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Abstract The final value value problem for the Brinkman–Forchheimer–Kelvin–Voigt equations is analysed
for quadratic and cubic types of Forchheimer nonlinearity. The main term in the Forchheimer equations is
allowed to be fully anisotropic. It is shown that the solution depends continuously on the final data provided
the solution satisfies an a priori bound in L3. The technique employed avoids the use of a specialist method
for an improperly posed problem such as logarithmic convexity.

1 Introduction

Improperly posed problems occur in many branches of real life and have attracted the attention of many
writers over a period of years and interest in this area is highly active, see e.g. Agmon [1], Agmon and
Nirenberg [2], Ames and Epperson [3], Ames et al. [5], Ames and Straughan [4], Carasso [9], Carasso [10],
Carasso [11], Chirita [12], Chirita et al. [14], Chirita and Zampoli [13], Franchi and Straughan [20], John [25],
Lattès and Lions [30], Mophou and Warma [33], Payne and Straughan [37], Payne et al. [38]. One technique
which has proved extremely useful in finding information to an improperly posed problem is that of John
[25] who demonstrated how one may recover a class of stabilization estimates by requiring an a priori bound
at a particular place or set of times. This paper has been an inspiration to many subsequent works and has
led to the establishment of continuous dependence estimates which, in particular, are of much practical use
in extrapolating from the past where one may employ the derived estimates in conjunction with numerical
methods to obtain accurate results; this is explained in detail byCarasso [9], Carasso [10], Carasso [11]. Specific
studies of deriving estimates for improperly posed backward in time problems are contained in Chirita [12],
Ciarletta [15], Crispo et al. [16], Franchi and Straughan [20], Galdi and Straughan [21], Lattès and Lions [30],
Mophou and Warma [33], Passarella et al. [36], Straughan [39].

The theory of Kelvin–Voigt fluids has been extensively analysed in the Russian literature, see e.g. Oskolkov
[34], Oskolkov and Shadiev [35]. This theory yields a class of viscoelastic fluids and properties of solutions
have been studied in detail by e.g. Kalantarov et al. [28], Kalantarov andZelik [27], Damazio et al. [17]. Our aim
is to analyse equations for a Kelvin–Voigt fluid in a porous medium which is of Brinkman–Forchheimer type.
Many studies of fluid flow in a Brinkman–Forchheimer porous medium have appeared where the saturating
fluid is viscous or even viscoelastic. However, studies of qualitative properties of solutions to the equations for
a Brinkman–Forchheimer–Kelvin–Voigt theory are relatively recent, see Anh and Trang [6], Su and Qin [41],
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Mohan [32], Thuy [42]. All of these articles deal with the forward in time problem. In this article we focus on
the backward in time problem where we consider initial data but we wish to calculate the solution backward
in time to determine the previous behaviour. Such work for the Navier–Stokes equations is well known and
uniqueness results and continuous dependence estimates, see e.g. Crispo et al. [16], Galdi and Straughan [21],
Franchi and Straughan [20], Ames and Straughan [4], Straughan [39], have led to useful bounds which may
be employed in conjunction with a suitable carefully defined numerical technique to even compute solutions
backward in time, see the important work of Carasso [10,11].

Applications of Kelvin–Voigt fluids and Brinkman–Forchheimer porous materials are very important in
everyday engineering and industrial workings. For example, Wu et al. [45] employ Brinkman–Forchheimer
theory in the treatment by acid of carbonate reservoirs. They argue that acid which is injected dissolvesmaterial
in the vicinity of the wellbore which leads to the creation of channels which improve flow between the reservoir
and the well. By employing Brinkman–Forchheimer theory they simulate the wormhole like procedure found
in real life. Gidde and Pawar [22] employ Kelvin–Voigt fluid theory to describe polydimethylsiloxane in a
micropump, Jayabal et al. [24] employ the same class of fluids to model skin in the context of the cosmetics
industry. Further use of of a Kelvin–Voigt fluid is by Jozwiak et al. [26] who model the dynamic behaviour of
biopolymer materials. The complex shear moduli of a Kelvin–Voigt fluid model are used by Erdel et al. [19]
to calculate time-dependent coefficients for anomalous diffusion in a living cell nucleus. Askarian et al. [8]
employ Kelvin–Voigt fluid models in their analysis for the foundation for pipes conveying industrial fluids.
One very important use of Kelvin - Voigt fluids is in the field of viscous dampers which are employed to reduce
the effects of vibrations in large civil engineering structures, see e.g. Greco and Marano [23], Lewandowski
and Chorazyczewski [31], Xu et al. [46]. Very high building structures like the Burj Khalifa in Dubai require
viscous dampers to control oscillations. Another example is in the tower Taipei 101 in the city of Taipei. This
tower is 1667 feet high and is very close to a fault line in the Earth’s crust. It was thus very important in its
construction to be able to withstand typhoons and earthquakes. To achieve this the building Taipei 101 employs
a 730 ton mass damper which is connected to eight viscous fluid dampers which act like shock absorbers when
the mass damper moves.

We believe this is the first analysis of a model for the flow in a Brinkman–Forchheimer–Kelvin–Voigt
porous material for the backward in time problem.We believe our continuous dependence estimates will be
useful for both analytical and numerical studies. We stress that we employ an energy type method even in
the backward in time situation. The continuous dependence achieved is of regular type and does not need to
be of Hölder type as it is for example in the analiogous Navier–Stokes problem. The reason for this is the
presence of the Kelvin–Voigt term which acts to regularize the solution even in the backward in time problem.
For the forward in time problem the regularization effect of the Kelvin–Voigt term is already known as is very
well explained by Damazio et al. [17]. This non-Hólder continuous dependence result should lead to useful
numerical schemes when employed in a manner similar to the work of Carasso [10,11].

2 Brinkman–Forchheimer–Kelvin–Voigt theory

The basic equations for Brinkman–Forchheimer–Kelvin–Voigt theory for flowof a viscoelastic fluid in a porous
medium have form

vi,t + v jvi, j − λΔvi,t = −p,i + νΔvi − ξi jv j − b|v|vi ,
vi,i = 0.

(1)

This represents flow of an incompressible fluid and vi , p are the velocity and pressure, respectively, at time t
and position x. We employ standard indicial notation in conjunction with the Einstein summation convention
throughout, so for example,

v jvi, j ≡
3∑

j=1

v j
∂vi

∂x j
≡ u

∂vi

∂x
+ v

∂vi

∂y
+ w

∂vi

∂z
,

for i = 1, 2, 3, and v = (u, v, w) ≡ (v1, v2, v3). In equation (1)Δ is the Laplacian inR3, λ is theKelvin–Voigt
coefficient, ν is the kinematic viscosity, ξi j is the anisotropic Darcy tensor, and b is the Forchheimer coefficient.
Equations (1) hold on Ω × {t > 0}, where Ω is a bounded domain in R3 with boundary Γ. Equations (1) are
to be solved subject to boundary data

vi (x, t) = hi (x, t), x ∈ Γ, (2)
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and for initial data

vi (x, 0) = qi (x), x ∈ Ω. (3)

We wish to establish continuous dependence of a solution to the boundary-initial value problem (1-3) for the
backward in time case where we consider t being negative. As we show later this yields an improperly posed
problem and our goal is to derive continuous dependence estimates on compact intervals of time.

3 Continuous dependence backward in time

To investigate continuous dependence backward in time we suppose Γ is sufficiently regular to allow applica-
tion of the divergence theorem and we let (ui , p1) and (vi , p2) be two solutions to (1)-(3) for t < 0, such that
these solutions satisfy the boundary data (2) for the same functions hi , but for different initial data functions
q1i (x) and q2i (x). Define the difference variables wi , π, and qi by

wi = ui − vi , π = p1 − p2, qi = q1i − q2i . (4)

Next replace t by −t and then the difference solution satisfies the boundary-initial value problem

wi,t − λΔwi,t = w j ui, j + v jwi, j + π,i − νΔwi + ξi jw j + b(|u|ui − |v|vi ),
wi,i = 0,

(5)

on Ω × {t > 0}, together with the boundary and initial data

wi (x, t) = 0, x ∈ Γ, t > 0,

wi (x, 0) = qi (x), x ∈ Ω.
(6)

Let the Darcy tensor ξi j (x) be symmetric and satisfy the bound

|ξi j | ≤ ξ̂ , ∀x ∈ Ω−, (7)

where Ω− is the closure of Ω. Define further the class of solutions M by those which satisfy (1-3) for t < 0
and are such that

sup
[0,T ]

‖ u ‖3≤ M, sup
[0,T ]

‖ v ‖3≤ M, (8)

where ‖ · ‖p denotes the norm on L p(Ω) and T < ∞ is given. We then have

Theorem 1 Let (ui , p) be a solution to (1)–(3) which belongs to classM for t < 0. Then this solution depends
continuously upon the initial data.

Proof To demonstrate continuous dependencewe let (ui , p1) and (vi , p2) be two solutions to (1)-(3) as defined
above. The difference solution (wi , π) then satisfies the boundary-initial value problem (5),(6) above.
Let now (·, ·) and ‖ · ‖ denote the inner product and norm on L2(Ω).
Multiply (5) by wi and integrate over Ω. After the use of boundary conditions we may obtain

d

dt

(
1

2
‖ w ‖2 +λ

2
‖ ∇w ‖2

)
= (wi , w j ui, j ) + (wi , v jwi, j )

+ (π,i , wi ) + ν ‖ ∇w ‖2 +(ξi jw j , wi )

+ b(|u|ui − |v|vi , wi ). (9)

The second and third terms on the right of (9) may be shown to be zero after integration by parts and use of the
boundary and incompressibility conditions. Integrate by parts on the first term on the right of (9) and rearrange
the last term to obtain

d

dt

(
1

2
‖ w ‖2 +λ

2
‖ ∇w ‖2

)
= − (wi, j , w j ui ) + ν ‖ ∇w ‖2

+ (ξi jw j , wi ) + b(|u|wi , wi )

+ b([|u| − |v|]vi , wi ). (10)
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Next, use the triangle inequality |w| ≥ |u| − |v|, and the bound for ξi j to deduce that

d

dt

(
1

2
‖ w ‖2 +λ

2
‖ ∇w ‖2

)
≤ − (wi, j , w j ui ) + ν ‖ ∇w ‖2

+ ξ̂ ‖ w ‖2 +b
∫

Ω

[|u| + |v|] |w|2dx . (11)

Now, employ the Cauchy-Schwarz and Hölder inequalities and the Sobolev inequality for the embedding of
H1
0 (Ω) ⊂ L6(Ω) to obtain

−(wi, j , w j ui ) ≤‖ ∇w ‖
(∫

Ω

|w|2|u|2dx
)1/2

≤‖ ∇w ‖ ‖ w ‖6 ‖ u ‖3
≤ c1 ‖ ∇w ‖2 ‖ u ‖3, (12)

where c1 is the Sobolev constant. One further requires the estimates
∫

Ω

|u| |w|2 dx ≤‖ u ‖3/2‖ w ‖26≤ c21 ‖ u ‖3/2‖ ∇w ‖2 (13)

where we have employed Hölder’s inequality and the Sobolev inequality. Next, from the Cauchy-Schwarz
inequality

∫

Ω

|u|3/2dx ≤ m1/2
(∫

Ω

|u|3dx
)1/2

, (14)

where m is the Lebesgue measure of Ω. Employing (14) in (13) we then obtain
∫

Ω

|u| |w|2dx ≤ c21 m
1/3 ‖ u ‖3‖ ∇w ‖2 . (15)

An analogous estimate holds with v replacing u. Hence, we may now employ (12) and (15) in (11) to find

d

dt

(
1

2
‖ w ‖2 +λ

2
‖ ∇w ‖2

)
≤ c2 ‖ ∇w ‖2 +ξ̂ ‖ w ‖2, (16)

where c2 = (2bc21m
1/3 + c1)M + ν. Let α = max{2ξ̂ , 2c2/λ} and then from (16) one obtains

dE

dt
≤ αE, t ∈ [0, T ], (17)

where

E(t) = 1

2
‖ w ‖2 +λ

2
‖ ∇w ‖2 . (18)

Upon integration (17) yields

1

2
‖ w(t) ‖2 +λ

2
‖ ∇w(t) ‖2≤ eαt E(0), (19)

∀t ∈ [0, T ]. The theorem is thus proved.

Remark 1 It is noteworthy that we have proved continuous dependence in the final value problem by means
of an energy-like technique. For the Navier–Stokes version of the Brinkman–Forchheimer equation where
the Kelvin–Voigt term is not present such an energy technique fails and one requires a specialist method like
logarithmic convexity. In addition the bounds imposed upon ui and vi are weaker than those required in the
analogous Navier–Stokes theory, cf. eg. Franchi and Straughan [20]. Furthermore, the continuous dependence,
equation (19), is not of Hölder type as in the Navier–Stokes case. When the dependence is of Hölder type the
exponent of the initial data measure depends on the Hölder coefficient and the estimate holds on [0, T ) and is
weaker as t approaches T−. The result (19) hinges on the presence of the Kelvin–Voigt term λ‖∇w‖2.
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Remark 2 If we were to enclose the fluid and porous medium for equations (1) in an isolated cannister, shake
the system, and then hold it steady at time t = 0 it is of interest to observe the behaviour for negative time.
Such a motion is known as isolated cannister flow, see Dunn and Fosdick [18]. For this case we take equations
(1) for t < 0 and select the boundary data hi ≡ 0 in (2). Then we multiply equation (1) by vi for t < 0 to
obtain (reversing time by switching t → −t)

d

dt

(
1

2
‖ v ‖2 +λ

2
‖ ∇v ‖2

)
= ν ‖ ∇v ‖2 +(ξi jv j , vi ) + b ‖ v ‖33 . (20)

Suppose now

ξi jηiη j ≥ 0, ∀ηi �= 0, (21)

then write the ν term as ν = νγ + ν(1 − γ ), some 0 < γ < 1, and one finds

d

dt

(
1

2
‖ v ‖2 +λ

2
‖ ∇v ‖2

)
≥ γ ν ‖ ∇v ‖2 +(1 − γ )νλ1 ‖ v ‖2, (22)

where λ1(Ω) is the first eigenvalue in the membrane problem for Ω. Pick

γ = 2λλ1

1 + 2λλ1

and then for

k = 2λ1ν

1 + 2λλ1

one may derive from (22)

dF

dt
≥ kF, (23)

where

F = 1

2
‖ v ‖2 +λ

2
‖ ∇v ‖2 .

Hence,

F(t) ≥ F(0) exp(kt). (24)

This shows that in general the boundary-initial value problem (1–2) for t < 0 is non-well posed for all time.

Remark 3 If we consider isolated cannister flow without the Kelvin–Voigt term, i.e. set λ = 0 in (1), then
instead of (20) we obtain

d

dt

1

2
‖ v ‖2= ν ‖ ∇v ‖2 +(ξi jv j , vi ) + b ‖ v ‖33 . (25)

Adopting (21) and using Hölder’s inequality with now G(t) = ‖v‖2/2, we find from (25),

G ′ ≥ 2νλ1G + 23/2

m2/3 G3/2. (26)

Under suitable conditions on G(0), inequality (26) leads to blow-up in finite time and nonexistence of the
solution for all time.

The continuous dependence estimate (19) relies on the bounds (8). The theorem only holds if this is true.
In general, we do not know if a solution to (1) exists for all t . Consider the simple model

ut − λΔut = −νΔu + ξu + bu1+α, α > 0,

u(x, 0) = u0(x), x ∈ Ω,

u(x, t) = 0, on Γ,

(27)
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where the domain is Ω × {t > 0} and u0 is positive. Use the eigenfunction method, cf. Straughan [40,
pp. 10,11], for which one introduces

Δφ + λ1φ = 0, x ∈ Ω,

φ = 0, x ∈ Γ,

where λ1 is the first eigenvalue and φ > 0 is the first eigenfunction of the membrane problem for Ω . Set

H(t) =
∫

Ω

φu dx,

then for (27) one finds

dH

dt
≥ aH + cH1+α, (28)

where

a = νλ1 + ξ

1 + λλ1
, c = b

Φ1+α(1 + λλ1)
,

Φ = ∫
Ω

φ dx . Inequality (28) is integrated to find

Hα(t) ≥ Hα(0)eaαt

1 − h(eaαt − 1)
, (29)

where

h = bHα(0)

(νλ1 + ξ)Φ1+α
.

For initial data such that H(0) > 0, inequality (29) leads to global nonexistence, with for suitable initial data,
blow-up in finite time. The blow-up time for the right hand side of (29) is

T = 1

aα
log

(
1 + 1

h

)
. (30)

Note that for λ large, T is large, whereas for b large, T is small, so λ does act to regularize.
The fact that the simple model (27) suggests blow-up in finite time does occur does not prove anything for

the backward in time problem for (1). There are three immediate differences with the model. Equations (1)
are a system, vi satisfies the constraint vi,i = 0, and the presence of the convective term −vivi, j . For some
partial differential equation systems the convective term can prevent blow-up with forcing terms up to u2, see
Straughan [40, pp. 37–39], and the references therein.

4 Continuous dependence with a second Forchheimer term

Some writers employ a stronger Forchheimer term than that in (1), cf. Antontsev and Khompysh [7], Ugurlu
[43], Wang and Lin [44]. And then on may wish to consider the boundary-initial value problem consisting of
(2) and (3) but with (1) replaced by

vi,t + v jvi, j − λΔvi,t = −p,i + νΔvi − ξi jv j − b|v|vi − c|v|2vi ,
vi,i = 0.

(31)

One may establish continuous dependence on the initial data for a solution to Eq. (31) backward in time by
proceeding as in Sect. 3. In addition to the analysis of Sect. 3 one encounters upon multiplying the difference
equation by wi a term of form

c(|u|2ui − |v|2vi )wi = c
(|u|2wiwi + [|u|2 − |v|2]viwi

)

= c
(|u|2wiwi + [u j + v j ]w jviwi

)

≤ 3c

2
wiwi

(|u|2 + |v|2) .

(32)
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Thus in the analogous derivation to (17) one encounters the term

3c

2

∫

Ω

wiwi (|u|2 + |v|2)dx . (33)

This term is handled by Hölder’s inequality and the Sobolev inequality as

∫

Ω

|u|2wiwi dx ≤‖ w ‖26 ‖ u ‖23≤ c21 ‖ ∇w ‖2 ‖ u ‖23 . (34)

Hence we find

c
∫

Ω

(|u|2ui − |v|2vi
)
dx ≤ 3cc21

2
‖ ∇w ‖2 (‖ u ‖23 + ‖ v ‖23

)

≤ 3cc21M
2 ‖ ∇w ‖2 .

(35)

We thus arrive at an inequality like (17) but now

α = max

{
2ξ̂ ,

2c3
λ

}
where c3 = 3cc1M

2 + c2.

Remark 4 Similar comments to those of remark3 apply to themodel of this section.The continuous dependence
estimate relies on the solution belonging to the classM, which is in keeping with the procedure advocated by
John [25].

5 Inclusion of temperature effects

Damazio et al. [17] argue that the λ term in the Kelvin–Voigt theory should be regarded as a regularizing term.
Kaya [29] studies a thermal convection problem for the Navier-Stokes-Voigt equations but this article also
introduces a regularization term in the energy balance equation. One may wish to introduce such terms in a
non-isothermal theory for the Brinkman–Forchheimer–Kelvin–Voigt theory and then we replace (1–3) by

vi,t + v jvi, j − λΔvi,t = −p,i + νΔvi − ξi jv j − b|v|vi + gi T,

vi,i = 0,

T,t + vi T,i − χΔT,t = κΔT,

(36)

in Ω × {t < 0},

vi (x, t) = hi (x, t), T = H(x, t), x ∈ Γ,

vi (x, 0) = qi (x), T (x, 0) = Q(x), x ∈ Ω.
(37)

One may employ a technique similar to that of Sect. 3 to demonstrate continuous dependence on the final data
for the backward in time problem for (36), (37).
The analysis employs a function E of form

E(t) = 1

2
‖ w ‖2 +λ

2
‖ ∇w ‖2 +1

2
‖ θ ‖2 +χ

2
‖ ∇θ ‖2, (38)

where θ is the difference in temperature for two solutions to (36), (37) for the same boundary data, but different
initial data.
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6 Conclusions

We have analyzed the solutions to the Brinkman–Forchheimer–Kelvin–Voigt equations for the improperly
posed backward in time problem. By employingwhat is essentially an energymethod and aweak a priori bound
on the class of solutions we have been able to produce estimates which demonstrate continuous dependence
upon the final data for compact intervals of time. This should be contrasted with the analogous class of problem
where Kelvin–Voigt theory is not employed and an energy method fails. The Forchheimer nonlinear term has
been allowed to be quadratic in the velocity field, and then generalized to include a cubic term. We have
further shown how temperature effects may be included provided a Kelvin–Voigt regularization is applied to
the balance of energy equation in addition the inclusion in the momentum equation. In all cases, continuous
dependence upon the final data is established under a relatively weak a priori bound.
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