performance has been tested for different types of finite elements.
The code is attached in the appendix section.

2 Basic notions

The total stress tensor σ is taken to be the sum of the volumetric stress p and the stress deviator s, i.e.,

σ = p1 + s, p = Bεe, s = 2μee, (1)

with εe = tr(εe) and ee = εe − 1
3 tr(ε

e)1, where εe is the small elastic strain tensor, 1 is the identity tensor,
whereas tr(•) denotes the trace operation. B and μ are the bulk and the shear elastic moduli, respectively.
It is assumed that the total small strain tensor can be additively decomposed into the elastic and the plastic
components, i.e.,

ε = εe + ε p. (2)

Thus, in order to calculate the stress for a given strain it is, according to Eqs. (1) and (2) necessary to know
the amount of plastic strain. The plastic strain tensor is determined utilizing the associated flow rule with the
assumption of plastic incompressibility, i.e., tr(ε p) = 0. The following form of the yield surface is assumed
which takes into account both the isotropic and the kinematic hardening behaviors:

F(σ ,X, ē p) = J2(s − X) − k − R(ē p) = 0, (3)

where J2(s − X) =
√

3
2 (s − X) · (s − X) with X being the so-called backstress tensor. The initial yield stress

is denoted as k, whereas R(ē p) is the isotropic hardening function with ē p being the equivalent plastic strain
defined as:

ē p(t) =
∫ t

0

˙̄ep(t ′)dt ′, ˙̄ep =
√
2

3
ėp · ėp. (4)

The flow rule associated with the yield surface given by Eq. (3) takes the form:

ėp = 3

2
˙̄epn̄, n̄ = s − X

J2(s − X)
, (5)

with n̄ being the normalized effective stress. The effective plastic strain rate is assumed to be given by the
following relation:

˙̄ep = ζ

〈
J2(s − X) − R(ē p) − k

K

〉m
, (6)

where 〈•〉 are Macaulay brackets while K and m are the viscoplasticity constants while ζ = 1 [1/s] is the
viscosity parameter. In general, the isotropic hardening (or softening) behavior can be governed by any chosen
function R(ē p). However, this function is commonly assumed in the form of a series of terms proposed by
Voce [21], i.e.,

R =
N∑
i=1

Ri , Ri = Qi

(
1 − e−bi ē p

)
, (7)
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with Qi and bi (i = 1, 2, . . . , N ) being the material parameters. In the original formulation presented in [2],
a single backstress tensor X was used. However, the total backstress can be taken to be the sum of multiple
components, i.e.,

X =
M∑
i=1

X(i). (8)

In [3–5] the backstress variables were assumed to follow the nonlinear evolution law developed by Armstrong–
Frederick, c.f. [1], i.e.,

Ẋ(i) = 2

3
Ci ėp − γi ˙̄epX(i), (i = 1, 2, . . . , M), (9)

whereCi and γi (i = 1, 2, . . . , M) arematerial parameters. In the paper byBenallal andMarquis [2], amodified
version of the Armstrong–Frederick (A-F) evolution law was used. The modification concerns introducing a
plastic strain function ϕ(ē p) in the equation’s “recovery” term, i.e.,

Ẋ = 2

3
C ėp − γ ϕ(ē p) ˙̄epX, (10)

with the following specific form of ϕ(ē p) used in [2]:

ϕ(ē p) = ϕ∞ + (1 − ϕ∞)e−ω̄ē p , (11)

where ϕ∞ ∈ 〈0; 1〉 and ω̄ are material constants. This concept can be generalized for the total backstress being
a sum of M components as given in Eqs. (8) and (9), i.e.,

Ẋ(i) = 2

3
Ci ėp − γiϕi (ē

p) ˙̄epX(i), (i = 1, 2, . . . , M), (12)

with
ϕi (ē

p) = ϕ∞ i + (1 − ϕ∞ i )e
−ω̄i ē p , (13)

and ϕ∞ i ∈ 〈0; 1〉. In the following derivations the general case is considered, i.e., the forms of the functions
R(ē p) and ϕ(ē p) remain unspecified.

3 Model discretization

For the purpose of discretizing the constitutive model described in the previous section, the radial-return
mapping algorithm is utilized. For each computational step n + 1, the strain increment is initially assumed to
be purely elastic. Thus, the deviatoric stress is calculated as:

sn+1 = sprn+1 − 2μ�ep, (14)

with the stress predictor sprn+1 = sn + 2μ�e. If the condition J2(s
pr
n+1 − Xn) < k + R(ē pn ) is satisfied, then

no yielding takes place and so sn+1 = sprn+1 and ē pn+1 = ē pn . If the condition is not satisfied the plastic flow
occurs. The equivalent plastic strain is given as ē pn+1 = ē pn + �ē p where the plastic strain increment �ē p has
to be determined so that the other variables, i.e., sn+1, Xn+1 and e

p
n+1, can be updated. To this end, Eq. (12) is

discretized using the backward Euler method, c.f. [14,20]:

X(i)
n+1 = wi

(
X(i)
n + 2

3
Ci�ep

)
, Xn+1 =

M∑
i=1

X(i)
n+1, (15)

with

wi = 1

1 + γiϕi (ē
p
n + �ē p)�ē p

, i = 1, 2, . . . , M. (16)

Subtracting Xn+1 from Eq. (14) and substituting �ep = 3
2�ē pn̄ after some manipulations leads to:

sn+1 − Xn+1 = Z −
(
3μ +

M∑
i=1

wiCi

)
�ē pn̄, Z = sprn+1 −

M∑
i=1

wiX(i)
n , (17)
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or, after using Eq. (5)2:

(sn+1 − Xn+1)

[
1 +

(
3μ +

M∑
i=1

wiCi

)
�ē p

J2(sn+1 − Xn+1)

]
= Z. (18)

During the plastic flow, the discretized form of Eq. (6) is given as:

�ē p

�t
=

(
J2(sn+1 − Xn+1) − R(ē pn+1) − k

K

)m

. (19)

Equation (19) can be solved for J2(sn+1 − Xn+1), i.e.,

J2(sn+1 − Xn+1) = h(�ē p) = K

(
�ē p

�t

) 1
m + R(ē pn + �ē p) + k. (20)

Thus,

(sn+1 − Xn+1) α(�ē p) = Z, α(�ē p) = 1 +
(
3μ +

M∑
i=1

wiCi

)
�ē p

h(�ē p)
. (21)

It follows from Eq. (21)1 that:
J2 (sn+1 − Xn+1) α(�ē p) = J2(Z). (22)

Thus, the following scalar, nonlinear equation is obtained which can be utilized to compute the effective plastic
strain increment �ē p:

r(�ē p) = h(�ē p)α(�ē p) − J2(Z) = 0. (23)

Equation (23) can be solved iteratively using the Newton–Raphson method. Thus, during every step of the
iterative process a correction term is calculated:

ci+1 = − r(�ē pi )

∂r(�ē p)
∂�ē p

∣∣∣
�ē p=�ē pi

, (24)

which is subsequently used to update the equivalent plastic strain increment, i.e., �ē pi+1 = �ē pi + ci+1. The
derivative of r(�ē p) with respect to �ē p takes the form:

∂r(�ē p)

∂�ē p
= ∂h(�ē p)

∂�ē p
α(�ē p) + h(�ē p)

∂α(�ē p)

∂�ē p
− ∂ J2(Z)

∂�ē p
, (25)

where

∂h(�ē p)

∂�ē p
= K

m�t

(
�ē p

�t

) 1−m
m + dR(ē pn+1)

dē p
= κ, (26)

∂ J2(Z)

∂�ē p
= 3

2

M∑
i=1

γiw
2
i χi

(
n̄n+1 · X(i)

n

)
(27)

and
∂α(�ē p)

∂�ē p
= 1

h(�ē p)

[
3μ +

M∑
i=1

wiCi
(
1 − γiwiχi�ē p

) + (1 − α(�ē p))κ

]
. (28)

After computing �ē p, the backstress components can be updated according to Eq. (15) and subsequently the
total deviatoric stress can be calculated, i.e.,

sn+1 = Xn+1 + Z
α(�ē p)

. (29)

The presented integration algorithm is used to determine the consistent tangent operator which is required in
order to implement the considered model into FEM.
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4 Consistent tangent operator

Taking a variation of the deviatoric stress with respect to all quantities leads to:

δsn+1 = δsprn+1 − 3μδē pn̄n+1 − 3μ�ē pδn̄n+1. (30)

It is seen that the variations δē p and δn̄n+1 are necessary in order to determine the formula for the consistent
tangent operator. The term δē p can be found by taking the variation on Eq. (23), i.e.,

δh(�ē p)α(�ē p) + h(�ē p)δα(�ē p) − δ J2(Z) = 0. (31)

The variations δh(�ē p), δ J2(Z) and δα(�ē p) need to be found so that Eq. (31) could be solved for δē p. The
variation δh(�ē p) is determined by taking a variation on Eq. (20), thus,

δh(�ē p) = κ(�ē p)δē p, κ(�ē p) = K

m�t

(
�ē p

�t

) 1−m
m + dR(ē p)

dē p
. (32)

In order to find δ J2(Z), a variation must be taken on Eq. (17)2 which results in:

δZ = δsprn+1 −
M∑
i=1

δwiX(i)
n , (33)

with

δwi = −γiw
2
i

(
dϕi
dē p

�ē p + ϕi

)
δē p. (34)

Thus,

δ J2(Z) = 3

2
n̄n+1 · δsprn+1 + 3

2

M∑
i=1

γiw
2
i

(
n̄n+1 · X(i)

n

)
χiδē

p, (35)

where the following notation is introduced:

χi = dϕi (ē
p
n+1)

dē p
�ē p + ϕi (ē

p
n+1). (36)

Taking the variation on Eq. (21)2 leads to the formula for δα(�ē p):

δα(�ē p) = δē p

h(�ē p)

[
3μ +

M∑
i=1

wiCi
(
1 − γiwiχi�ē p

) + (1 − α(�ē p))κ

]
. (37)

After inserting Eqs. (32), (35) and (37) into Eq. (31), it can be solved for δē p; thus,

δē p =
3
2 n̄n+1 · δsprn+1

3μ + h∗ , (38)

where the so-called effective hardening modulus has been introduced:

h∗ =
M∑
i=1

wiCi
(
1 − γiwiχi�ē p

) + κ − 3

2

M∑
i=1

γiw
2
i

(
n̄n+1 · X(i)

n

)
χi . (39)

It can be shown that n̄n+1 = Z
J2(Z)

, e.g., [20]. Taking a variation on this relation δn̄n+1 can be found, i.e.,

δn̄n+1 = 1

J2(Z)

(
I − 3

2
n̄n+1 ⊗ n̄n+1

)
·
(

δsprn+1 +
M∑
i=1

γiw
2
i X

(i)
n χiδē

p

)
. (40)
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Substituting Eqs. (38) and (40) into Eq. (30), after some rearrangements and taking into account the volumetric
stress component, leads to a linear relation between the variations of stress and strain, i.e.,

δσ n+1 = Cvp
n+1 · δεn+1, (41)

with the consistent viscoplastic tangent operator given as:

Cvp
n+1 = λ∗1 ⊗ 1 + 2μ∗I +

(
h∗

1 + h∗
3μ

− 3μ∗
)
n̄n+1 ⊗ n̄n+1

− 1 − μ∗
μ

1 + h∗
3μ

M∑
i=1

γiw
2
i χi

[
X(i)
n ⊗ n̄n+1 − 3

2

(
n̄n+1 · X(i)

n

)
n̄n+1 ⊗ n̄n+1

]
, (42)

where I is the fourth order identity tensor, whereas the introduced effective Lamé constants are given by the
following relations:

μ∗ = μ

(
1 − 3μ�ē p

J2(Z)

)
, λ∗ = B − 2

3
μ∗. (43)

If J2(s
pr
n+1 − Xn) < k + R(ē pn ), the elastic stiffness is used in the computations, i.e.,

Ce = λ1 ⊗ 1 + 2μI, (44)

where the Lamé parameter λ = B − 2
3μ.

5 User material (UMAT) subroutine for cyclic elasto-viscoplasticity

Many commercial and non-commercial FE packages provide some interfaces enabling the users to code their
own constitutive laws, e.g., [6,9,11,15]. The open-source FE analysis program CalculiX offers two options
for writing a user subroutine UMAT (UserMATerial), i.e., the ABAQUS UMAT or the CalculiX native UMAT
interface, c.f. [9]. Usually, the native interface proves to be more efficient than ABAQUS UMAT used under
CalculiX. Thus, it was decided to code the constitutive model under study using CalculiX UMAT. Some
details regarding the interaction of UMAT subroutine with CalculiX can be found in [9] or [20]. The FE
solver provided by CalculiX assumes that the tangent operator is symmetric with 21 independent components
only. Thus, the determined operator given by Eq. (42) was symmetrized for the purpose of implementing the
considered viscoplastic model via CalculiX UMAT. It has been demonstrated that performing symmetrization
does not affect the accuracy of computations and has very little influence on their robustness, e.g., [12,13,20].

6 Exemplary problems

In order to verify the performance of the constitutive model under consideration, a number of FE simulations
have been conducted. These included simulations of processes with homogeneous stress and strain fields,
i.e., uniaxial tension/compression (UT/UC), equibiaxial tension/compression (BT/BC) and simple shear (SS).
The discretized version of the model which is discussed in Sect. 3 was used do derive the process equations
for the aforementioned homogeneous deformations. These equations were subsequently used to write Scilab
programs [18]. Each program can be utilized to calculate the stress response for a given strain history. The
results generated in Scilab were used to verify the computations performed in CalculiX with the use of the
written UMAT code. In addition, some more complicated problems were analyzed, i.e., stress relaxation
test, creep test, notched flat bar in equibiaxial tension/compression and thick-walled tube loaded by internal
pressure.

The material parameters gathered in Table 1 were utilized for the conducted simulations. Thus, a single
backstress variable (M = 1) and the function ϕ(ē p) form as given by Eq. (11) were used, whereas the isotropic
hardening behavior was simulated using a single Voce term, i.e., N = 1 in Eq. (7). The Lamé parameters are
calculated as: λ = Eν

(1+ν)(1−2ν)
, μ = E

2(1+ν)
, whereas the bulk modulus B = E

3(1−2ν)
. The results presented in

the following paragraphs were obtained for C3D8 elements.1 The developed UMAT procedure has been tested
for other types of finite elements as well.

1 Cubic, three-dimensional, eight nodes.
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Table 1 Utilized material parameters of the viscoplastic model based on [2]

No. Parameter Name Value Unit

1 E Young’s modulus 180,000 MPa
2 ν Poisson’s ratio 0.33 –
3 k Initial yield stress 114 MPa
4 K Viscoplasticity parameter 92 MPa
5 m Viscoplasticity parameter 8 –
6 Q Isotropic hardening parameter 100 MPa
7 b Isotropic hardening parameter 32 –
8 C Kinematic hardening parameter 60,632 MPa
9 γ Kinematic hardening parameter 572 –
10 ϕ∞ Kinematic hardening parameter 0.66 –
11 ω̄ Kinematic hardening parameter 10 –

6.1 Uniaxial tension/compression (UT/UC)

A one-dimensional stress state is considered, i.e.,

σ 3×3 =
⎡
⎣

σ 0 0
0 0 0
0 0 0

⎤
⎦ , s3×3 =

⎡
⎣

2
3σ 0 0
0 − 1

3σ 0
0 0 − 1

3σ

⎤
⎦ , X3×3 =

⎡
⎣

2
3 X 0 0
0 − 1

3 X 0
0 0 − 1

3 X

⎤
⎦ . (45)

In each increment the axial stress predictor σ
pr
n+1 is calculated for the given axial strain increment �εa :

σ
pr
n+1 = σn + E�εa . (46)

Subsequently, the yield criterion is checked. If
∣∣σ pr

n+1 − Xn
∣∣ < k + R(ē pn ), the material response is elastic and

σn+1 = σ
pr
n+1 is assumed. Otherwise, the plastic flow occurs and the plastic strain increment �ē p must be

determined. This is done by solving Eq. (23) which in this particular case takes the form:

h(�ē p)α(�ē p) − |Z | = 0, (47)

with h(�ē p) being specified by Eq. (20), whereas:

α(�ē p) = 1 +
(
E +

M∑
i=1

wiCi

)
�ē p

h(�ē p)
, Z = σ

pr
n+1 −

M∑
i=1

wi X
(i)
n . (48)

The fsolve function offered by Scilab was used for solving Eq. (47). After obtaining �ē p, the backstress
values are updated, i.e.,

X (i)
n+1 = wi

(
X (i)
n + Ci�ē p sgn(Z)

)
, Xn+1 =

M∑
i=1

X (i)
n+1, (49)

where sgn(•) denotes the signum function, while wi (i = 1, 2, . . . , M) is given by Eq. (16). Finally, the total
axial stress is updated:

σn+1 = Xn+1 + Z

α(�ē p)
. (50)

The computations according to Eqs. (46–50) were performed in Scilab for every single increment of the
performed simulations.

In CalculiX the UT/UC FE simulations were conducted on a 1mm×1mm×1mm cube meshed with a
single C3D8 element. The considered deformation along with the applied boundary conditions can be seen in
Fig. 1a. A kinematic loading in the form of a displacement δ in the direction “1” (Fig. 1a,e) was applied to
the cube’s ABCD face. Furthermore, a zero displacement in direction “1” was set on the face EFGH , a zero
displacement in direction “2” was set on the face AEHD, and zero displacement in direction “3” was set on
face ABFE .
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Fig. 1 Deformation of a single FE: a uniaxial tension/compression, b equibiaxial tension/compression, c and d simple shear, e
characteristic points of the geometry

In the first approach a ramp tension test was considered with the maximum displacement value δ = 0.005
mm. The kinematic excitation was applied with different deformation rates, i.e., 1 × 10−6 s−1, 1 × 10−2 s−1

and 1 s−1. The simulations were performed in CalculiX utilizing the developed UMAT code and later repeated
in Scilab using the program described above. An excellent agreement between the results obtained in CalculiX
and those produced by Scilab was observed (Fig. 2).

In the second approach a cyclic deformation of the cubewas analyzed. The kinematic excitationwas defined
using a saw function with the amplitude of δa = 0.005 mm and the period T = 0.2 s. A preloading to the
maximumvalue of δa was definedwhichwas followed by 10 full deformation cycles. Again, for the verification
purposes, the considered deformation process was analyzed both in CalculiX and Scilab. As previously, the
obtained results were found to be in an excellent agreement (Fig. 3). Both simulations were later repeated for
the cube meshed with 125 C3D8 elements with the same results as previously.
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Fig. 2 Normal stress versus axial strain for cube undergoing uniaxial tension/compression with different strain rates

Fig. 3 Normal stress versus axial strain for cube undergoing cyclic uniaxial tension/compression with the strain rate ε̇ =
1 × 10−3 s−1

6.2 Equibiaxial tension/compression (BT/BC)

A two-dimensional stress state is considered, i.e.,

σ 3×3 =
⎡
⎣

σ 0 0
0 σ 0
0 0 0

⎤
⎦ , p = tr(σ )

3
= 2

3
σ, (51)

consequently:

s3×3 =
⎡
⎣

1
3σ 0 0
0 1

3σ 0
0 0 − 2

3σ

⎤
⎦ , X3×3 =

⎡
⎣

1
3 X 0 0
0 1

3 X 0
0 0 − 2

3 X

⎤
⎦ . (52)
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Fig. 4 Stress versus axial strain for cube undergoing cyclic equibiaxial tension/compression with the strain rate ε̇ = 1×10−3 s−1

The total and plastic strain tensors have the following components:

ε3×3 =
⎡
⎣

εa 0 0
0 εa 0
0 0 εl

⎤
⎦ , ε

p
3×3 =

⎡
⎣

ε p 0 0
0 ε p 0
0 0 −2ε p

⎤
⎦ , (53)

with εa and εl being the axial and lateral strains, respectively. The axial stress in the increment n + 1 can be
expressed as follows:

σn+1 = σ
pr
n+1 − E

1 − ν
�ε p, σ

pr
n+1 = σn + E

1 − ν
�εa . (54)

If the condition
∣∣σ pr

n+1 − Xn
∣∣ < k+ R(ē pn ) is satisfied, the predictor stress value is taken to be the total updated

axial stress, i.e., σn+1 = σ
pr
n+1. Otherwise, the equivalent plastic strain increment �ē p needs to be determined

by solving the following equation:
h(�ē p)α(�ē p) − |Z | = 0, (55)

where

α(�ē p) = 1 +
(

E

2(1 − ν)
+

M∑
i=1

wiCi

)
�ē p

h(�ē p)
, (56)

and

Z = σ
pr
n+1 −

M∑
i=1

wi X
(i)
n . (57)

where wi (i = 1, 2, . . . , M) is given by Eq. (16). After solving Eq. (55), the backstress variables can be
updated, i.e.,

Xn+1 =
M∑
i=1

X (i)
n+1, X (i)

n+1 = wi

(
Ci�ē p sgn(Z) + X (i)

n

)
, (58)

and subsequently the total axial stress value can be computed:

σn+1 = Xn+1 + Z

α(�ē p)
. (59)

The calculations according to Eqs. (54–59) are performed in every increment of the analysis.
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The FE simulation in CalculiX was performed on a 1mm×1mm×1mm cube meshed with a single C3D8
element. The boundary conditionswhichwere applied to the cube are depicted in Fig. 1b.Akinematic excitation
was assumed in the form of a displacement δ set on two faces, i.e., the displacement in direction “1”was applied
to the cube’s face ABCD, whereas the displacement in direction “2”was applied to the face BFGC (Fig. 1b,e).
A zero displacement in direction “1” was defined on the face EFGH , while a zero displacement in direction
“2” was set on the face AEHD, and finally, a zero displacement in direction “3” was defined on the face
ABFE . The time history of the displacement δ was assumed in the form of a saw function with the amplitude
δa = 0.005 mm and the period T = 20 s. Consequently, the strain rate in each of the straining axes was
equal to 1 × 10−3 s−1. The initial prestraining and 10 subsequent cycles were analyzed. Again, the process
equations derived for the discretized version of the model were used to write a Scilab programwhich calculates
the material stress response for a given strain history. This program was utilized to verify the results obtained
with CalculiX. An excellent agreement was found (Fig. 4). The considered FE simulations were subsequently
repeated for the cube meshed with 125 C3D8 elements with the same results.

6.3 Simple shear (SS)

In the case of simple shear (SS) process, the stress tensors are assumed to have the following components:

σ 3×3 = s3×3 =
⎡
⎣
0 τ 0
τ 0 0
0 0 0

⎤
⎦ , X3×3 =

⎡
⎣

0 Xτ 0
Xτ 0 0
0 0 0

⎤
⎦ , (60)

with τ and Xτ being the shear stress and the shear backstress component, respectively. For the analyzed process,
the following scalar equations can be obtained:

τn+1 = τ
pr
n+1 − 2μ�ε

p
s , τ

pr
n+1 = τn + 2μ�εs, (61)

with τ
pr
n+1 being the shear predictor stress in the increment n + 1 while ε

p
s is the plastic shear strain increment,

whereas�εs is the total shear strain increment. If
√
3
∣∣τ pr
n+1 − Xτn

∣∣ < k+R(ē pn ) it is assumed that τn+1 = τ
pr
n+1.

Otherwise, the plastic flow occurs and the equivalent plastic strain increment �ē p must be determined. This
is done by solving the nonlinear equation:

h(�ē p)α(�ē p) − √
3 |Z | = 0, (62)

where

α(�ē p) = 1 +
(
3μ +

M∑
i=1

wiCi

)
�ē p

h(�ē p)
, Z = τ

pr
n+1 −

M∑
i=1

wi X
(i)
τn , (63)

while wi (i = 1, 2, . . . , M) is given by Eq. (16). After calculating the plastic strain increment, the stresses can
be updated, i.e.,

τn+1 = Xτn+1 + Z

α(�ē p)
, (64)

and

X (i)
τn+1 = wi

(
Ci�ē p

sgn(Z)√
3

+ X (i)
n

)
. (65)

The computations listed in Eqs. (61–65) are performed for every analysis step.
As before, the analyzed deformation process was simulated in CalculiX for a cube meshed with a single

C3D8 element. The deformed shape and the applied boundary conditions can be seen in Fig. 1c, d with γ = 2εs
being the shear angle. A kinematic excitation was assumed in the form of the displacement δ in the direction
“1” applied to the cube’s face BFGC where the displacements in the directions “2” and “3” were set to zero.
Due to the small deformations, it is assumed that δ/1 = tg (γ ) ≈ γ . The displacements in all directions were
defined as zero on the face AEHD. A cyclic deformation was considered with the amplitude δa = 0.01 mm
and the period T = 20 s which resulted in the shear strain rate 1× 10−3 s−1. A preloading and 10 subsequent
cycles were analyzed. Again, the set of equations derived for the discretized version of the model was utilized
to write a Scilab program which was used to verify the results obtained in CalculiX. It can be seen in Fig. 5
that once again excellent agreement was found.
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Fig. 5 Shear stress versus shear strain for cube undergoing cyclic simple shear with the strain rate ε̇ = 1 × 10−3 s−1

Fig. 6 Cube undergoing stress relaxation in tension/compression: a axial strain history, b axial stress response

6.4 Stress relaxation

A one-dimensional stress relaxation process was simulated. Again, the FE simulation was performed in Cal-
culiX using a cube meshed with a single C3D8 element. The boundary conditions as described in Sect. 6.1
were used with a different strain history which acted as an excitation (Fig. 6a). The material stress response
can be seen in Fig. 6b. In order to validate the obtained FE results, a Scilab program utilizing Eqs. (46–50) was
used to simulate the considered deformation process again. It can be seen in Fig. 6b that the results obtained
in CalculiX and Scilab are in a perfect agreement.

6.5 Creep

A creep test simulation was performed. In CalculiX, as before, a cube meshed with a C3D8 element was used.
The defined boundary conditions are the same as described in Sect. 6.1 with the only difference being a stress
excitation applied to the face ABCD instead of a displacement. The assumed stress history and the strain
response can be seen in Fig. 7a and b, respectively.

For the purpose of validating the obtained FE results, the axial strain history computed in CalculiXwas used
as an input for two different Scilab programs in order to check if the correct stress history will be recreated by
each one of them. The first program utilizes the radial-returnmapping algorithmwhich for the one-dimensional
case leads to Eqs. (46–50). The second Scilab program partially takes advantage of the analytical formulas.
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Fig. 7 Cube undergoing creep in tension: a axial stress history, b axial strain response

According to Eq. (6), for the stress state components defined by Eq. (45), the effective plastic strain is given
as:

˙̄ep =
( |σ − X | − k − R(ē p)

K

)m

, (66)

with ē p = |ε p| and, ˙̄ep = |ε̇ p|. After some rearrangements, a formula for the axial stress in the increment
n + 1 is obtained, i.e.,

σn+1 = Xn+1 + [
k + R(

∣∣ε p
n+1

∣∣) + K (
∣∣ε̇ p

n+1

∣∣)1/m]
sgn(σn+1 − Xn+1), (67)

where sgn(σn+1−Xn+1) = sgn(ε̇ p
n+1)with ε̇

p
n+1 ≈ �ε p

�t . The previously presented recurrence-update formula
given by Eq. (49)1 was utilized to calculate the backstress component:

Xn+1 = w
(
Xn + C�ε p) , (68)

with

w = 1

1 + γ ϕ(
∣∣ε p

n+1

∣∣) |�ε p| , ϕ(
∣∣ε p

n+1

∣∣) = ϕ∞ + (1 − ϕ∞)e−ω̄
∣∣ε pn+1

∣∣
, (69)

where
∣∣ε p

n+1

∣∣ = ∣∣ε p
n
∣∣ + ∣∣�ε

p
n
∣∣. In the elastic initial range σn+1 = Eεa,n+1.

The stress histories recreated by both Scilab programs based on the strain history given in Fig. 7b are
presented in Fig. 7a. It is seen that they are in a very good agreement with the original stress history which
was used as excitation in the previously performed FE analysis.

6.6 Notched flat bar in biaxial tension/compression

In order to check the performance of the developed UMAT code, a notched flat bar was considered which was
subjected to cyclic biaxial tension/compression. The used geometry along with the dimensions, the applied
boundary conditions and the coordinate system can be seen in Fig. 8a. The bar wasmeshedwith C3D8 elements
with three elements defined along the bar’s thickness which equaled to 0.1mm (Fig. 8b). The kinematic
excitation was defined on bar’s outer faces in the form of displacement histories δ1 and δ2 (Fig. 8a). The
displacement δ1 was set as a ramp elongation until its maximum value of 0.0025mm which is reached for the
time instant t = 10 s. The displacement δ2 was defined with a saw function with the amplitude δ2a = 0.005
mm and the period T = 40 s. The total of 10 cycles were performed. The final contour maps obtained for
the displacement magnitude, the Huber–von Mises–Hencky (HMH) equivalent stress and the equivalent total
strain are shown in Fig. 9.
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Fig. 8 Notched flat bar undergoing cyclic deformation: a boundary conditions and dimensions, b FE mesh

Fig. 9 Notched flat bar undergoing cyclic deformation: a displacement magnitude, b HMH equivalent stress. c equivalent total
strain
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Fig. 10 Thick-walled tube loaded with internal cyclic pressure: a boundary conditions and dimensions, b FE mesh

Fig. 11 Thick-walled tube loaded with internal cyclic pressure: a displacement magnitude, bHMH equivalent stress. c equivalent
total strain

6.7 Thick-walled tube loaded with internal pressure

As another problem a thick-walled tube loaded with internal pressure was considered. The assumed geometry
along with the boundary conditions and the coordinate system are depicted in Fig. 10a. The pressure loading
was defined using a saw function with the pressure limits pmax = 470 MPa, pmin = 0 MPa and the period
T = 20 s. The total of 10 cycles were analyzed. The tube was assumed to be 100mm thick and meshed with
C3D8 elements (Fig. 10b). The contour plots showing the final distributions of the displacement magnitude,
the HMH stress and the equivalent total strain can be seen in Fig. 11.
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7 Conclusions

The viscoplastic model proposed in the work by Benallal and Marquis [2] was analyzed. This model presents
itself a certain generalization of the constitutive model which was introduced by Chaboche [3–5]. In this study
the model by Benallal and Marquis was further generalized by assuming the isotropic hardening behavior to
be governed by any selected function of the equivalent plastic strain R(ē p), c.f. Eq. (3). Moreover, the strain
function in the “recovery” term of the backstress evolution law was taken to be any chosen function of the
plastic strain ϕ(ē p), see Eq. (12). The model was also extended by allowing multiple backstress variables to
be utilized.

The obtained generalized viscoplastic constitutive equation was subsequently discretized by using the
radial-return mapping algorithm. A general formula for the consistent tangent operator was derived. According
to the author’s best knowledge, this formula has not been presented in the literature before. The discrete model
was implemented into the non-commercial, open-source FE program CalculiX by writing a UMAT subroutine
which is included in the appendix section.

In order to verify the performance of the written UMAT code, proper equation sets were derived from the
discretized version of the model which describe selected homogeneous deformation processes. The obtained
equationswere in the next step used towrite Scilab scriptswhich computed the stress responses for the deforma-
tion histories in question. The simulation results obtained in Scilab were found to be in an excellent agreement
to those obtained by performing the FE simulations in CalculiX using the developed UMAT subroutine. What
is more, the UMAT code was used to solve several other boundary value problems such as notched flat bar in
biaxial tension/compression and thick-walled tube loaded with internal pressure.
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Appendix: Coding in Fortran 77

The following UMAT code is provided under the terms of the GNU General Public License (GPL). If you use
the UMAT code, please cite this article in your work (book, article, report, etc.).

subroutine umat(amat,iel,iint,kode,elconloc,emec,emec0,
& beta,xokl,voj,xkl,vj,ithermal,t1l, _____dtime, ____time,ttime,
& icmd,ielas,mi,nstate_,xstateini,xstate,stre,stiff,
& iorien,pgauss,orab,pnewdt,ipkon)

implicit none
!

character*80 amat
!

integer ithermal,icmd,kode,ielas,iel,iint,nstate_,mi(*),iorien,
& ipkon(*)

!
real*8 elconloc(21),stiff(21),emec(6),emec0(6),beta(6),stre(6),

& vj,t1l,_____dtime,xkl(3,3),xokl(3,3),voj,pgauss(3),orab(7,*),
& ____time,ttime,pnewdt

!
real*8 xstate(nstate_,mi(1),*),xstateini(nstate_,mi(1),*)

real*8 one, two, three, six

http://creativecommons.org/licenses/by/4.0/
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integer k1, knewton

parameter(one=1.d0, two=2.d0, three=3.d0, six=6.d0)
!

real*8 eelas(6),eplas(6),
1 backstre(6),backstre1(6),
2 flow(6),Z(6)

!
real*8 e,nu,G,G2,G3,B,lam,kyield,Q1,b1,C1,gamma1,

1 sHMH,syield,shydro,
2 eqplas,deqplas,
3 effhrd,effG,effG2,effG3,efflam,effh,
4 term1,term2,term3,term4,term5,term7,treelas,
5 eqZ,w1,R1,alfa,
6 dRdep,dJ2Zdep,dalfadep,drhsddep,
7 rhs,FlowdotBstre1,threetwo,
8 K,n,kappa,chi1,phi1,phiinf1,omega1,dphi1dep,h

integer newton

real*8 toler

newton=1000
toler=1.D-6

! ----------------------------------------------------------------------
! CALCULIX UMAT FOR MARQUIS VISCOPLASTIC MODEL
! (SMALL STRAIN FORMULATION)
!
! POLISH ACADEMY OF SCIENCES
! INSTITUTE OF FUNDAMENTAL TECHNOLOGICAL RESEARCH
!
! CYPRIAN SUCHOCKI, DECEMBER 2022
! ----------------------------------------------------------------------
! elconloc(1) - e Young’s modulus
! elconcoc(2) - nu Poisson’s ratio
! elconloc(3) - kyield initial yield stress
! elconcoc(4) - Q1 isotropic hardening parameter
! elconloc(5) - b1 isotropic hardening parameter
! elconcoc(6) - C1 kinematic hardening parameter
! elconloc(7) - gamma1 kinematic hardening parameter
! elconcoc(8) - phiinf1 kinematic hardening parameter
! elconloc(9) - omega1 kinematic hardening parameter
! elconcoc(10) - K viscosity parameter
! elconloc(11) - n viscosity parameter
! ----------------------------------------------------------------------
! Local arrays:
! backstre(6) - back stress
! backstre1(6) - back stress component no. 1
! eelas(6) - elastic strain
! eplas(6) - plastic strain
! flow(6) - flow direction
! Z(6) - auxiliary stress
!
! Local variables:
! G - shear modulus
! B - bulk modulus
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! lam - lambda (Lame constant)
! treelas - trace of the lastic strain tensor
! eqplas - equivalent plastic strain
! deqplas - equivalent plastic strain increment
! sHMH - equivalent stress
! syield - yield stress
! shydro - hydrostatic stress
! effh - effective hardening parameter
! effG - effective shear modulus
! effG2 - effective shear modulus times two
! effG3 - effective shear modulus times three
! efflam - effective lambda constant
! ----------------------------------------------------------------------
!
! Material parameters
!

e=elconloc(1) ! Young’s modulus
nu=elconloc(2) ! Poisson’s ratio
kyield=elconloc(3) ! initial yield stress
Q1=elconloc(4) ! isotropic hardening parameter
b1=elconloc(5) ! isotropic hardening parameter
C1=elconloc(6) ! kinematic hardening parameter
gamma1=elconloc(7) ! kinematic hardening parameter
phiinf1=elconloc(8) ! kinematic hardening parameter
omega1=elconloc(9) ! kinematic hardening parameter
K=elconloc(10) ! viscosity parameter
n=elconloc(11) ! viscosity parameter

G=e/(two*(one+nu)) ! shear modulus
G2=two*G
G3=three*G
B=e/(three*(one-two*nu)) ! bulk modulus
lam=B-two/three*G ! lambda

threetwo=three/two
!
! Extract state variables
!

do k1=1,6
backstre(k1)=xstateini(k1,iint,iel)
backstre1(k1)=xstateini(k1+6,iint,iel)
eplas(k1)=xstateini(k1+12,iint,iel)

end do
eqplas=xstateini(19,iint,iel)

!
! Calculate elastic strain
!

do k1=1,6
eelas(k1)=emec(k1)-eplas(k1)

end do
!
! Calculate predictor stress
!

treelas=eelas(1)+eelas(2)+eelas(3)

stre(1)=lam*treelas+G2*eelas(1)
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stre(2)=lam*treelas+G2*eelas(2)
stre(3)=lam*treelas+G2*eelas(3)
stre(4)=G2*eelas(4)
stre(5)=G2*eelas(5)
stre(6)=G2*eelas(6)

!
! HMH equivalent stress
!

sHMH=(stre(1)-backstre(1)-stre(2)+backstre(2))**2
1 +(stre(2)-backstre(2)-stre(3)+backstre(3))**2
2 +(stre(3)-backstre(3)-stre(1)+backstre(1))**2
do k1=4,6

sHMH=sHMH+six*(stre(k1)-backstre(k1))**2
end do
sHMH=____sqrt(sHMH/two)

!
! Yield stress
!

R1=Q1*(one-___exp(-b1*eqplas))
syield=kyield+R1

!
! Determine if actively yielding
!

if(sHMH.gt.(one+toler)*syield) then
!
! Separate the deviatoric from the hydrostatic stress
! Calculate the flow direction
!

shydro=(stre(1)+stre(2)+stre(3))/three
!
! Solve for equivalent plastic strain, Newton iteration
!

deqplas=1.d-60
do knewton=1,newton

call calcterm(Q1,b1,kyield,R1,gamma1,C1,G3,stre,
1 backstre1,eqplas+deqplas,deqplas,shydro,syield,w1,alfa,Z,
2 eqZ,dRdep,dJ2Zdep,dalfadep,FlowdotBstre1,term2,threetwo,
3 kappa,chi1,K,n,_____dtime,phi1,phiinf1,omega1,dphi1dep,h)

rhs=h*alfa-eqZ
drhsddep=kappa*alfa+h*dalfadep-dJ2Zdep
deqplas=deqplas-rhs/drhsddep
if(___abs(rhs).lt.toler*syield) goto 10

end do
10 continue

eqplas=eqplas+deqplas
call calcterm(Q1,b1,kyield,R1,gamma1,C1,G3,stre,

1 backstre1,eqplas,deqplas,shydro,syield,w1,alfa,Z,
2 eqZ,dRdep,dJ2Zdep,dalfadep,FlowdotBstre1,term2,threetwo,
3 kappa,chi1,K,n,_____dtime,phi1,phiinf1,omega1,dphi1dep,h)

!
! Calculate the flow direction
!

do k1=1,6
flow(k1)=Z(k1)/eqZ
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end do
!
! Calculate symmetrized Material Jacobian for active yielding
!

effG=G*(one-G3*deqplas/eqZ)
effG2=two*effG
effG3=three*effG
efflam=B-effG2/three

effh=term2+kappa-dJ2Zdep
effhrd=effh/(one+effh/G3)-effG3

term3=(one-effG/G)/(one+effh/G3)*gamma1*chi1*w1**two
term4=threetwo*FlowdotBstre1

if(icmd.ne.3) then

stiff(1)=effG2+efflam+flow(1)*flow(1)*effhrd
1 -term3*(backstre1(1)*flow(1)
2 -term4*flow(1)*flow(1))

stiff(2)=efflam+flow(1)*flow(2)*effhrd
1 -term3*(0.5d0*(backstre1(1)*flow(2)
2 +backstre1(2)*flow(1))-term4*flow(1)*flow(2))

stiff(3)=effG2+efflam+flow(2)*flow(2)*effhrd
1 -term3*(backstre1(2)*flow(2)
2 -term4*flow(2)*flow(2))

stiff(4)=efflam+flow(1)*flow(3)*effhrd
1 -term3*(0.5d0*(backstre1(1)*flow(3)
2 +backstre1(3)*flow(1))-term4*flow(1)*flow(3))

stiff(5)=efflam+flow(2)*flow(3)*effhrd
1 -term3*(0.5d0*(backstre1(2)*flow(3)
2 +backstre1(3)*flow(2))-term4*flow(2)*flow(3))

stiff(6)=effG2+efflam+flow(3)*flow(3)*effhrd
1 -term3*(backstre1(3)*flow(3)
2 -term4*flow(3)*flow(3))

stiff(7)=flow(1)*flow(4)*effhrd
1 -term3*(0.5d0*(backstre1(1)*flow(4)
2 +backstre1(4)*flow(1))-term4*flow(1)*flow(4))

stiff(8)=flow(2)*flow(4)*effhrd
1 -term3*(0.5d0*(backstre1(2)*flow(4)
2 +backstre1(4)*flow(2))-term4*flow(2)*flow(4))

stiff(9)=flow(3)*flow(4)*effhrd
1 -term3*(0.5d0*(backstre1(3)*flow(4)
2 +backstre1(4)*flow(3))-term4*flow(3)*flow(4))

stiff(10)=effG+flow(4)*flow(4)*effhrd
1 -term3*(backstre1(4)*flow(4)
2 -term4*flow(4)*flow(4))

stiff(11)=flow(1)*flow(5)*effhrd
1 -term3*(0.5d0*(backstre1(1)*flow(5)
2 +backstre1(5)*flow(1))-term4*flow(1)*flow(5))

stiff(12)=flow(2)*flow(5)*effhrd
1 -term3*(0.5d0*(backstre1(2)*flow(5)
2 +backstre1(5)*flow(2))-term4*flow(2)*flow(5))

stiff(13)=flow(3)*flow(5)*effhrd
1 -term3*(0.5d0*(backstre1(3)*flow(5)
2 +backstre1(5)*flow(3))-term4*flow(3)*flow(5))
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stiff(14)=flow(4)*flow(5)*effhrd
1 -term3*(0.5d0*(backstre1(4)*flow(5)
2 +backstre1(5)*flow(4))-term4*flow(4)*flow(5))

stiff(15)=effG+flow(5)*flow(5)*effhrd
1 -term3*(backstre1(5)*flow(5)
2 -term4*flow(5)*flow(5))

stiff(16)=flow(1)*flow(6)*effhrd
1 -term3*(0.5d0*(backstre1(1)*flow(6)
2 +backstre1(6)*flow(1))-term4*flow(1)*flow(6))

stiff(17)=flow(2)*flow(6)*effhrd
1 -term3*(0.5d0*(backstre1(2)*flow(6)
2 +backstre1(6)*flow(2))-term4*flow(2)*flow(6))

stiff(18)=flow(3)*flow(6)*effhrd
1 -term3*(0.5d0*(backstre1(3)*flow(6)
2 +backstre1(6)*flow(3))-term4*flow(3)*flow(6))

stiff(19)=flow(4)*flow(6)*effhrd
1 -term3*(0.5d0*(backstre1(4)*flow(6)
2 +backstre1(6)*flow(4))-term4*flow(4)*flow(6))

stiff(20)=flow(5)*flow(6)*effhrd
1 -term3*(0.5d0*(backstre1(5)*flow(6)
2 +backstre1(6)*flow(5))-term4*flow(5)*flow(6))

stiff(21)=effG+flow(6)*flow(6)*effhrd
1 -term3*(backstre1(6)*flow(6)
2 -term4*flow(6)*flow(6))

end if
!
! Calculate stress and update strains
!

term1=threetwo*deqplas

term5=C1*deqplas

do k1=1,3
backstre1(k1)=w1*(backstre1(k1)+term5*flow(k1))
backstre(k1)=backstre1(k1)
stre(k1)=backstre(k1)+Z(k1)/alfa+shydro
eplas(k1)=eplas(k1)+term1*flow(k1)

end do
do k1=4,6

backstre1(k1)=w1*(backstre1(k1)+term5*flow(k1))
backstre(k1)=backstre1(k1)
stre(k1)=backstre(k1)+Z(k1)/alfa
eplas(k1)=eplas(k1)+term1*flow(k1)

end do

else
!
! Calculate Material Jacobian for elastic case
!

if(icmd.ne.3) then

term7=lam+G2

stiff(1)=term7
stiff(2)=lam
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stiff(3)=term7
stiff(4)=lam
stiff(5)=lam
stiff(6)=term7
stiff(7)=0.d0
stiff(8)=0.d0
stiff(9)=0.d0
stiff(10)=G
stiff(11)=0.d0
stiff(12)=0.d0
stiff(13)=0.d0
stiff(14)=0.d0
stiff(15)=G
stiff(16)=0.d0
stiff(17)=0.d0
stiff(18)=0.d0
stiff(19)=0.d0
stiff(20)=0.d0
stiff(21)=G

endif

endif
!
! Store state variables
!

do k1=1,6
xstate(k1,iint,iel)=backstre(k1)
xstate(k1+6,iint,iel)=backstre1(k1)
xstate(k1+12,iint,iel)=eplas(k1)

end do
xstate(19,iint,iel)=eqplas

!
return
end

! ----------------------------------------------------------------------
subroutine calcterm(Q1,b1,kyield,R1,gamma1,C1,G3,stre,

1 backstre1,eqplas,deqplas,shydro,syield,w1,alfa,Z,
2 eqZ,dRdep,dJ2Zdep,dalfadep,FlowdotBstre1,term2,threetwo,
3 kappa,chi1,K,n,_____dtime,phi1,phiinf1,omega1,dphi1dep,h)

real*8 Q1,b1,kyield,R1,gamma1,C1,G3,stre(6),
1 backstre1(6),eqplas,deqplas,shydro

real*8 syield,w1,alfa,Z(6),eqZ,dRdep,dJ2Zdep,dalfadep,
1 FlowdotBstre1,term2,threetwo,
2 K,n,kappa,chi1,phi1,phiinf1,omega1,dphi1dep,_____dtime,h

real*8 one, two, six

parameter(one=1.d0, two=2.d0, six=6.d0)

R1=Q1*(one-___exp(-b1*eqplas))
dRdep=Q1*b1*___exp(-b1*eqplas)
syield=kyield+R1
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h=K*(deqplas/_____dtime)**(one/n)+syield

phi1=phiinf1+(one-phiinf1)*___exp(-omega1*eqplas)
dphi1dep=-omega1*(one-phiinf1)*___exp(-omega1*eqplas)
chi1=phi1+dphi1dep*deqplas

w1=(one+gamma1*phi1*deqplas)**(-one)
alfa=one+(G3+w1*C1)*deqplas/h

!
! Z stress
!

do k1=1,3
Z(k1)=stre(k1)-w1*backstre1(k1)-shydro

end do
do k1=4,6

Z(k1)=stre(k1)-w1*backstre1(k1)
end do

!
! Z equivalent stress
!

eqZ=(Z(1)-Z(2))**2+(Z(2)-Z(3))**2+(Z(3)-Z(1))**2
do k1=4,6

eqZ=eqZ+six*Z(k1)**2
end do
eqZ=____sqrt(eqZ/two)
!
! Derivatives
!
kappa=K/(n*_____dtime)*(deqplas/_____dtime)**((one-n)/n)+dRdep

FlowdotBstre1=(Z(1)*backstre1(1)+Z(2)*backstre1(2)
1 +Z(3)*backstre1(3)+two*(Z(4)*backstre1(4)
2 +Z(5)*backstre1(5)+Z(6)*backstre1(6)))/eqZ
dJ2Zdep=threetwo*FlowdotBstre1*gamma1*chi1*w1**two
term2=w1*C1*(one-gamma1*w1*chi1*deqplas)
dalfadep=(G3+term2+(one-alfa)*kappa)/h

return
end
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