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Abstract In this work, the J-, M- and L-integrals of two line charges and two line forces in generalized plane
strain are derived in the framework of three-dimensional (3D) electrostatics and three-dimensional compatible
linear elasticity, respectively, in order to study the interaction between them. The key point in this derivation
is achieved by expressing the J-, M- and L-integrals of point charges and point forces in three dimensions in
terms of the corresponding three-dimensional Green functions, that is, the three-dimensional Green function
of the Laplace operator and the three-dimensional Green tensor of the Navier operator, respectively. The
major mathematical tool used in deriving the J-, M- and L3-integrals of line charges and line forces from
the corresponding J-, M- and L-integrals of point charges and point forces is the method of embedding or
method of descent of Green functions to two dimensions (2D) from the corresponding Green functions in 3D.
The analytical expressions of J-, M- and L3-integrals of line charges and line forces in antiplane and plane
strain are derived and discussed. The J-integral is the electrostatic part of the Lorentz force (electrostatic
interaction force) between two line charges in electrostatics and the Cherepanov force between two line forces
in elasticity. The M-integral of two line sources (charges or forces) equals half the electrostatic interaction
energy in electrostatics and half the elastic interaction energy in elasticity of these two line sources, respectively.
The L3-integral of two line sources (charges or forces) is the z-component of the configurational vectormoment
or the rotational moment representing the total torque about the z-axis caused by the interaction of the two
line sources. An important outcome is that the J-integral is twice the negative gradient of the M-integral,
leading to the result that the J-integral for line charges and line forces is a conservative force (with the
corresponding interaction energy playing the role of the potential energy) and consequently an irrotational
vector field. Finally, the obtained J-, M- and L3-integrals being functions of the distance and of the angle, are
able to describe the physical behaviour of the interaction of two line sources (charges and forces), since they
represent the fundamental and necessary quantities, that is, the interaction force, interaction energy and total
torque produced by the interaction of these two line sources.

1 Introduction

The J-,M- and L-integrals are fundamental concepts in continuummechanics theories like elasticity, electroe-
lasticity, thermoelasticity as well as in defect theories like fracture mechanics, dislocation theory and inclusion
theory (see, e.g., [12,14,22,29,32,33]). Seven conservation laws of elasticity, which are related to translational,
rotational, and scaling symmetries, were originally derived by Günther [18], and Knowles and Sternberg [24].
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The corresponding conservation integrals are the J-, L- and M-integrals introduced by Budiansky and Rice
[11]. Budiansky and Rice [11] were the first to give a physical interpretation to the J-, L- and M-integrals
as the energy-release rates per unit cavity translation, rotation and expansion, respectively. The J-integral
for cracks is widely used and known as the J-integral of Rice [39], which is the driving force acting on the
crack tip and it is a material or configurational force [33]. The J-integral of dislocations is equivalent to the
well-known Peach-Koehler force that is the interaction force between two dislocations [23,40,45] and it is also
a configurational force. In the framework of configurational or Eshelbian mechanics, Lazar and Kirchner [29]
showed that, in the general case of anisotropic linear first strain gradient elasticity for non-homogeneous and
incompatible media with dislocations and body forces present, the J-integral gives the sum of configurational
forces of different origin, namely the Peach-Koehler force for dislocations, the Cherepanov force due to body
forces and the Eshelby force due to inhomogeneities, the M-integral is equivalent to the total configurational
or material work and the L-integral is equivalent to the sum of configurational or material vector moments also
of different origin (see also [3]). An extensive introduction about the J-, M- and L-integrals can be found in
Agiasofitou and Lazar [2], Lazar and Agiasofitou [28] and the references therein. A recent monograph devoted
in the field of configurational mechanics, presenting among others, various vistas of the material or configu-
rational forces and highlighting its advantages to tackle problems in continuum defect mechanics, providing
a dissipation-consistent approach, has been given by Steinmann [42].

Special attention should be paid to the M-integral and its physical interpretation. Rice [40] was the first to
raise the question “What is M for a dislocation?” and studying the M-integral when centered on a dislocation
line in the framework of two-dimensional, compatible linear elasticity, he found that the M-integral equals
to the “dislocation energy factor”. In fracture mechanics, first Chen [12] wrote explicitly that the M-integral
equals twice the change of the total potential energy owed to single cracking of a central crack in a plane elastic
body. In the framework of three-dimensional incompatible elasticity of dislocations, the physical interpretation
of the M- and L-integrals for dislocations was given for the first time in Agiasofitou and Lazar [2]. Namely, the
M-integral between two straight dislocations (per unit dislocation length) is equal to the half of the interaction
energy of the two dislocations (per unit dislocation length) depending on the distance and on the angle, plus
twice the corresponding pre-logarithmic energy factor and the L3-integral between two straight dislocations is
the z-component of the configurational vector moment or the rotational moment about the z-axis caused by the
interaction of the two dislocations [2]. Moreover, the J-, M- and L-integrals of body charges and point charges
in electrostatics, and the J-, M- and L-integrals of body forces and point forces in elasticity have been given
by Lazar and Agiasofitou [28]. In particular, it is proven that the J-integral of body charges in electrostatics
represents the electrostatic part of the Lorentz force, and the J-integral of body forces in elasticity represents
the Cherepanov force, both of them are configurational forces. The M-integral of two point sources (charges or
forces) equals half the electrostatic interaction energy in electrostatics and half the elastic interaction energy in
elasticity of these two point sources. The L-integral represents the configurational vectormoment or total torque
between two body or point sources (charges or forces). The physical interpretation of the M-integral given
above in [2,28] is in full agreement with the physical interpretation of the M-integral in fracture mechanics as
we have discussed above given in [12].

It becomes clear that, in general, the J-integral is equivalent to the interaction force (electrostatic part of the
Lorentz force in electrostatics, Peach-Koehler force of dislocations, Cherepanov force of point forces) and it is
a configurational force. The M-integral is interaction energy (electrostatic interaction energy in electrostatics,
interaction energy between two dislocations, elastic interaction energy between two point forces in elasticity)
and it is not representing a “force” as misleadingly stated in the literature as “self-similar expansion force”
[41] or “generalized force” [17]. Finally, the L-integral represents the total torque and it is a configurational
vector moment [2,27,28]. This physical interpretation of the examined integrals has been also shown to be
true in more complicated cases such as for electro-elastic dislocations in piezoelectric materials [3] and even
for the complex structure of quasicrystals [26].

A crucial point that is noteworthy to be highlighted and which can shed light to the misunderstandings
around the physical interpretation of the M-integral is that the analytical expression of the M-integral for a
two-dimensional body is different than that for a three-dimensional body. This happens because the M-integral
depends on the space dimension (see related discussion in [2]), since it is inherently related to the group of
scaling transformations and the scaling or canonical dimension of the field variable of elasticity, that is of
the displacement field, is different in 2D than that in 3D (see, e.g., [2,28]). For physical phenomena such as
straight dislocations and line forces that have to be treated in three dimensions (so n = 3) due to their physics,
if one reduces the study of these problems to two dimensions (so n = 2), then the M-integral is just a constant
(see, e.g., [4,5,10,20,40,41]) loosing the important contribution which offers the functional dependence on
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the distance and on the angle between the examined defects or sources like dislocations, charges, point forces,
etc. (see [2,28]).

A line force is a line singularity in a three-dimensional medium. Lazar and Maugin [31] found closed
analytical solutions for the displacement fields of line forces, free of singularities, in the framework of simplified
first strain gradient elasticity. In addition, generalized plane strain is a two-dimensional deformation in a three-
dimensional body (see, e.g., [34]). Therefore, the problem of the interaction of two line forces has to be studied
in the framework of three-dimensional compatible linear elasticity, considering for the calculation of the M-
integral the space dimension equals three (n = 3). Regarding previous results in the literature as far as the
J-, M- and L3-integrals of line forces are concerned, the J-, M- and L3-integrals of two-dimensional elastic
line singularities (among them also line forces) in the framework of plane strain linear elasticity have been
derived by Seo et al. [41] but only in a marginal case without providing the general analytical expressions of
the examined integrals. Moreover, the M-integral in [41] being a constant (since it has been considered n = 2)
cannot capture the interaction between the two line forces in contrast to the M-integral derived in this work
(for n = 3), which is a function of the distance and of the angle and in this way the physics of the physical
phenomenon can be appropriately described (see related discussion in the Appendix A). It is important to pay
attention to this matter, since the results and statements in [41] about the M-integral of line forces have been
taken over in a recent review article [20] about the M-integral.

This article is organized as follows. In Sect. 2, the J (AB)-, M (AB)- and L(AB)-integrals of point charges
and point forces in 3D are given for the first time in terms of the three-dimensional Green function G(3)(R)

of the Laplace operator and the three-dimensional Green tensor G(3)(R) of the Navier operator, respectively,
giving the opportunity to use the method of embedding or method of descent of Green functions to 2D from
3D in Sect. 3 and to obtain the desired J (AB)-, M (AB)- and L(AB)

3 -integrals of line charges and line forces.

The explicit expressions of the J (AB)-, M (AB)- and L(AB)
3 -integrals for two parallel line forces in antiplane

and plane strain are derived in Sects. 4 and 5 examining all possible directions of strengths. In addition, the
J (AB)
r -, J (AB)

ϕ -, M (AB)- and L(AB)
3 -integrals are given in terms of the corresponding pre-logarithmic energy

factor of line forces which is introduced here for the first time in analogy to the pre-logarithmic energy factor of
dislocations. The result that the J (AB)-integral is twice the negative gradient of the M (AB)-integral gives rise
to prove that the J (AB)-integral for line charges and line forces is a conservative force in Sect. 6. The results
are summarized in the conclusions in Sect. 7. The Appendix A serves to make the necessary comparisons with
the already given results in the literature and to highlight important aspects concerning the M (AB)-integral.

2 J-, M- and L-integrals of point charges and point forces in 3D

In this Section, we present in brief the J (AB)-,M (AB)- and L(AB)-integrals of point charges in electrostatics and
point forces in elasticity in 3D that have been derived in Lazar and Agiasofitou [28]. We recall only the results
that are necessary for the purpose of this work. The reader is addressed to [28] for an extensive presentation and
detailed derivations. In particular, the J (AB)-, M (AB)- and L(AB)-integrals of point charges and point forces in
3D with the “source field” applied at the origin derived in [28], are used and further expressed in terms of the
corresponding three-dimensional Green functions providing the appropriate expressions for the forthcoming
calculations.

2.1 Electrostatics: point charges in 3D

Let us consider an unbounded, linear, homogeneous and isotropic medium. In electrostatics, the field variable
is the electrostatic potential ϕ = ϕ(x). The electric field strength vector Ek = Ek(x) is defined as the negative
gradient of the electrostatic potential ϕ:

Ek = −∂kϕ , (E = −gradϕ) , (1)

if the electrostatic Bianchi identity, which has the meaning of electrostatic compatibility condition, is fulfilled

εi jk∂ j Ek = 0 , (curl E = 0) , (2)

where εi jk is the Levi-Civita tensor and ∂ j denotes partial differentiation with respect to the spatial coordinates
x j , j = 1, 2, 3.
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Considering the interaction between an electric field E (B)
i = E (B)

i (x) or the corresponding electrostatic
potential ϕ(B) = ϕ(B)(x) as source field and a body charge density q(A) = q(A)(x) as receiver field, then the
J (AB)
k -, M (AB)- and L(AB)

k -integrals for continuous body charge density distributions are given by [28]

J (AB)
k =

∫
V
q(A)E (B)

k dV , (3)

M (AB) =
∫
V

(
xkq

(A)E (B)
k − 1

2
q(A)ϕ(B)

)
dV , (4)

L(AB)
k =

∫
V

εk ji x j q
(A)E (B)

i dV , (5)

where i, j, k = 1, 2, 3. We recall here that the J-integral of electrostatics represents the electrostatic force,
which is the electrostatic part of the Lorentz force

FL
k =

∫
V

f Lk dV , (6)

since

f Lk = qEk (7)

is the electrostatic part of the Lorentz force density. The latter is the electrostatic force density on a body charge
density q in presence of an electric field Ek . Therefore, it can be seen in Eq. (3) that the J (AB)

k -integral is the

electrostatic force on the body charge density q(A) in presence of the electric field E (B)
k :

J (AB)
k ≡ FL(AB)

k . (8)

It should be noted that for the derivation of the M (AB)-integral given by Eq. (4), the space dimension has been
taken equal to three, n = 3 (see [28]).

We consider now that the body contains two point charge densities, q(A) located at point A with position
vector x(A) and q(B) located at point B with position vector x(B). The point B is the “source-point” (point
of sender) where the charge density q(B), playing the role of a “source charge”, is located; and A is the
“field-point” (point of receiver) where the charge density q(A), playing the role of a test charge measuring the
electrostatic force, energy and torque, is located. The two body charge densities can be modelled in terms of
the point charges q̂(A) and q̂(B) and the three-dimensional Dirac delta function δ(x) as follows

q(A)(x) = q̂(A) δ(x − x(A)) , (9)

q(B)(x) = q̂(B) δ(x − x(B)) . (10)

In the case that the interaction is between a point charge (source charge) q̂(B) located at the origin of the
coordinate system O , that is x(B) = 0, and a point charge (test charge) q̂(A) located at the position R = x(A) =
(x̄, ȳ, z̄), then the J (AB)-, M (AB)- and L(AB)-integrals in 3D for point charges with the “source charge” at
the origin read as [28]

J (AB)
k = q̂(A)q̂(B)

4πε

Rk

R3 = FL(AB)
k , (11)

M (AB) = q̂(A)q̂(B)

8πε

1

R
= 1

2
U (AB) , (12)

L(AB)
k = 0 , (13)

where R = |x(A)| = √
x̄2 + ȳ2 + z̄2 and ε denotes the permittivity of material or dielectric constant of matter.

It can be seen in Eq. (11) that the electrostatic J (AB)-integral is the electrostatic force FL(AB) acting on
the point charge q̂(A) that is placed at the position x(A) due to the point charge q̂(B) placed at the position
x(B) ≡ O and it is provided by the famous Coulomb law, which is the experimentally established law for the
electrostatic part of the Lorentz force between two point charges in isotropic media. The electrostatic force
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along the line from B to A is repulsive if q̂(B) and q̂(A) have the same sign, and attractive if their signs are
opposite. Equation (12) shows that the M (AB)-integral is half the electrostatic interaction energy U (AB) of
the two point charges (see, e.g., [21,28]). Equation (13) gives a zero value for the L(AB)-integral, which is
reasonable since there is no torque between two scalar fields.

The important observation that can be made at this point is that the non-vanishingJ (AB)- and M (AB)-
integrals of point charges in 3D, Eqs. (11) and (12), can be written in terms of the three-dimensional Green
function G(3)(R) of the Laplace operator as follows

J (AB)
k = −q̂(A)q̂(B) ∂kG

(3)(R) , (14)

M (AB) = 1

2
q̂(A)q̂(B)G(3)(R) , (15)

where the three-dimensional Green function of the Laplace operator is given by (see, e.g., [9,28])

G(3)(R) = 1

4πε

1

R
. (16)

2.2 Elasticity: point forces in 3D

Let us consider an unbounded, linear, homogeneous and isotropic elastic body. In elasticity, the field variable
is the displacement vector u = u(x). The elastic distortion tensor βik = βik(x) can be written as gradient of
a displacement vector field ui :

βik = ∂kui , (17)

if the compatibility condition of elasticity

ε jlk∂lβik = 0

is fulfilled.
Considering the interaction between an elastic distortion β

(B)
ik (x) or the corresponding displacement field

u(B)
i (x) as source field and a body force density f (A)

i (x) as receiver field, then the J (AB)-, M (AB)- and
L(AB)-integrals in 3D for continuous body force density distributions are given by [28]

J (AB)
k =

∫
V

f (A)
i β

(B)
ik dV , (18)

M (AB) =
∫
V

(
xk f

(A)
i β

(B)
ik + 1

2
f (A)
i u(B)

i

)
dV , (19)

L(AB)
k =

∫
V

εk ji

(
x j f

(A)
m β

(B)
mi + f (A)

j u(B)
i

)
dV . (20)

In Eq. (18), it can be seen that the J (AB)
k -integral is the Cherepanov force FC(AB)

k on the body force density

f (A)
i in presence of the elastic distortion β

(B)
ik :

J (AB)
k ≡ FC(AB)

k . (21)

To recall, the Cherepanov force is given by

FC
k =

∫
V

f Ck dV , (22)

where

f Ck = fiβik (23)

is the so-called Cherepanov force density [13], which is the configurational force density acting on a body
force density fi in presence of an elastic distortion βik .
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The body force densities f (A)
i and f (B)

j can be modelled with the point forces f̂ (A)
i and f̂ (B)

j as follows

f (A)
i (x) = f̂ (A)

i δ(x − x(A)) , (24)

f (B)
j (x′) = f̂ (B)

j δ(x′ − x(B)) , (25)

where x(A) and x(B) are the position vectors of the points A and B and f̂ (A)
i and f̂ (B)

j are the strengths of the

point forces, respectively. For the interaction between a point force (source force) of strength, f̂ (B)
j , located at

the point B which coincides with the origin of the coordinate system O , so that the position vector x(B) = 0
and a point force (test force) of strength, f̂ (A)

i , located at the point A with position vector R = x(A), the
J (AB)-, M (AB)- and L(AB)-integrals in 3D for point forces with the “source force” applied at the origin are
given by [28]

J (AB)
k = − f̂ (A)

i f̂ (B)
j

16πμ(1 − ν)R2

[
(3 − 4ν)δi j

Rk

R
− δik

R j

R
− δ jk

Ri

R
+ 3

Ri R j Rk

R3

]
= FC(AB)

k , (26)

M (AB) = − f̂ (A)
i f̂ (B)

j

32πμ(1 − ν)R

[
(3 − 4ν)δi j + Ri R j

R2

]
= 1

2
U (AB) , (27)

L(AB)
k = εk ji f̂

(A)
l f̂ (B)

i

16πμ(1 − ν)R

[
(3 − 4ν)δ jl + R j Rl

R2

]
= T (AB)

k , (28)

where μ is the shear modulus and ν is the Poisson ratio. Here, U (AB) denotes the elastic interaction energy
and T (AB)

k denotes the total torque vector of the two point forces. It has to be noticed that for the derivation of
the M (AB)-integral in Eqs. (19) and (27), the space dimension has been taken equal to three, n = 3 (see [28]).

The crucial step here is to observe that in the above expressions of the J (AB)
k -, M (AB)- and L(AB)

k -integrals,

Eqs. (26)–(28), the three-dimensional Green tensor G(3)
i j (R) of the Navier operator and its gradient appear.

Hence, the J (AB)
k -, M (AB)- and L(AB)

k -integrals of point forces in 3D can be given in terms of the three-

dimensional Green tensor function G(3)
i j (R) of the Navier operator by the following simple formulas:

J (AB)
k = f̂ (A)

i f̂ (B)
j ∂kG

(3)
i j (R) , (29)

M (AB) = −1

2
f̂ (A)
i f̂ (B)

j G(3)
i j (R) , (30)

L(AB)
k = εk ji f̂

(B)
i f̂ (A)

l G(3)
jl (R) , (31)

where the three-dimensional Green tensor of the Navier operator is given by (see, e.g., [28,32,35])

G(3)
i j (R) = 1

16πμ(1 − ν)R

[
(3 − 4ν)δi j + Ri R j

R2

]
. (32)

3 Method of embedding or method of descent to 2D from 3D

Line charges and line forces can be viewed as infinitely long line sources along the entire z-axis in 3D. By
symmetry, the problem of line sources is independent of z̄ and is a 2D problem which is embedded in the 3D
space (see, e.g., [9]). Therefore, the solution of line sources depending on (x̄, ȳ) can be obtained from the
solution of point sources depending on (x̄, ȳ, z̄) using the projection from 3D to 2D.

In this manner, the J-, M- and L-integrals of line charges and line forces can be constructed from the
J-, M- and L-integrals of point charges and point forces using the method of embedding [9] or the so-called
method of descent following Hadamard [19], because one is descending to 2D from 3D via the following
relations [9,43]

Jk(x̄, ȳ) =
∫ ∞

−∞
Jk(x̄, ȳ, z̄) dz̄ , (33)
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M(x̄, ȳ) =
∫ ∞

−∞
M(x̄, ȳ, z̄) dz̄ , (34)

Lk(x̄, ȳ) =
∫ ∞

−∞
Lk(x̄, ȳ, z̄) dz̄ . (35)

Eqs. (33)–(35) give the projection of the three-dimensional Jk(x̄, ȳ, z̄)-, M(x̄, ȳ, z̄)- and Lk(x̄, ȳ, z̄)-integrals
onto the x̄ ȳ-plane and these are the Jk(x̄, ȳ)-, M(x̄, ȳ)- and Lk(x̄, ȳ)-integrals per unit length lz embedded in
the 3D space. For reasons of brevity, per unit length lz is omitted to be written explicitly in the formulas of
the Jk(x̄, ȳ)-, M(x̄, ȳ)- and Lk(x̄, ȳ)-integrals. However, it is implied that it is per unit length lz . It has to be
noticed that the second term in the M-integral in Eqs. (4) and (19) arises by considering the space dimension1

n = 3 and survives without being influenced by the projection, which is very reasonable since line sources
“live” in 3D.

A great advantage of expressing the J (AB)
k -, M (AB)- and L(AB)

k -integrals of point charges in 3D, Eqs. (14),

(15) and (13), in terms of the three-dimensional Green function G(3)(R), Eq. (16), and the J (AB)
k -, M (AB)- and

L(AB)
k -integrals of point forces in 3D, Eqs. (29), (30) and (31), in terms of the three-dimensional Green tensor

function G(3)
i j (R), Eq. (32), is that the projection of the three-dimensional J (AB)

k (x̄, ȳ, z̄)-, M (AB)(x̄, ȳ, z̄)-

and L(AB)
k (x̄, ȳ, z̄)-integrals onto the x̄ ȳ-plane via Eqs. (33)–(35) is reduced to the projection or descending

of the corresponding Green functions from 3D to 2D, which is a well-known technique in the theory of partial
differential equations (see, e.g., [9,43]) and it will be applied in the forthcoming Sects. 4 and 5.

The method of projection from 3D to 2D has also been used in dislocation theory for the calculation of
solutions of straight dislocations in isotropic materials (see, e.g, [6,35]), whereas the method of the projection-
slice theorem has been used for dislocations in anisotropic materials in [30].

4 J-, M- and L3-integrals of line charges

In this Section, we consider two infinitely long straight line charges parallel to z-direction in an unbounded,
homogeneous and isotropic body.

Substituting the J (AB)
k -, M (AB)- and L(AB)

k -integrals of two point charges, Eqs. (14), (15) and (13) into

Eqs. (33), (34) and (35), respectively, we obtain the J (AB)
k -, M (AB)- and L(AB)

k -integrals of two parallel line
charges

J (AB)
k (x̄, ȳ) = −q̂(A)q̂(B) ∂kG

(2)(x̄, ȳ) , k = 1, 2 , (36)

M (AB)(x̄, ȳ) = 1

2
q̂(A)q̂(B)G(2)(x̄, ȳ) , (37)

L(AB)
3 (x̄, ȳ) = 0 , (38)

where

G(2)(x̄, ȳ) =
∫ ∞

−∞
G(3)(x̄, ȳ, z̄) dz̄ (39)

is the two-dimensional Green function of the Laplace operator. Using Eq. (16), Eq. (39) is explicitly written
(see, e.g., [9])

G(2)(x̄, ȳ) = − 1

2πε
ln

r̄

L
, (40)

where r̄ = √
x̄2 + ȳ2 and L denotes the length of the line charge in z-direction. Note that the argument of a

logarithm must be dimensionless (see, e.g., [9]) and this is guaranteed by dividing r̄ with the length L in the
two-dimensional Green function (40) due to the projection from 3D to 2D. In fact, the limits of the integral
from −∞ to ∞ in Eq. (39) are replaced by finite numbers from −L/2 to L/2 and the final expression (40) is
valid for large L/r̄ (see [9]). From a mathematical point of view, L is a cut-off parameter.

1 The scaling or canonical dimension of the scalar field ϕ is the same as the scaling dimension of the vector field u: dϕ = du =
−1/2 (see [15,28]).
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x

y

r̄

q̂(B)

q̂(A)

Fig. 1 Interaction between two parallel line charges q̂(A) and q̂(B) located at positions (x̄, ȳ) and (0, 0), respectively

Comparing the J (AB)
k -,M (AB)- and L(AB)

k -integrals of point charges in 3D, Eqs. (14), (15) and (13), with the
corresponding ones of line charges, Eqs. (36), (37) and (38), it is important to make the following observation.
In electrostatics, the projection of the J (AB)

k -, M (AB)- and L(AB)
k -integrals from 3D to 2D is reduced to the

projection of the Green function of the Laplace operator from 3D to 2D: G(3)(x̄, ȳ, z̄) −→ G(2)(x̄, ȳ) leading
in this way to a known and standard quantity in the theory of partial differential equations, G(2)(x̄, ȳ), (see,
e.g., [9,43]). Indeed, substituting the two-dimensional Green function (40) into Eqs. (36)–(38), we obtain the
explicit expressions for theJ (AB)

k -, M (AB)- and L(AB)
k -integrals of two parallel line charges:

J (AB)
1 (x̄, ȳ) = q̂(A)q̂(B)

2πε

x̄

x̄2 + ȳ2
= FL(AB)

1 , (41)

J (AB)
2 (x̄, ȳ) = q̂(A)q̂(B)

2πε

ȳ

x̄2 + ȳ2
= FL(AB)

2 , (42)

M (AB)(x̄, ȳ) = − q̂(A)q̂(B)

4πε
ln

r̄

L
= 1

2
U (AB) , (43)

L(AB)
3 (x̄, ȳ) = 0 . (44)

Here, r̄ = √
x̄2 + ȳ2 is the distance between the two line charges (see Fig. 1). Equations (41) and (42) give

the non-vanishing components of the electrostatic part of the Lorentz force FL(AB), which is the electrostatic
interaction force between the two line charges and is plotted in Fig. 2. It can be seen that the electrostatic
forceFL(AB) is repulsive if q̂(A)q̂(B) > 0 (Fig. 2(a)) and is attractive if q̂(A)q̂(B) < 0 (Fig. 2(b)). The M (AB)-
integral, Eq. (43), equals half the electrostatic interaction energy (per unit length) of the two line charges

M (AB) = 1

2
U (AB) , (45)

where the electrostatic interaction energy is given by (see [28])

U (AB) = q̂(A)ϕ(B) = − q̂(A)q̂(B)

2πε
ln

r̄

L
(46)

with the electrostatic potential of a line charge

ϕ(B) = G(2)q̂(B) . (47)

In a cylindrical coordinate system with basis (er , eϕ, ez), the two components J (AB)
r and J (AB)

ϕ of the

J (AB)
k -integral of two line charges simplify to

J (AB)
r = J (AB)

1 cosϕ + J (AB)
2 sin ϕ = q̂(A)q̂(B)

2πε

1

r̄
= FL(AB)

r , (48)
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Fig. 2 Electrostatic force FL(AB) given by the J (AB)-integral (J (AB)
1 (x̄, ȳ), J (AB)

2 (x̄, ȳ)) of two parallel line charges with: (a)

q̂(A)q̂(B) > 0, and (b) q̂(A)q̂(B) < 0 plotted in units of |q̂(A)q̂(B)|
2πε

J (AB)
ϕ = J (AB)

2 cosϕ − J (AB)
1 sin ϕ = 0 = FL(AB)

ϕ . (49)

It can be seen that the electrostatic force between two parallel line charges is a purely radial force, since
FL(AB)

ϕ = 0. Hence,

FL(AB) = FL(AB)
r (r̄) er ,

which means that the electrostatic force is a central force (in 2D). If FL(AB)
r is positive (or negative), then

the electrostatic force is repulsive (or attractive). In other words, FL(AB) is repulsive if FL(AB)
r > 0, that

is q̂(A)q̂(B) > 0 and is attractive if FL(AB)
r < 0, that is q̂(A)q̂(B) < 0. Therefore, the Coulomb law (see,

e.g., [21,38]) stating that charges with opposite sign attract each other (Coulomb attraction) and charges with
same sign repel each other (Coulomb repulsion) is reproduced also for line charges using the concept of the
J (AB)-integral.

To sum up, the J (AB)-, M (AB)- and L(AB)
3 -integrals of two parallel line charges q̂(A) and q̂(B) are given

by:

J (AB)
r = q̂(A)q̂(B)

2πε

1

r̄
= FL(AB)

r , (50)

J (AB)
ϕ = 0 = FL(AB)

ϕ , (51)

M (AB) = − q̂(A)q̂(B)

4πε
ln

r̄

L
= 1

2
U (AB) , (52)

L(AB)
3 = 0 . (53)

5 J-, M- and L3-integrals of line forces

In this Section, we consider two infinitely long straight line forces (parallel to z-direction) of uniform strength
per unit length in an unbounded, homogeneous and isotropic elastic body.

Substituting the J (AB)
k -, M (AB)- and L(AB)

k -integrals of two point forces, Eqs. (29), (30) and (31) into

Eqs. (33), (34) and (35), respectively, we obtain the basic formulas of the J (AB)
k -, M (AB)- and L(AB)

3 -integrals
of two parallel line forces in generalized plane strain:

J (AB)
k (x̄, ȳ) = f̂ (A)

i f̂ (B)
j ∂kG

(2)
i j (x̄, ȳ) , i, j = 1, 2, 3 , k = 1, 2 (54)
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M (AB)(x̄, ȳ) = −1

2
f̂ (A)
i f̂ (B)

j G(2)
i j (x̄, ȳ) , i, j = 1, 2, 3 (55)

L(AB)
3 (x̄, ȳ) = ε3 j i f̂

(B)
i f̂ (A)

l G(2)
jl (x̄, ȳ) , i, j, l = 1, 2, 3 , (56)

where

G(2)
i j (x̄, ȳ) =

∫ ∞

−∞
G(3)

i j (x̄, ȳ, z̄) dz̄ , i, j = 1, 2, 3 , (57)

is the two-dimensional Green tensor of generalized plane strain.
Using Eq. (32), we can obtain from Eq. (57) the two-dimensional Green tensor function of plane strain

(see, e.g., [35])

G(2)
i j (x̄, ȳ) = − 1

8πμ(1 − ν)

[
(3 − 4ν)δi j ln

r̄

L
− x̄i x̄ j

r̄2

]
, i, j = 1, 2 (58)

and the two-dimensional Green function of antiplane strain (i = j = 3)

G(2)
33 (x̄, ȳ) = − 1

2πμ
ln

r̄

L
, (59)

where (x̄1, x̄2) = (x̄, ȳ) and L denotes the length of the line force in z-direction.
Comparing the J (AB)

k -, M (AB)- and L(AB)
k -integrals of point forces in 3D, Eqs. (29), (30) and (31), with the

corresponding ones of line forces, Eqs. (54), (55) and (56), we conclude to an analogous observation like in
electrostatics. In particular in elasticity, the projection of the J (AB)

k -, M (AB)- and L(AB)
k -integrals from 3D to

2D is reduced to the projection of the three-dimensional Green tensor function to the two-dimensional Green
tensor function of generalized plane strain: G(3)

i j (x̄, ȳ, z̄) −→ G(2)
i j (x̄, ȳ), i, j = 1, 2, 3 leading to known

and standard quantities in the mathematical theory of elasticity: G(2)
i j (x̄, ȳ), i, j = 1, 2 and G(2)

33 (x̄, ȳ) (see,

e.g., [35]). Note that in the projection: G(3)
33 (x̄, ȳ, z̄) −→ G(2)

33 (x̄, ȳ), an unimportant constant term has been
neglected which may be disregarded because it satisfies the homogeneous Laplace equation (see [43]).

In the following subsections, we examine all possible cases of parallel line forces in z-direction considering
all possible directions of strengths and applying the basic formulas of J (AB)

k -, M (AB)- and L(AB)
3 -integrals of

parallel line forces given by Eqs. (54), (55) and (56). It should be clarified here that the line direction is the
z-direction but the strength can be in x-, y- or z-direction.

5.1 Line forces in antiplane strain

We examine first the case of two parallel line forces with strengths f̂ (A)
3 and f̂ (B)

3 in z-direction.
If we substitute the two-dimensional Green function of antiplane strain, Eq. (59), into Eqs. (54), (55) and

(56), we obtain the J (AB)
k -, M (AB)- and L(AB)

3 -integrals of parallel line forces in z-direction with strengths

f̂ (A)
3 and f̂ (B)

3 for antiplane strain:

J (AB)
1 (x̄, ȳ) = − f̂ (A)

3 f̂ (B)
3

2πμ

x̄

x̄2 + ȳ2
= FC(AB)

1 , (60)

J (AB)
2 (x̄, ȳ) = − f̂ (A)

3 f̂ (B)
3

2πμ

ȳ

x̄2 + ȳ2
= FC(AB)

2 , (61)

M (AB)(x̄, ȳ) = f̂ (A)
3 f̂ (B)

3

4πμ
ln

r̄

L
= 1

2
U (AB) , (62)

L(AB)
3 (x̄, ȳ) = 0 = T (AB)

3 . (63)

Eqs. (60) and (61) give the non-vanishing components of the Cherepanov forceFC(AB) (per unit length lz) of
the two line forces, which is plotted in Figs. 3(a) and 4(a). It can be seen that the Cherepanov force FC(AB)
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is attractive if f̂ (A)
3 f̂ (B)

3 > 0 (Fig. 3(a)) and is repulsive if f̂ (A)
3 f̂ (B)

3 < 0 (Fig. 4(a)). The M (AB)-integral,
Eq. (62), equals half the elastic interaction energy U (AB) per unit length lz of the two line forces

M (AB) = 1

2
U (AB) , (64)

where the elastic interaction energy (per unit length) for line forces in antiplane strain is given by (see [28])

U (AB) = − f̂ (A)
3 u(B)

3 = f̂ (A)
3 f̂ (B)

3

2πμ
ln

r̄

L
, (65)

with the corresponding displacement field

u(B)
3 = G(2)

33 f̂ (B)
3 . (66)

In Eq. (63), we find that the L(AB)
3 -integral is zero, which is an expected result since for two parallel line forces

with strengths in z-direction no torque T (AB)
3 can be produced.

In analogy to dislocation theory where the pre-logarithmic energy factor is a well-known quantity (see,
e.g., [7,8,40]), we introduce here the prefactor of the logarithmic term in the M (AB)-integral, Eq. (62), as the
pre-logarithmic energy factor of line forces with strengths in z-direction:

K (AB)
33 = −Q33

4π
f̂ (A)
3 f̂ (B)

3 with Q33 = − 1

μ
. (67)

The matrix

Q jk = − 1

4μ(1 − ν)

[
(3 − 4ν)δ jk + τ jτk

]
, (68)

in an orthogonal coordinate system basis (m, n, τ ) so that the z-axis (and therefore the line of the force) is
parallel to τ = m × n, is well-known in the integral formalism of anisotropic elasticity (see, e.g., [7,8]). In
isotropic elasticity, Qi j is a negative definite diagonal matrix and reads as

Qi j =

⎛
⎜⎜⎜⎜⎜⎝

− 3 − 4ν

4μ(1 − ν)
0 0

0 − 3 − 4ν

4μ(1 − ν)
0

0 0 − 1

μ

⎞
⎟⎟⎟⎟⎟⎠

. (69)

Therefore, Eq. (62) can be rewritten as

M (AB) = K (AB)
33 ln

r̄

L
. (70)

In cylindrical coordinates, the two components J (AB)
r and J (AB)

ϕ of the J (AB)-integral for two parallel line
forces in z-direction in antiplane strain read as

J (AB)
r = − f̂ (A)

3 f̂ (B)
3

2πμ

1

r̄
= FC(AB)

r , (71)

J (AB)
ϕ = 0 = FC(AB)

ϕ , (72)

or in terms of the pre-logarithmic energy factor K (AB)
33 , Eq. (67),

J (AB)
r = −2K (AB)

33
1

r̄
. (73)
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Fig. 3 The Cherepanov force FC(AB) calculated by the J (AB)-integral (J (AB)
1 (x̄, ȳ), J (AB)

2 (x̄, ȳ)) of two parallel line forces

with: (a) strengths in z-direction and f̂ (A)
3 f̂ (B)

3 > 0 (plotted in units of
f̂ (A)
3 f̂ (B)

3
2πμ

), (b) strengths in x-direction and f̂ (A)
1 f̂ (B)

1 > 0,

(c) strengths in y-direction and f̂ (A)
2 f̂ (B)

2 > 0, and (d) perpendicular directions of strengths and f̂ (A)
1 f̂ (B)

2 > 0, plotted in units

of
f̂ (A)
i f̂ (B)

j
8πμ(1−ν)

and ν = 0.3

It can be seen in Eqs. (71) and (72) that the Cherepanov force between two parallel line forces in z-direction
in antiplane strain is a purely radial force:

FC(AB) = FC(AB)
r (r̄) er .

This means that in the examined case, the Cherepanov force is a central force (in 2D). FC(AB) is repulsive if
FC(AB)
r > 0 or f̂ (A)

3 f̂ (B)
3 < 0, that is, if the forces are antiparallel and FC(AB) is attractive if FC(AB)

r < 0

or f̂ (A)
3 f̂ (B)

3 > 0, that is, if the forces are parallel. This behaviour is similar to magnetostatics, where the
magnetostatic part of the Lorentz force between two parallel wires carrying the currents I1 and I2 is attractive
if the currents flow in the same direction and repulsive if the currents flow in opposite directions (see, e.g.,
[21]).

To sum up, the J (AB)
k -, M (AB)- and L(AB)

3 -integrals for parallel line forces in antiplane strain are given by

J (AB)
r = − f̂ (A)

3 f̂ (B)
3

2πμ

1

r̄
= FC(AB)

r , (74)

J (AB)
ϕ = 0 = FC(AB)

ϕ , (75)
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Fig. 4 The Cherepanov force FC(AB) calculated by the J (AB)-integral (J (AB)
1 (x̄, ȳ), J (AB)

2 (x̄, ȳ)) of two parallel line forces

with: (a) strengths in z-direction and f̂ (A)
3 f̂ (B)

3 < 0 (plotted in units of
| f̂ (A)

3 f̂ (B)
3 |

2πμ
), (b) strengths in x-direction and f̂ (A)

1 f̂ (B)
1 < 0,

(c) strengths in y-direction and f̂ (A)
2 f̂ (B)

2 < 0, and (d) perpendicular directions of strengths and f̂ (A)
1 f̂ (B)

2 < 0, plotted in units

of
| f̂ (A)

i f̂ (B)
j |

8πμ(1−ν)
and ν = 0.3

M (AB) = f̂ (A)
3 f̂ (B)

3

4πμ
ln

r̄

L
= 1

2
U (AB) , (76)

L(AB)
3 = 0 = T (AB)

3 , (77)

or in terms of the corresponding pre-logarithmic energy factor K (AB)
33 read as

J (AB)
r = −2K (AB)

33
1

r̄
, (78)

J (AB)
ϕ = 0 , (79)

M (AB) = K (AB)
33 ln

r̄

L
, (80)

L(AB)
3 = 0 . (81)



3144 M. Lazar, E. Agiasofitou

5.2 Line forces in plane strain

We continue with the case of two parallel line forces whose strengths f̂ (A)
i and f̂ (B)

j , i, j = 1, 2 acting in the
x̄ ȳ-plane have arbitrary directions.

If we substitute the two-dimensional Green tensor function of plane strain, Eq. (58), into Eqs. (54), (55)
and (56), we obtain the J (AB)

k -, M (AB)- and L(AB)
3 -integrals of parallel line forces in z-direction with strengths

f̂ (A)
i and f̂ (B)

j in plane strain:

J (AB)
k (x̄, ȳ) = − f̂ (A)

i f̂ (B)
j

8πμ(1 − ν)r̄2

[
(3 − 4ν)δi j x̄k − δik x̄ j − δ jk x̄i + 2

x̄i x̄ j x̄k
r̄2

]
= FC(AB)

k , (82)

M (AB)(x̄, ȳ) = f̂ (A)
i f̂ (B)

j

16πμ(1 − ν)

[
(3 − 4ν)δi j ln

r̄

L
− x̄i x̄ j

r̄2

]
= 1

2
U (AB) , (83)

L(AB)
3 (x̄, ȳ) = −ε3 j i f̂

(A)
k f̂ (B)

i

8πμ(1 − ν)

[
(3 − 4ν)δ jk ln

r̄

L
− x̄ j x̄k

r̄2

]
= T (AB)

3 , (84)

where i, j, k = 1, 2. It is interesting to observe that both M (AB)- and L(AB)
3 -integrals include a logarithmic

part ln(r̄/L), which originates from the two-dimensional Green tensor function, Eq. (58). The J (AB)
k -integral

represents the Cherepanov forceFC(AB) between the line forces for plane strain. The elastic interaction energy
(per unit length) of two line forces with strengths f̂ (A)

i and f̂ (B)
j is given by (see, e.g., [28])

U (AB) = − f̂ (A)
i u(B)

i = f̂ (A)
i f̂ (B)

j

8πμ(1 − ν)

[
(3 − 4ν)δi j ln

r̄

L
− x̄i x̄ j

r̄2

]
, i, j = 1, 2 , (85)

where the displacement vector of the line force f̂ (B)
j reads

u(B)
i = G(2)

i j f̂ (B)
j . (86)

Therefore, the M (AB)-integral in Eq. (83) equals half of the elastic interaction energy (per unit length) of the
two line forces

M (AB)(x̄, ȳ) = 1

2
U (AB) . (87)

It is interesting to note that the elastic interaction energy of the two line forces, Eq. (85), has a similar form to
the elastic interaction energy (per unit length) of two parallel edge dislocations with general Burgers vectors
given in [25,36].

Regarding the physical interpretation of the L-integral, Agiasofitou and Lazar [3] studying electro-elastic
dislocations in piezoelectric materials considering additionally inhomogeneities in presence of body forces
and body charges showed that the L-integral is the total configurational or material vector moment repre-
senting the total torque, since it is able to capture every produced configurational vector moment density: the
configurational vector moment density produced by the total configurational force density plus an intrinsic or
field vector moment density due to body force density vector and the eigendistortion tensor plus the configu-
rational vector moment density due to the inherent material anisotropy of the piezoelectric materials. Hence,
the L(AB)

3 -integral, Eq. (84), represents the total torque T (AB)
3 of two parallel line forces in plane strain and it

can be decomposed into its orbital and intrinsic parts as follows2

L(AB)
3 (x̄, ȳ) = M(AB)

3 (x̄, ȳ) + S(AB)
3 (x̄, ȳ) ≡ T (AB)

3 . (88)

The orbital part, which we call the orbital torque, is given as torque produced by the Cherepanov force

M(AB)
3 (x̄, ȳ) = ε3 j i x̄ j J

(AB)
i (x̄, ȳ) = ε3 j i x̄ jFC(AB)

i (x̄, ȳ) (89)

2 Such a terminology is also used for the torque on an electric dipole in electrostatics (see [16]).
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and the intrinsic (or spin) part, which we call the intrinsic torque, is due to the displacement vector field u(B)
i

(which is a spin 1 field) and the line force f̂ (A)
j

S(AB)
3 (x̄, ȳ) = ε3 j i f̂

(A)
j u(B)

i (x̄, ȳ) = ε3 j i f̂
(A)
j f̂ (B)

k G(2)
ik (x̄, ȳ) . (90)

If we substitute Eq. (82) into Eq. (89), the orbital torque reads as

M(AB)
3 (x̄, ȳ) = ε3 j i f̂

(A)
k f̂ (B)

l

8πμ(1 − ν)

x̄ j
[
δik x̄l + δil x̄k

]
r̄2

(91)

and if we substitute Eq. (58) into Eq. (90), the intrinsic torque reads as

S(AB)
3 (x̄, ȳ) = −ε3 j i f̂

(A)
j f̂ (B)

k

8πμ(1 − ν)

[
(3 − 4ν)δik ln

r̄

L
− x̄i x̄k

r̄2

]
. (92)

Remark 1 In order to gain more insight into the L-integral and the above representation, it is interesting to
recall its derivation based on Noether’s theorem as it has been done in Agiasofitou and Lazar [1] using the
prolongation method of Olver [37], where it can be seen that the L-integral arises from the symmetry group
of rotations of both, independent and dependent variables in space, giving rise to two kinds of torque, the
orbital torque and the intrinsic one, respectively. The intrinsic torque is related to the vectorial nature of the
displacement field.

In the following, we examine all possible combinations of the directions of strengths, applying Eqs. (82),
(83) and (84) in order to find the explicit expressions of the J (AB)

k -, M (AB)- and L(AB)
3 -integrals for plane

strain.

5.2.1 Line forces with strengths in x-direction

We consider first the case of two parallel line forces with strengths f̂ (A)
1 and f̂ (B)

1 acting in x-axis.

Then the J (AB)
k -, M (AB)- and L(AB)

3 -integrals, Eqs. (82), (83) and (84), reduce to

J (AB)
1 (x̄, ȳ) = − f̂ (A)

1 f̂ (B)
1

8πμ(1 − ν)

x̄

x̄2 + ȳ2

[
(3 − 4ν) − 2 ȳ2

x̄2 + ȳ2

]
= FC(AB)

1 , (93)

J (AB)
2 (x̄, ȳ) = − f̂ (A)

1 f̂ (B)
1

8πμ(1 − ν)

ȳ

x̄2 + ȳ2

[
(3 − 4ν) + 2x̄2

x̄2 + ȳ2

]
= FC(AB)

2 , (94)

M (AB)(x̄, ȳ) = f̂ (A)
1 f̂ (B)

1

16πμ(1 − ν)

[
(3 − 4ν) ln

r̄

L
− x̄2

x̄2 + ȳ2

]
= 1

2
U (AB) , (95)

L(AB)
3 (x̄, ȳ) = − f̂ (A)

1 f̂ (B)
1

8πμ(1 − ν)

x̄ ȳ

x̄2 + ȳ2
= T (AB)

3 . (96)

The J (AB)
1 - and J (AB)

2 -integrals, Eqs. (93) and (94), give the non-vanishing components of the Cherepanov
force FC(AB) (per unit length lz) of the two line forces with strengths in x-direction, which is plotted in
Figs. 3(b) and 4(b). It can be seen that the Cherepanov force FC(AB) is attractive if f̂ (A)

1 f̂ (B)
1 > 0 (Fig. 3(b))

and repulsive if f̂ (A)
1 f̂ (B)

1 < 0 (Fig. 4(b)). The M (AB)-integral (95) gives half the interaction energy (per
unit length lz) of the two line forces with strengths in x-direction and is plotted in Figs. 5(a) and 6(a). The
L(AB)
3 -integral (96) gives the total torque about the z-axis, caused by the interaction of the two line forces with

strengths in x-direction. The total torque (96) is zero if x̄ = 0 or ȳ = 0, which means that if the line force
f̂ (A)
1 is applied in one of the coordinate axis then no torque is produced. Using the decomposition of the total

torque (88) into the orbital part (91) and the intrinsic part (92), the orbital torque for the case under study
reduces to

M(AB)
3 (x̄, ȳ) = − f̂ (A)

1 f̂ (B)
1

4πμ(1 − ν)

x̄ ȳ

x̄2 + ȳ2
(97)
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and the intrinsic torque becomes

S(AB)
3 (x̄, ȳ) = f̂ (A)

1 f̂ (B)
1

8πμ(1 − ν)

x̄ ȳ

x̄2 + ȳ2
. (98)

In cylindrical coordinates, the J (AB)
k -, M (AB)- and L(AB)

3 -integrals, Eqs. (93)–(96), take the form

J (AB)
r = − f̂ (A)

1 f̂ (B)
1 (3 − 4ν)

8πμ(1 − ν)

1

r̄
= FC(AB)

r , (99)

J (AB)
ϕ = − f̂ (A)

1 f̂ (B)
1

8πμ(1 − ν)

sin 2ϕ

r̄
= FC(AB)

ϕ , (100)

M (AB) = f̂ (A)
1 f̂ (B)

1

16πμ(1 − ν)

[
(3 − 4ν) ln

r̄

L
− cos2 ϕ

]
= 1

2
U (AB) , (101)

L(AB)
3 = − f̂ (A)

1 f̂ (B)
1

16πμ(1 − ν)
sin 2ϕ = T (AB)

3 . (102)

In Eq. (99), it can be seen that the radial force component FC(AB)
r is repulsive if f̂ (A)

1 f̂ (B)
1 < 0, that is f̂ (A)

1

and f̂ (B)
1 are antiparallel and is attractive if f̂ (A)

1 f̂ (B)
1 > 0, that is f̂ (A)

1 and f̂ (B)
1 are parallel. Moreover, it is

easy to see that due to the non-vanishing tangential force component FC(AB)
ϕ , Eq. (100), the Cherepanov force

between two parallel line forces with strengths in x-direction is not a purely radial force in contrast to the case
of antiplane strain. In addition, FC(AB)

ϕ = 0 if ϕ = {0, π/2, π, 3π/2}.
The L(AB)

3 -integral, Eq. (102), measures the total torque about the z-axis produced by the interaction of

the line forces f̂ (A)
1 and f̂ (B)

1 . So as to achieve more insight into the L(AB)
3 -integral, using its decomposition

to orbital and spin parts, it can be seen that

L(AB)
3 = M(AB)

3 + S(AB)
3

= r̄ J (AB)
ϕ − 1

2
r̄ J (AB)

ϕ = 1

2
r̄ J (AB)

ϕ = 1

2
r̄FC(AB)

ϕ . (103)

Therefore, it turns out that the L(AB)
3 -integral of two parallel line forces with strengths in x-direction provides

the total torque, which is produced finally only by the tangential Cherepanov force FC(AB)
ϕ , and the rotational

direction of the line force f̂ (A)
1 with respect to f̂ (B)

1 is counter-clockwise if L(AB)
3 > 0 and clockwise if

L(AB)
3 < 0. This means that the tangential component FC(AB)

ϕ of the Cherepanov force tends to rotate the line

force f̂ (A)
1 with respect to the line force f̂ (B)

1 at distance r̄ counter-clockwise if FC(AB)
ϕ > 0 and clockwise

if FC(AB)
ϕ < 0. Note that M(AB)

3 = M(AB)
3 (ϕ) and S(AB)

3 = S(AB)
3 (ϕ) are functions depending only on the

angle ϕ. Due to the relation (103), L(AB)
3 = 0 has the same roots as J (AB)

ϕ = 0 with respect to ϕ. That is,

L(AB)
3 = 0 if ϕ = {0, π/2, π, 3π/2}, which means that there is no torque at these positions as one can also

see in Figs. 5(b) and 6(b).
The prefactor of the logarithmic term in the M (AB)-integral, Eq. (101), is the pre-logarithmic energy factor

of line forces with strengths in x-direction:

K (AB)
11 = −Q11

4π
f̂ (A)
1 f̂ (B)

1 with Q11 = − 3 − 4ν

4μ(1 − ν)
. (104)

Eqs. (99)–(102) can be rewritten in terms of the pre-logarithmic energy factor K (AB)
11 , Eq. (104), as follows

J (AB)
r = −2K (AB)

11
1

r̄
, (105)

J (AB)
ϕ = −2K (AB)

11

3 − 4ν

sin 2ϕ

r̄
, (106)
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Fig. 5 The M (AB) and L(AB)
3 -integrals of two parallel line forces with: (a) and (b) strengths in x-direction and f̂ (A)

1 f̂ (B)
1 > 0;

(c) and (d) strengths in y-direction and f̂ (A)
2 f̂ (B)

2 > 0; (e) and (f) perpendicular directions of strengths and f̂ (A)
1 f̂ (B)

2 > 0,

respectively, plotted in units of
f̂ (A)
i f̂ (B)

j
8πμ(1−ν)

and ν = 0.3, L = 100
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Fig. 6 The M (AB)- and L(AB)
3 -integrals of two parallel line forces with: (a) and (b) strengths in x-direction and f̂ (A)

1 f̂ (B)
1 < 0;

(c) and (d) strengths in y-direction and f̂ (A)
2 f̂ (B)

2 < 0; (e) and (f) perpendicular directions of strengths and f̂ (A)
1 f̂ (B)

2 < 0,

respectively, plotted in units of
| f̂ (A)

i f̂ (B)
j |

8πμ(1−ν)
and ν = 0.3, L = 100
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M (AB) = K (AB)
11

[
ln

r̄

L
− 1

3 − 4ν
cos2 ϕ

]
, (107)

L(AB)
3 = − K (AB)

11

3 − 4ν
sin 2ϕ . (108)

5.2.2 Line forces with strengths in y-direction

The next case that has to be examined is the case of two parallel line forces with strengths f̂ (A)
2 and f̂ (B)

2 acting
in y-direction.

The J (AB)
k -, M (AB)- and L(AB)

3 -integrals, Eqs. (82), (83) and (84), reduce to

J (AB)
1 (x̄, ȳ) = − f̂ (A)

2 f̂ (B)
2

8πμ(1 − ν)

x̄

x̄2 + ȳ2

[
(3 − 4ν) + 2 ȳ2

x̄2 + ȳ2

]
= FC(AB)

1 , (109)

J (AB)
2 (x̄, ȳ) = − f̂ (A)

2 f̂ (B)
2

8πμ(1 − ν)

ȳ

x̄2 + ȳ2

[
(3 − 4ν) − 2x̄2

x̄2 + ȳ2

]
= FC(AB)

2 , (110)

M (AB)(x̄, ȳ) = f̂ (A)
2 f̂ (B)

2

16πμ(1 − ν)

[
(3 − 4ν) ln

r̄

L
− ȳ2

x̄2 + ȳ2

]
= 1

2
U (AB) , (111)

L(AB)
3 (x̄, ȳ) = f̂ (A)

2 f̂ (B)
2

8πμ(1 − ν)

x̄ ȳ

x̄2 + ȳ2
= T (AB)

3 . (112)

The J (AB)
1 - and J (AB)

2 -integrals, Eqs. (109) and (110), give the non-vanishing components of the Cherepanov
forceFC(AB) per unit length lz of the two line forces with strengths in y-direction, which is plotted in Figs. 3(c)
and 4(c). It can be seen that the Cherepanov force FC(AB) is attractive if f̂ (A)

2 f̂ (B)
2 > 0 (Fig. 3(c)) and is

repulsive if f̂ (A)
2 f̂ (B)

2 < 0 (Fig. 4(c)). The M (AB)-integral (111) gives half the elastic interaction energy per
unit length lz of the two line forces with strengths in y-direction and is plotted in Figs. 5(c) and 6(c). The
L(AB)
3 -integral, Eq. (112), represents the total torque about the z-axis caused by the interaction of the two line

forces with strengths in y-direction. The total torque (112) is zero if x̄ = 0 or ȳ = 0, that is if the line force
f̂ (A)
2 is applied in one of the coordinate axis. Using the decomposition of the total torque (88) into the orbital

part (91) and the intrinsic part (92), the orbital torque reduces to

M(AB)
3 (x̄, ȳ) = f̂ (A)

2 f̂ (B)
2

4πμ(1 − ν)

x̄ ȳ

x̄2 + ȳ2
(113)

and the intrinsic torque becomes

S(AB)
3 (x̄, ȳ) = − f̂ (A)

2 f̂ (B)
2

8πμ(1 − ν)

x̄ ȳ

x̄2 + ȳ2
. (114)

In cylindrical coordinates, the J (AB)
k -, M (AB)- and L(AB)

3 -integrals, Eqs. (109)–(112), take the form

J (AB)
r = − f̂ (A)

2 f̂ (B)
2 (3 − 4ν)

8πμ(1 − ν)

1

r̄
= FC(AB)

r , (115)

J (AB)
ϕ = f̂ (A)

2 f̂ (B)
2

8πμ(1 − ν)

sin 2ϕ

r̄
= FC(AB)

ϕ , (116)

M (AB) = f̂ (A)
2 f̂ (B)

2

16πμ(1 − ν)

[
(3 − 4ν) ln

r̄

L
− sin2 ϕ

]
= 1

2
U (AB) , (117)

L(AB)
3 = f̂ (A)

2 f̂ (B)
2

16πμ(1 − ν)
sin 2ϕ = T (AB)

3 . (118)
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It is easy to see that the Cherepanov force between two line forces with strengths in y-direction is not a purely
radial force due to the non-vanishing component FC(AB)

ϕ , Eq. (116). It can be seen in Eq. (115) that the radial

force component FC(AB)
r is repulsive if f̂ (A)

2 f̂ (B)
2 < 0 and is attractive if f̂ (A)

2 f̂ (B)
2 > 0. It holds, FC(AB)

ϕ = 0
if ϕ = {0, π/2, π, 3π/2}.

The L(AB)
3 -integral measures the total torque produced by the interaction of the line forces f̂ (A)

2 and f̂ (B)
2 .

It can be easily checked that the relation (103) also holds for parallel line forces with strengths in y-direction.
Indeed,

M(AB)
3 = r̄ J (AB)

ϕ , S(AB)
3 = −1

2
r̄ J (AB)

ϕ (119)

and finally

L(AB)
3 = 1

2
r̄ J (AB)

ϕ = 1

2
r̄FC(AB)

ϕ . (120)

Therefore, the L(AB)
3 -integral for two parallel line forces with strengths in y-direction provides the total torque

and it is produced only by the tangential Cherepanov force FC(AB)
ϕ . The rotational direction of the line force

f̂ (A)
2 with respect to f̂ (B)

2 is counter-clockwise if L(AB)
3 > 0 and clockwise if L(AB)

3 < 0. Hence, the tangential

component FC(AB)
ϕ of the Cherepanov force, Eq. (116), tends to rotate the line force f̂ (A)

2 with respect to the

line force f̂ (B)
2 at distance r̄ counter-clockwise if FC(AB)

ϕ > 0 and clockwise if FC(AB)
ϕ < 0. The positions

with vanishing torque L(AB)
3 = 0 are ϕ = {0, π/2, π, 3π/2} as one can see in the Figs. 5(d) and 6(d).

The prefactor of the logarithmic term in the M (AB)-integral, Eq. (117), is the pre-logarithmic energy factor
of line forces with strengths in y-direction:

K (AB)
22 = −Q22

4π
f̂ (A)
2 f̂ (B)

2 with Q22 = − 3 − 4ν

4μ(1 − ν)
. (121)

Equations (115)–(118) in terms of the pre-logarithmic energy factor K (AB)
22 are rewritten as

J (AB)
r = −2K (AB)

22
1

r̄
, (122)

J (AB)
ϕ = 2K (AB)

22

3 − 4ν

sin 2ϕ

r̄
, (123)

M (AB) = K (AB)
22

[
ln

r̄

L
− 1

3 − 4ν
sin2 ϕ

]
, (124)

L(AB)
3 = K (AB)

22

3 − 4ν
sin 2ϕ . (125)

5.2.3 Line forces with perpendicular strengths

The last case is that of two parallel line forces with strengths f̂ (A)
1 acting in x-direction and f̂ (B)

2 acting in
y-direction, which presents special features due to the particular geometry.

The J (AB)
k -, M (AB)- and L(AB)

3 -integrals, Eqs. (82), (83) and (84), become

J (AB)
1 (x̄, ȳ) = f̂ (A)

1 f̂ (B)
2

8πμ(1 − ν)

ȳ(ȳ2 − x̄2)

(x̄2 + ȳ2)2
= FC(AB)

1 , (126)

J (AB)
2 (x̄, ȳ) = f̂ (A)

1 f̂ (B)
2

8πμ(1 − ν)

x̄(x̄2 − ȳ2)

(x̄2 + ȳ2)2
= FC(AB)

2 , (127)

M (AB)(x̄, ȳ) = − f̂ (A)
1 f̂ (B)

2

16πμ(1 − ν)

x̄ ȳ

x̄2 + ȳ2
= 1

2
U (AB) , (128)
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L(AB)
3 (x̄, ȳ) = − f̂ (A)

1 f̂ (B)
2

8πμ(1 − ν)

[
(3 − 4ν) ln

r̄

L
− x̄2

x̄2 + ȳ2

]
= T (AB)

3 . (129)

The J (AB)
1 - and J (AB)

2 -integrals, Eqs. (126) and (127), give the non-vanishing components of the Cherepanov
force per unit length lz of the two line forces, which is plotted in Figs. 3(d) and 4(d). The Cherepanov
force FC(AB) is zero at x̄ = ±|ȳ|. The M (AB)-integral, Eq. (128), is half the elastic interaction energy (per
unit length lz) of the two line forces with perpendicular strengths. M (AB) is zero if x̄ = 0 or ȳ = 0, that is
the M (AB)-integral or the elastic interaction energy vanishes if the line force with strength f̂ (A)

1 applies on

the x- or y-axis, as one can also see in Figs. 5(e) and 6(e). The L(AB)
3 -integral, Eq. (129), represents the total

torque about the z-axis caused by the interaction of the two line forces. Using the decomposition of the total
torque (88) into its orbital part (91) and its intrinsic part (92), the orbital torque reduces to

M(AB)
3 (x̄, ȳ) = f̂ (A)

1 f̂ (B)
2

8πμ(1 − ν)

x̄2 − ȳ2

x̄2 + ȳ2
(130)

and the intrinsic torque becomes

S(AB)
3 (x̄, ȳ) = − f̂ (A)

1 f̂ (B)
2

8πμ(1 − ν)

[
(3 − 4ν) ln

r̄

L
− ȳ2

x̄2 + ȳ2

]
. (131)

In cylindrical coordinates, the J (AB)
k -, M (AB)- and L(AB)

3 -integrals, Eqs. (126)–(129), reduce to

J (AB)
r = 0 = FC(AB)

r , (132)

J (AB)
ϕ = f̂ (A)

1 f̂ (B)
2

8πμ(1 − ν)

cos 2ϕ

r̄
= FC(AB)

ϕ , (133)

M (AB) = − f̂ (A)
1 f̂ (B)

2

32πμ(1 − ν)
sin 2ϕ = 1

2
U (AB) , (134)

L(AB)
3 = − f̂ (A)

1 f̂ (B)
2

8πμ(1 − ν)

[
(3 − 4ν) ln

r̄

L
− cos2 ϕ

]
= T (AB)

3 . (135)

It can be seen in Eq. (132), that this is the only case where the radial Cherepanov force component FC(AB)
r

vanishes and this is a consequence of the fact that theM (AB)-integral depends only on the angle ϕ and not on the
distance r̄ . This connection will become clear in the next Section, where the fundamental relations between the
J (AB)- and M (AB)-integrals are given. The force equilibrium positions can be obtained by takingFC(AB)

ϕ = 0,
which holds for ϕ = {π/4, 3π/4, 5π/4, 7π/4}. The equilibrium is considered as stable when the elastic

interaction energy U (AB) or equivalently the M (AB)-integral possesses a minimum at the force equilibrium
positions and unstable when it possesses a maximum. It is easy to check that for f̂ (A)

1 f̂ (B)
2 > 0, the M (AB)-

integral has a minimum at ϕ = {π/4, 5π/4} and a maximum at ϕ = {3π/4, 7π/4} (see Fig. 5(e)) and for
f̂ (A)
1 f̂ (B)

2 < 0, the M (AB)-integral has a minimum at ϕ = {3π/4, 7π/4} and a maximum at ϕ = {π/4, 5π/4}
(see Fig. 6(e)) corresponding to the stable and unstable equilibrium positions, respectively. In other words, the
positions ϕ = {π/4, 5π/4} are the stable force equilibrium positions for f̂ (A)

1 f̂ (B)
2 > 0 (see also Fig. 3(d))

and the positions ϕ = {3π/4, 7π/4} are the stable force equilibrium positions for f̂ (A)
1 f̂ (B)

2 < 0 (see also
Fig. 4(d)).3

On the other hand, the M (AB)-integral is just a function of sin 2ϕ and it no longer contains a logarithmic
part as one can see in Eq. (134). Moreover, it is remarkable that the case of line forces with perpendicular
strengths is the only case where the M (AB)-integral representing the elastic interaction energy does not include
a logarithmic part and for that reason there is no pre-logarithmic energy factor, K (AB)

12 = 0. The latter is in
accordance with the formula (137) that we will see in the next subsection, due to the fact that Q12 = 0. Finally,
in the case of line forces with perpendicular strengths the biggest contribution is given by the L(AB)

3 -integral,

3 Note that in these positions the orbital torque M(AB)
3 = r̄FC(AB)

ϕ produced by the tangential Cherepanov force FC(AB)
ϕ is

also zero (see also Eq. (136)).
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Eq. (135), and this is reasonable since due to the geometry of the line forces, the produced total torque is
significant.

Furthermore, it is interesting to decompose the L(AB)
3 -integral in its orbital and intrinsic parts as follows

L(AB)
3 = M(AB)

3 + S(AB)
3

= r̄ J (AB)
ϕ +

(
− f̂ (A)

1 f̂ (B)
2

8πμ(1 − ν)

[
(3 − 4ν) ln

r̄

L
− 1

2

]
− 1

2
r̄ J (AB)

ϕ

)

= 1

2
r̄ J (AB)

ϕ − f̂ (A)
1 f̂ (B)

2

8πμ(1 − ν)

[
(3 − 4ν) ln

r̄

L
− 1

2

]

= 1

2
r̄FC(AB)

ϕ − f̂ (A)
1 f̂ (B)

2

8πμ(1 − ν)

[
(3 − 4ν) ln

r̄

L
− 1

2

]
. (136)

In Eq. (136), it can be seen that the L(AB)
3 -integral of two parallel line forces with perpendicular strengths

provides the total torque, which is not only produced by the tangential Cherepanov force FC(AB)
ϕ as in the

previous cases, since additional terms even of logarithmic type appear. Note that in this case, M(AB)
3 =

M(AB)
3 (ϕ) but S(AB)

3 = S(AB)
3 (r̄ , ϕ) depends not only on ϕ but also on r̄ .

Remark 2 It can be seen that the J (AB)
r -, J (AB)

ϕ -, M (AB)- and L(AB)
3 -integrals of line forces in antiplane and

in all cases of plane strain are functions of the radius r̄ and angle ϕ capturing the interaction between the two
line forces. It is significant to emphasize this result concerning the M-integral, since it is in contrast to the
results and statements of Seo et al. [41], where the M-integral is a constant and not a function of r̄ and ϕ and
consequently “do not recognize any elastic field produced by other interacting defects”, which is not true as it
is shown in this paper (see also Appendix A).

Remark 3 It should be emphasized once again that the physical interpretation of the M-integral is that of the
electrostatic interaction energy in electrostatics and the elastic interaction energy in elasticity, therefore the
M-integral is in general (interaction) energy and it is misleading to attach the physical interpretation of the
“configurational force” or “self-similar expansion force” to the M-integral (see, e.g., [41]).

5.3 Line forces with parallel/antiparallel strengths in x-, y- and z-direction in terms of the pre-logarithmic
energy factors

In this Section, we write the J (AB)
k -, M (AB)- and L(AB)

3 -integrals of line forces with parallel or antiparallel
strengths in terms of the corresponding pre-logarithmic energy factor in order to see the functional dependence
on r̄ and ϕ, in which the examined integrals obey.

Comparing the pre-logarithmic energy factors, Eqs. (67), (104) and (121), we see that they can be written
as4

K (AB)
i j = −Qi j

4π
f̂ (A)
i f̂ (B)

j , i = j = 1, 2, 3 (137)

with

Q11 = Q22 = − 3 − 4ν

4μ(1 − ν)
, Q33 = − 1

μ
, other Qi j = 0 .

Using the above definition and comparing the expressions of J (AB)
r -, J (AB)

ϕ -, M (AB)- and L(AB)
3 -integrals for

parallel line forces in antiplane and plane strain with strengths directed in the same axis, that is with parallel or
antiparallel strengths, written in terms of the pre-logarithmic energy factors K (AB)

i j , i, j = 1, 2, 3, which have
been collected in Table 1, we observe that the examined integrals present the following functional dependence
on r̄ and ϕ:

J (AB)
r = K (AB)

i i f
(1
r̄

)
, i = 1, 2, 3 (138)

4 No summation convention is assumed in Eqs. (137)–(142).
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Table 1 Functional dependence of the J (AB)
k -, M (AB)- and L(AB)

3 -integrals of line forces with parallel/antiparallel strengths on
the distance r̄ and angle ϕ

Line forces J (AB)
r J (AB)

ϕ M (AB) L(AB)
3

Antiplane strain

f̂ (A)
3 , f̂ (B)

3 −2K (AB)
33

1

r̄
0 K (AB)

33 ln
r̄

L
0

Plane strain

f̂ (A)
1 , f̂ (B)

1 −2K (AB)
11

1

r̄
−2K (AB)

11

3 − 4ν

sin 2ϕ

r̄
K (AB)
11

[
ln

r̄

L
− 1

3 − 4ν
cos2 ϕ

]
− K (AB)

11

3 − 4ν
sin 2ϕ

f̂ (A)
2 , f̂ (B)

2 −2K (AB)
22

1

r̄

2K (AB)
22

3 − 4ν

sin 2ϕ

r̄
K (AB)
22

[
ln

r̄

L
− 1

3 − 4ν
sin2 ϕ

]
K (AB)
22

3 − 4ν
sin 2ϕ

f̂ (A)
i , f̂ (B)

i K (AB)
i i f

(1
r̄

)
K (AB)
i i f

( sin 2ϕ
r̄

)
K (AB)
i i f

(
ln

r̄

L
, sin2 ϕ

)
K (AB)
i i f

(
sin 2ϕ

)

J (AB)
ϕ = K (AB)

i i f
( sin 2ϕ

r̄

)
, i = 1, 2 (139)

M (AB) = K (AB)
33 ln

r̄

L
, (140)

M (AB) = K (AB)
i i f

(
ln

r̄

L
, sin2 ϕ

)
, i = 1, 2 (141)

L(AB)
3 = K (AB)

i i f
(
sin 2ϕ

)
, i = 1, 2 . (142)

Remark 4 An exception from the above scheme is the case of parallel line forces with perpendicular strengths
where the dependence of the integrals as logarithmic or trigonometric functions changes and it does not follow
the above scheme of functional dependence. In any case: K (AB)

12 = 0.

6 The J-integral is a conservative force

In this Section, important relations between the J (AB)-, M (AB)- and L(AB)
3 -integrals of line charges and line

forces are given and discussed showing that they are inherently connected. Moreover, it is shown that the
J-integral for line charges and line forces is a conservative force.

In cylindrical coordinates, it can be seen after some calculations that the J (AB)
r -, J (AB)

ϕ - andM (AB)-integrals
given in this work for line charges and line forces satisfy the following relations:

J (AB)
r = −2

∂M (AB)

∂ r̄
, (143)

J (AB)
ϕ = −2

r̄

∂M (AB)

∂ϕ
. (144)

Also, in Cartesian coordinates, the following relations between the J (AB)- andM (AB)-integrals for line charges
and line forces hold

J (AB)
1 = −2

∂M (AB)

∂ x̄
, (145)

J (AB)
2 = −2

∂M (AB)

∂ ȳ
. (146)

Eqs. (145) and (146) can be written in the following compact form

J (AB)
k = −2

∂M (AB)

∂ x̄k
, k = 1, 2 , (147)
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which shows that the J (AB)-integral is nothing but twice the negative gradient of the M (AB)-integral

J (AB) = −2 gradM (AB) . (148)

On the other hand, it has been shown throughout the paper that for line charges and for all cases of line forces
it holds also the relation

M (AB) = 1

2
U (AB) , (149)

which in combination with Eq. (148) yields

J (AB) ≡ FL(AB) = − gradU (AB) , J (AB) ≡ FC(AB) = − gradU (AB) . (150)

Eq. (150) provides the important result that the J (AB)-integral representing the electrostatic part of the Lorentz
force FL(AB) of two line charges in electrostatics and the Cherepanov force FC(AB) of two line forces in
elasticity is a conservative force and the corresponding (electrostatic or elastic) interaction energyU (AB) plays
the role of the potential energy for the corresponding force in electrostatics and elasticity, respectively. As a
consequence, the curl of J (AB)-integral is zero, that is,

curl J (AB) ≡ curlFL(AB) = 0 , curl J (AB) ≡ curlFC(AB) = 0 , (151)

which means that the J (AB)-integral is an irrotational (curl-less or curl-free) vector field.
Equations (143)–(151) are valid for line charges and for all cases of line forces and they are fundamental

relations. It is of great significance to notice that the fundamental relations between the J (AB)- and M (AB)-
integrals given in this work for line charges and line forces in isotropic case are also valid for straight screw and
edge dislocations with parallel or antiparallel Burgers vectors in isotropic materials as found in [2]; for parallel
electro-elastic screw dislocations in hexagonal piezoelectric materials as showed in [3]; and for parallel screw
dislocations in one-dimensional hexagonal quasicrystals, even if they have a complicated structure, as found
in [26].

Remark 5 It is noted that for line forces in plane strain with parallel or antiparallel strengths, the following
relations also hold between the L(AB)

3 -, J (AB)
ϕ - and M (AB)-integrals

L(AB)
3 = −∂M (AB)

∂ϕ
, (152)

L(AB)
3 = 1

2
r̄ J (AB)

ϕ . (153)

It should be emphasized that for line forces with perpendicular strengths, the relations (152) and (153) are not
valid.

7 Conclusions

In this work, we have determined the J (AB)-, M (AB)- and L(AB)
3 -integrals of line charges and line forces using

the method of embedding or method of descent of the corresponding Green functions to 2D from 3D. The
main results can be summarized as follows:

• The J (AB)-integral of two line charges q̂(A) and q̂(B) is the electrostatic part of the Lorentz force FL(AB)

(electrostatic interaction force) between the two line charges. It is a purely radial force

FL(AB) = (FL(AB)
r , 0) (154)

and is repulsive if the charges are of the same sign and attractive if they are of the opposite sign. In other
words, the J (AB)-integral of two line charges provides nothing but the Coulomb law

J (AB)
r ≡ FL(AB)

r =
{

> 0, repulsive, q̂(A)q̂(B) > 0,
< 0, attractive, q̂(A)q̂(B) < 0.

(155)
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• The J (AB)-integral of two line forces f̂ (A)
i and f̂ (B)

j is the Cherepanov force FC(AB) (interaction force)
between the two line forces.

• The Cherepanov force of two parallel line forces in antiplane strain is a purely radial force

FC(AB) = (FC(AB)
r , 0) (156)

and is attractive if the line forces are parallel and repulsive if they are antiparallel. That is,

J (AB)
r ≡ FC(AB)

r =
{

< 0, attractive, f̂ (A)
3 f̂ (B)

3 > 0,

> 0, repulsive, f̂ (A)
3 f̂ (B)

3 < 0.
(157)

• There is an analogy between the electrostatic part of the Lorentz forceFL(AB) for two parallel line charges
(in z-direction) and the Cherepanov force FC(AB) for two parallel line forces (in z-direction) in antiplane
strain. Both forces, FL(AB) and FC(AB), are central forces in two-dimensions (see Eqs. (154) and (156)).
However, the two forces have “opposite behaviour”. In other words, FL(AB) is attractive (or repulsive) if
the charges have opposite sign (or same sign), whereasFC(AB) is attractive (or repulsive) if the line forces
are parallel (or antiparallel) (see Eqs. (155) and (157)).

• The Cherepanov force in antiplane or plane strain with parallel or antiparallel strengths shows the same
behaviour for all cases and it is attractive if the line forces are parallel and repulsive if they are antiparallel.
That is,5

J (AB) ≡ FC(AB) =
{
attractive, f̂ (A)

i f̂ (B)
i > 0, i = 1, 2, 3,

repulsive, f̂ (A)
i f̂ (B)

i < 0, i = 1, 2, 3.
(158)

• The Cherepanov force for line forces in plane strain with parallel or antiparallel strengths is not a purely
radial force and its tangential component J (AB)

ϕ ≡ FC(AB)
ϕ shows in which rotational direction one line

force will be rotated with respect to the other line force due to Eqs. (103) and (120).
• The L(AB)

3 -integral for two parallel line forces with parallel or antiparallel strengths in x- or y-direction is

the total torque produced only by the tangential Cherepanov force FC(AB)
ϕ . The rotational direction of the

line force f̂ (A)
i , i = 1, 2 with respect to f̂ (B)

i , i = 1, 2 is counter-clockwise if L(AB)
3 > 0 and clockwise

if L(AB)
3 < 0. Hence, the tangential component FC(AB)

ϕ of the Cherepanov force tends to rotate the line

force f̂ (A)
i with respect to the line force f̂ (B)

i at distance r̄ counter-clockwise ifFC(AB)
ϕ > 0 and clockwise

if FC(AB)
ϕ < 0.

• TheM (AB)-integral of two line sources (charges or forces) equals half the electrostatic interaction energy in
electrostatics and half the elastic interaction energy in elasticity between these two line sources, respectively.

• The L(AB)
3 -integral of two line sources (charges or forces) is the z-component of the configurational vector

moment or the rotational moment representing the total torque about the z-axis caused by the interaction
between the two line sources.

• The J (AB)-integral, representing the electrostatic part of the Lorentz force FL(AB) of two line charges in
electrostatics and the Cherepanov forceFC(AB) of two line forces in elasticity, is a conservative force and
the corresponding (electrostatic or elastic) interaction energy U (AB) plays the role of the potential energy
for the corresponding force in electrostatics and elasticity, respectively.

• The J (AB)-integral for line charges and line forces is an irrotational vector field.
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A Appendix

In this Appendix, the J (AB)
1 -, J (AB)

2 -, M (AB)- and L(AB)
3 -integrals of line forces in plane strain are given for

(x̄, ȳ) = (a, 0) with a > 0 in order to make the necessary comparisons with already given results in the
literature concerning line forces (see Seo et al. [41]). Obviously, this example is marginal and restricted, since
in this case the angle ϕ is zero and one looses the influence of the angle dependence, which as it is shown here
is important. However, only this case has been considered in [41]. The obtained results are listed in Table 2.

Comparing the obtained results in Table 2 and the corresponding results in Table 2 in Seo et al. [41], the
following noteworthy observations can be made:

• Concerning the J (AB)
1 - and J (AB)

2 -integrals, it can be seen that there is a difference in the sign. Despite the

fact that Seo et al. [41] have found (without giving any derivation) the J (AB)
1 - and J (AB)

2 -integrals with
different sign, making a wrong physical interpretation afterwards, they concluded to the same physical
interpretation as in this work.
That means, the Cherepanov force J (AB)

1 ≡ FC(AB)
1 is attractive if the line forces f̂ (A)

1 and f̂ (B)
1 , f̂ (A)

2 and

f̂ (B)
2 are parallel, and repulsive if they are antiparallel. That is,6

FC(AB)
1 =

{
< 0, attractive, f̂ (A)

i f̂ (B)
i > 0, i = 1, 2

> 0, repulsive, f̂ (A)
i f̂ (B)

i < 0, i = 1, 2.
(A.1)

On the other hand, the Cherepanov force J (AB)
2 ≡ FC(AB)

2 is not vanishing only for parallel line forces

with perpendicular strengths and it is repulsive if f̂ (A)
1 and f̂ (B)

2 have the same sign, and attractive if their
signs are opposite. That is,

FC(AB)
2 =

{
> 0, repulsive, f̂ (A)

1 f̂ (B)
2 > 0,

< 0, attractive, f̂ (A)
1 f̂ (B)

2 < 0.
(A.2)

• Concerning the M-integral, there is a substantial discrepancy between the results. The M-integral in [41] is
calculated for “two-dimensional elastic line singularities in the framework of plane strain linear elasticity”
and for line forces it is constant in all cases. That means on the one hand, it cannot capture the interaction
between the two line forces and on the other hand that it is an unphysical result, since as it has been shown
in this paper the M-integral represents the elastic interaction energy between the two line forces. Moreover,
the M-integral, in the last two cases in Table 2 in [41] for line forces with perpendicular strengths and with
parallel strengths in y-direction, is given by the exact same formula, which is a rather strange result. A
crucial point that has to be emphasized as we have already mentioned in the Introduction is that the M-
integral in [41] is calculated taking the space dimension equal to two (n = 2) and not three as it should be,
since a line force is a line singularity in a three-dimensional medium and plane strain is a two-dimensional
deformation in a three-dimensional body, therefore the space dimension should be taken equal to three.
As it can be seen here in Table 2, the M-integral for parallel line forces with parallel/antiparallel strengths
in x- or y-direction which has been calculated taking the space dimension equal to three (n = 3), is a
logarithmic function depending on the distance a, describing in this way the interaction of the two line
forces.

• Concerning the L3-integral, the result in Table 2 is in agreement with the result given in [41], only if we
consider that there is a typing mistake (wrong placement of the parenthesis) in [41].

Finally, it should be noted that in Seo et al. [41] a comparison between the J (AB)-, M (AB)- and L(AB)
3 -integrals

of line forces in plane strain and the J-, M- and L3-integrals of edge dislocations has been made. However,
such a comparison could lead to misleading conclusions, since these two problems have different physics.
A dislocation is a topological defect and in particular is a line defect in a three-dimensional crystal and has
to be treated in the framework of three-dimensional incompatible elasticity taking into account plastic fields,
whereas a line force is nothing but the source term in the force equilibrium condition and has to be treated
in the framework of three-dimensional compatible elasticity. Even if there are similarities between the two
problems, there are still important differences from a physical point of view. The J-, M- and L3-integrals

6 No summation convention is used here.
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of straight screw and edge dislocations have been derived in Agiasofitou and Lazar [2] in the framework of
three-dimensional incompatible elasticity of dislocations and there are discrepancies with the results reported
in [41] in the framework of plane strain elasticity. Comparisons of the related results are out of the aim of this
paper.
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