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Abstract The present contribution focuses on shape control of thick beam-type structures. First the governing
equations of a multi-layered beam are derived by taking advantage of the Timoshenko assumptions and the
constitutive relations of piezoelectric materials. The deflection curves are explicitly given for a piezoelectric
cantilever subjected to a polynomial distribution of the vertical load and the applied electric voltage. In order
to find a solution for the optimal shape control voltage an objective function, which depends on the quadratic
deflection curve over the beam length, is minimized. Finally several benchmark examples are given for thick
beams and the outcome is compared to finite element results and previously derived shape control results from
the scientific literature that hold for thin piezoelectric beams. The presented shape control method shows a
better agreementwith the numerical outcome than the analytical shape control resultswithin theBernoulli-Euler
theory, but the desired voltage distribution only slightly differs from the outcome for thin beams. Furthermore
it is found that for a given total thickness-to-length ratio piezoelectric bimorph structures may be more difficult
to be perfectly controlled than three-layer beams with thin piezoelectric layers. This is due to higher order
piezoelectric effects which are not considered by the present theory (e.g. the thickness deformation caused by
the thickness piezoelectric coupling constant).

1 Introduction

Mechanical constructions equipped with multi-functional materials that allow for manipulating the deflection
and the motion in a desired manner are denoted as intelligent or smart structures. Piezoelectricity is one of
several physical effects to control the deflection by proper actuation. Energy transfer takes place from the
mechanical into the electrical domain by means of piezoelectric control devices. In case of passive vibration
control or damping the energy is either dissipated in the electric circuit or stored (energy harvesting). An
overview of this research topic, also denoted as adaptronics or structronics, is presented by Janocha [1].
Classical introductions to the field of piezoelectricity and vibration control are the books by Crawley [2], Miu
[3], Tzou [4], Moheimani and Fleming [5] and Mura [6].

Piezoelectric transducers are well-established devices in vibration control, energy harvesting, sensing and
structural health monitoring. In this contribution the main focus is laid on vibration control, in particular on
shape control. This notion describes a special displacement tracking techniquewhere one intends to completely
annihilate (or strongly reduce) structural deflections. An excellent literature overview on shape control is
presented by Irschik [7]. Shape control has been first introduced by Hafka and Adelman [8] who derived
an analytical computation of the temperature field of a supporting structure to reduce distortions of space
structures from their original shape. Vibrations of rotary wings were attenuated in Nitzsche and Breitbach [9],
where smart devices were used to construct geometric modal filters that are able to control some critical modes.
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Austin et al. [10] designed adaptivewings,which included actuators tominimize the aerodynamic performance.
Agrawal and Treanor [11] minimized a quadratic cost function of an unloaded shear-rigid cantilever, which
contains the error between desired and achieved static deflection, to obtain the best locations for piezoceramics
actuators. Shirazi et al. [12] designed a robust controller for tracking the tip deflection of a piezoelectric
cantilever. A reduced order model was assumed for the cantilever via Galerkin’s method and the effects of
the uncontrolled modes on the overall performance were studied. A planar hexagonal reflector was controlled
by 30 PZT-actuators in Song et al. [13]. The proposed shape control method was also experimentally verified
and considered model errors and uncertainties. The TLBO-method (teacher-learning based optimization) was
implemented in the software code ofCOMSOLMultiphysics,whichwas used tomodel a piezoelectric bimorph,
to nearly avoid structural deflections, seeSumit et al. [14]. In a further study [15] several optimization techniques
were compared (simulated annealing (SA), genetic algorithm (GA), particle swarm optimization (PSO) and
TLBO) for the samebenchmark problem, finding that the SAmethod gave better values of the objective function
and converged faster. Locations and actuation voltages of a cantilever plate are optimized by genetic algorithm
by Wang et al. [16]. The deflections of laminated composite hybrid plate under thermo-electro-mechanical
loads were investigated in Gohari et al. [17]. Assuming Kirchhoff kinematics, the plate was then controlled
based on a double integral multivariable transformation method. Results were compared and verified against
those available in the literature. Bendine and Wankhade [18] used a first order shear deformation theory and
computed the required voltage via an adopted genetic algorithm tomaintain a desired shape of the beam varying
both loading and boundary conditions. If a piezoelectric layer or a multilayer beam with attached piezoelectric
transducers ismodeledwithin the framework of Bernoulli-Euler one achieves total elimination of the transverse
deflection if the quasi-static bending moment of the smart control devices is equal, but sign-reversed to the
quasi-static moment caused by the external forces, see Irschik et al. [19]. This result was experimentally
verified by Nader [20]: relative deflections of a support-excited beam with attached piezoelectric patches are
attenuated if the patches are properly placed and voltage-actuated. Irschik and Pichler et al. [21] showed that
the distribution of the actuating stress has to be equal to the statically admissible stress to avoid vibrations of
linear elastic structures. It is interesting to note that for statically indeterminate beams no deformation will
occur if the electrodes of the piezoelectric layers are properly shaped in case of electrical actuation. Similarly,
one may measure no voltage signal in case of sensing: this holds e.g. for a clamped-clamped beam with a
constant distribution of the piezoelectric layer, see Hubbard and Burke [22]. These distributions are nil-potent
shape functions, see Irschik et al. [23,24] and [21], i.e. no matter how the voltage control signal is chosen,
deformations will not occur. For thicker beams certain subsections are controlled by Krommer [25]. In [26]
Krommer and Irschik consider both shear and extension actuation mechanisms and analytically showed that
perfect annihilation of vibrations is possible. The role of the electrical boundary conditions at the vertical faces
is studied by Krommer and Irschik [27], where a weak form of the charge equation of electrostatics is solved to
find a solution for the electric potential distribution. In a previous work of them, they investigated if either the
assumption of a vanishing electric displacement field or electric field in axial direction (i.e. Dx = 0 or Ex = 0
holds) gives a better correlation to finite element results, Krommer and Irschik [28]. For Reissner-Mindlin plate
considering piezo- and pyroelectricity, the direct piezoelectric and the pyrelectric effects are incorporated in
terms of effective stiffness parameters, see Krommer and Irschik [39]. It was found that the eigenfrequencies
are higher for vanishing in-plane components of the electric displacement field than those for vanishing in-
plane components of the electric field. If the electrodes cannot be considered as perfect in a sense that the
equipotential area condition is fulfilled, one uses the notion resistive or moderately conductive electrodes, see
Buchberger and Schoeftner [29] and Schoeftner et al. [30,31]. If the electrode resistivity varies along the beam
length in a certain manner the bending vibrations may be also attenuated, see [32]. Instead of properly tuning
the electrode resistivity, it is much easier to attach patches at certain locations onto the elastic substrate which
are then connected via resistances causing a desired voltage drop. Hence the theoretical framework and the
experimental realization for this kind of vibration control technique is demonstrated in [33]. For monofrequent
harmonic excitations shape control is also possible if the width of the layers is proportional to the quasi-static
bending moment distribution and if the attached inductive electric circuit is driven in resonance. This principle
is similar to a perfectly tuned vibration absorber connecting the mechanical and the electrical domain. Boley’s
iterative method is extended by Schoeftner and Benjeddou [38] in when the compatibility equations and the
charge equation of electrostatics are solved simultaneously for each layer. As representative example a simply-
supported piezoelectric bimorph is investigated with sinusoidal voltage and distributed loads. It is shown that
the error between analytical results and the solution from two-dimensional plane stress results decreases with
each iteration.
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This contribution presents results for shape control of laminated piezoelectric beams by considering shear
rigidity. The necessary electric voltage actuation is calculated by minimizing the mean square error of the
deflection. As suggested by Krommer and Irschik in [26] results are compared to two-dimensional finite
element results under plane stress assumptions. From a theoretical point of view concerning piezoelectric
modeling and control aspects, the method presented here is a particular case of the results in [26] neglecting
the shear piezoelectric mode ẽ15 and the in-plane electric displacement and electric field, i.e. Dx ≈ Ex ≈ 0.
The equivalent single layer theory for piezoelectric composites is assumed because the elastic moduli of the
layered beam are of the same order of magnitude. First the differential equations of a piezoelectric beam
are derived based on Timoshenko’s kinematic assumption and the constitutive relations for PZT-5A. The
indirect and the direct piezoelectric effect are considered by approximately solving the charge equation of
electrostatics to find relations between electric displacement, electric field and the displacement field. In a next
step one computes the electric field from the constitutive relations. Consequently, the electric potentials of the
piezoelectric layers are obtained by integration. Then the shear force and the bending moment are calculated.
The latter has not only contributions from the mechanical degrees of freedom, but also from the electric field.
Inserting into Newton’s law one finds the beam differential equations. In order to solve the shape control
problem, a performance criterion is set up: the goal is to calculate the voltage actuation in order to minimize
the square of the residual deflection. Finally several examples are presented in order to verify the proposed
shape control method with finite element calculations, where the focus is laid on thick or moderately thick
beams, i.e. the thickness-to-length ratios are λ = 1/5 and λ = 1/10. Comparing the results to two-dimensional
finite element results in MATLAB one observes that the consideration of the shear influence becomes more
and more important if the thickness of the elastic core, which is usually a non-piezoelectric material, is much
larger than the thickness of the piezoelectric layers.

2 Equations of motions of a piezoelectric Timoshenko beam

This section is concerned with mathematical modelling of moderately thick piezoelectric Timoshenko beams.
The theoretical framework considers finite shear rigidity of the cross section on the one hand, but ignores the
in-plane components of the electric field and the electric displacement on the other hand. For more details on
piezoelectric beam modelling, the reader is referred to [27] and [28].

2.1 Kinematics, constitutive relations and Newton’s law

The cross section displacement of a beam can be written as

u(x, z) = zψ(x)

w(x, z) = w0(x) (1)

where w0(x) is the transverse displacement and ψ(x) is the rotation angle. Note that the axial deflection u0(x)
and the normal force are not considered in the present study. This approach yields for the strains

εxx = zψ,x (x)

γxz = ψ(x) + w0,x (x) (2)

PZT-5A is the piezoelectric material in this study. The constitutive relations read

σxx = C̃11εxx − ẽ31Ez

σxz = C̃55γxz − ẽ15Ex (3)

where C̃11 and C̃55 are the effective values of the stiffness matrix at constant electric field and ẽ31 and ẽ15 are
effective values of the components from the piezoelectric coupling matrix. Note that C̃i j �= Ci j and ẽi j �= ei j
hold, i.e. the effective value may not to be confused with the 3D-matrix components, see [34]. The electric
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Fig. 1 a piezoelectric layer k with electric potential ϕk(x, z), the thickness hk and the mean distance to the neutral fiber zmk ; b
piezoelectric three-layer beam with thickness h p , hs and symmetrical actuation V l(x) = −V u(x) = V (x)

field vector is the negative gradient of the electric potential E = [Ex , Ez]T = −[ϕ,x , ϕ,z]T and reads for the
lower and the upper layer

E low
z = V (x)

h p
+ ẽ31

κ̃33

(
h p + hs

2
− z

)
ψ,x (4)

Eupp
z = −V (x)

h p
− ẽ31

κ̃33

(
h p + hs

2
+ z

)
ψ,x (5)

Integrating Eqs. (4) and (5) with respect to z one finds for the electric potential

ϕlow(x, z) = −V (x)

h p

(
z − hs

2

)
− ẽ31

κ̃33

[
h p + hs

2

(
z − hs

2

)
−

(
z2

2
− h2s

8

)]
ψ,x (6)

ϕupp(x, z) = V (x)

h p

(
z + hs

2

)
+ ẽ31

κ̃33

[
h p + hs

2

(
z + hs

2

)
+

(
z2

2
− h2s

8

)]
ψ,x (7)

Note that the electric potential at the substrate-layer interfaces is zero at z = ±hs : ϕlow(x, hs) =
ϕupp(x, −hs) = 0. Here V (x) is the voltage drop of the prescribed potential distributions at z = ±hs/2
and z = ±(hs/2 + h p), see Fig. 1b.

The interested reader is referred to Appendix A for a more detailed derivation concerning the results for
the electric field and the electric potential for upper and lower layers, see also Krommer [35] and Schoeftner
[34]. Inserting Eqs. (4) and (5) into Eq. (3) one finds the bending moment and the shear force for a three-layer
beam as

M(x) =
∫ c

−c
σxx zb dz = KMψ,x + CMV (x) (8)

Q(x) =
∫ c

−c
σxzb dz = KQ

(
ψ + w0,x

)
(9)

The bending stiffness is KM and the shear stiffness is KQ . Note that the electric field Ex is neglected for the
shear force calculation in Eq. (9). However, the electric potential from Eqs. (6) and (7) could be differentiated
with respect to x and inserted into Eq. (9). It is noted that taking into account the electric field Ex �= 0 in this
manner yields only slightly different results for shape control. From a modelling point of view and a detailed
analysis on in-plane influence of Ex or Dx , the reader is referred to Krommer and Irschik [27] and [28].

For the three-layer beam depicted in Fig. 1b, they read

KM = C̃s
11
h3s b

12
+ 2

3
C̃ p
11

[(
hs
2

+ h p

)3

−
(
hs
2

)3
]
b (10)

KQ =
(
C̃s
55hsb + 2C̃ p

55h pb
)

κ (11)
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see Eqs. (42) and (43) when z2 s = −z1 s = z1 l = −z2u = hs/2 and z2 l = −z1u = hs/2 + h p hold. The
piezoelectric actuation constant CM reads

CM = ẽ31
(
hs + h p

)
b (12)

The beam equlibrium requires that

Q,x + q(x) = Iwẅ0

M,x − Q(x) = Iψψ̈ (13)

where Iw and Iψ are the mass and the moment of inertia per unit length. Inserting Eqs. (8) and (9) into (13)
one obtains

KQ
(
ψ,x + w0,xx

) + q(x) = Iwẅ0 (14)

KMψ,xx − KQ
(
ψ + w0,x

) + CMV,x = Iψψ̈ (15)

3 General solution of a piezoelectric Timoshenko beam

Static solutions of the piezoelectric Timoshenko beam equations for ψ and w0 are obtained by inserting
ψ,x + w0,xx from (14) into (15). One finds for the rotation angle by integrating the outcome three times with
respect to x

ψ(x) = −1

l

(
A1 + 6KM

l2KQ
A3 + 2A2

x

l
+ 3A3

x2

l2

)

−CM

KM

∫
V (x) dx − 1

KM

∫
q(x) dx3 (16)

and for the deflection

w(x) = A0 + A1
x

l
+ A2

x2

l2
+ A3

x3

l3
+ 1

KM

∫
q(x) dx4

− 1

KQ

∫
q(x) dx2 + CM

KM

∫
V (x) dx2 (17)

In the following we assume mechanical and electrical loads in the form of polynomials

q(x) = q0 + q1
x

Ll
+ q2

x2

l2
+ q3

x3

l3
+ . . .

V (x) = V0 + V1
x

l
+ V2

x2

l2
+ V3

x3

l3
+ . . . (18)

Inserting (18) into (17) and (16) and determining the four coefficients A0, A1, A2, A3 from the boundary
conditions, onemay easily find the solution of the piezoelectric beam. In the next subsection this is demonstrated
for a piezoelectric cantilever.

3.1 Solution of a piezoelectric cantilever

The boundary conditions for a cantilever with tip force F0 read w(0) = ψ(0) = M(l) = 0 and Q(l) = F0.
The solution above can be split up into a load-dependent wq(x) and a voltage dependent part wV (x)

w(x) = wq(x) + wV (x) (19)
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Additionally, it is advantageous to split the mechanical part wq(x) into a fundamental term (=Bernoulli-Euler
(BE) solution) and into a higher order (HO) solution wHO(x), which considers the influence of shear. In case
of a tip force F0 and a quadratic load distribution (i.e. qi = 0 for i ≥ 3) one finds

wq(x) = wBE (x) + wHO(x) (20)

with wBE (x) = (3 − ξ) ξ2

6KM
F0l

3 +
(
6 − 4ξ + ξ2

)
ξ2

24KM
q0l

4

+
(
20 − 10ξ + ξ3

)
ξ2

120KM
q1l

4 +
(
45 − 20ξ + ξ4

)
ξ2

360KM
q2l

4 (21)

wHO(x) = ξ

KQ
F0l + (2 − ξ) ξ

2KQ
q0l

2 +
(
3 − ξ2

)
ξ

6KQ
q1l

2 +
(
4 − ξ3

)
ξ

12KQ
q2l

2 (22)

Note that the non-dimensional variable ξ = x/L is introduced. In case of voltage actuation one finds

wV (x) =
[

ξ2

2
V0l

2 + ξ3

6
V1l

2 + ξ4

12
V2l

2 + ξ5

20
V3l

2 + ξ6

30
V4l

2

]
CM

KM
(23)

It is noted that the solutions (19)–(23) include also the solutions of a clamped-hinged beam: for such a statically
indeterminate structure the tip force F0 needs to be adjusted such thatw(l) = 0 holds in Eq. (19). Consequently
the shear force does not vanish Q(l) �= 0.

4 Shape control criterion: minimizing the quadratic error of the vertical deflection

The shape control problem is employed to minimize the quadratic error of the vertical deflection. The objective
function is defined by

J =
∫ l

0
w2(x, q(x), V (x)) dx (24)

The goal is to minimize the error function J for a given load distribution q(x) by properly adjusting the voltage
distribution V (x). In a first step the optimization problem (24) is simplified: a polynomial is assumed for the
load (e.g. q(x) = q0+q1x/ l), similarly also for the voltage distribution (e.g. V (x) = V0+V1x/ l+V2x2/ l2+
V3x3/ l3 + V4x4/ l4). The set of control variables is C = {V0, V1, V2, V3, V4}. Hence the objective function
of the modified shape control problem is rewritten

J =
∫ l

0
w2(x, q0, q1, C) dx (25)

and minimized

min
C

J = min
C

∫ l

0
w2(x, q0, q1, C) dx (26)

This leads to an optimization problem with five variables to be solved, namely V0, V1, V2, V3, V4. Inserting
Eqs. (20)–(23) into Eq. (26) one finds

min
C

∫ l

0

[
w2

BE + w2
HO + 2wBEwHO + 2 (wBE + wHO) wV + w2

V

]
dx (27)

Partial derivation of (27) with respect to the yet unknown voltage coefficient Vi yields five equations, from
which the unknowns may be computed
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∂ J

∂V0
=

∫ l

0
(wBE + wHO + wV )

∂wV

∂V0
dx = 0

∂ J

∂V1
=

∫ l

0
(wBE + wHO + wV )

∂wV

∂V1
dx = 0

∂ J

∂V2
=

∫ l

0
(wBE + wHO + wV )

∂wV

∂V2
dx = 0

∂ J

∂V3
=

∫ l

0
(wBE + wHO + wV )

∂wV

∂V3
dx = 0

∂ J

∂V4
=

∫ l

0
(wBE + wHO + wV )

∂wV

∂V4
dx = 0 (28)

Inserting Eqs. (21), (22) and (23) into (28) the coefficients Vi are obtained.
Neglecting the higher order term (i.e. wHO(x) = 0 → w(x) = wBE (x) + wV (x))

∂ J

∂Vi
=

∫ l

0
(wBE + wV )

∂wV

∂Vi
dx = 0 i = 0, 1, 2, 3, 4 (29)

the solution for shape control of a Bernoulli-Euler beam is obtained, but without so-called nil-potent shape
functions caused by static redundancy, see to Irschik et al. [19] and [21].

5 Verification and comparison to finite element results—benchmark examples

In this section the presented shape control procedure for a piezoelectric Timoshenko beam is validated. Two
simple examples are under consideration: first a piezoelectric cantilever (i.e. substrate and attached piezoelectric
layers) which is subjected to a uniformly distributed load is considered. Then a piezoelectric clamped-hinged
beam with linearly decreasing load is investigated which is an example for a statically indeterminate structure.
Furthermore, a moderately thick (thickness-to-length ratio λ = 1/10) and a thick beam (λ = 1/5) are
considered. The beam length is l = 80mm and the total beam thickness is 16mm for the thick beam. If
the substrate thickness ratio is λs = 0.8 (also called core ratio), the thickness of the substrate and of each
piezoelectric layer are 12.8mm and 1.6mm, respectively. For the thinner beam these values read 6.4mm and
0.8mm. As already stated in the introduction, the shape control problem (24) has been extensively treated for
thin beams within the framework of Bernoulli-Euler when total elimination of force-induced deflections for
any given load distribution is possible, see e.g. [19] and [21]. For Timoshenko beams shape control has not
been studied as systematically as for thin beams, see [25] and [26], hence this contribution also tries to close
this gap. The finite element code is written in MATLAB. A Q8-element (eight-node quadrilateral element with
quadratic ansatzfunctions for both displacement components and for the voltage) is used for the finite element
calculations. The modified structure of this FE code is based on the book by Ferreira [36], who presents a huge
variety of standard finite elements (beams, plates and two-dimensional elements) for elastic structures. For this
research study the original code is adapted and piezoelectric properties are properly taken into account, see
Piefort [37]. 8064 rectangular elements are used in case of a thick piezoelectric beam (λ = 1/5, 96 elements
in the axial and 84 elements in the thickness direction). Hence the mean size-aspect ratio is 4.375, further
mesh refinements and a lower aspect ratio do not significantly improve the result. It is noted that the element
aspect ratio AR is not constant: 68 elements are used for the substrate in thickness direction (hs = 12.8mm
→ ARsubst ≈ 4.43) and 8 elements are used for each piezoelectric layer (h p = 1.6mm → ARpiezo ≈ 4.17).
In case of electrical actuation and shape control, the electric voltage is evaluated from Eqs. (28) or (29) and
prescribed at the voltage nodes at z = ±(hs/2+h p). The electrical nodes at z = ±hs/2 are grounded. For the
thin beam with λ = 1/10 the number of elements in thickness direction is halved, hence the average aspect
ratio remains the same.

The geometrical and material parameters for the substrate and the piezoelectric layers are summarized in
Table 1.
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Table 1 Parameters for the numerical examples

Variable (unit) Value Description

l (m) 0.08 Length

λ (−) (either 1/5 or 1/10) Thickness-to-length ratio

λs = hs/(hs + 2h p) (−) (varies between 0 and 0.99) Substrate thickness ratio (see Fig. 1b)

C̃p
11 (Nm−2) 6.098 · 1010 Short-circuit elastic stiffness constant

C̃p
55 (Nm−2) 2.105 · 1010 Short-circuit elastic stiffness constant

κ̃
p
33 (AsV−1m−1) 1.327 · 10−9 Strain-free permittivity
ẽp31 (Asm−2) −10.427 Transverse piezoelectric coupling constant

C̃s
11 = E (Nm−2) 21 · 1010 Young’s modulus (steel)

C̃s
55 = E/[2(1 + ν)] (Nm−2) 8.077 · 1010 Shear modulus (steel with ν = 0.3)

q0 = q1 (Nm−1) 1 Value for load distribution

Fig. 2 Benchmark examples for shape control ofmoderately thick beams: a cantilever with uniformly distributed load; b clamped-
hinged piezoelectric beam with linearly decreasing load

5.1 Example I: shape control of a cantilever with distributed load q(x) = q0

Fig. 2a shows the first benchmark example. First, results for a thin beam (λ = 1/10) are investigated, then for
a thicker one (λ = 1/5). Figure3a shows analytical results caused by mechanical and piezoelectric actuation
of the vertical deflection:

– wBE (black curves): Bernoulli-Euler beam deflection due to q(x) = q0 = 1N/m and V (x) = 0V
according to Eq. (21) (mechanical actuation).

– wT S (blue curves): Timoshenko beam deflection due to q(x) = q0 = 1N/m and V (x) = 0V according
to Eq. (20) (mechanical actuation).

– wVBE (red curves): Bernoulli-Euler beam deflection due to q(x) = 0N/m and V (x) �= 0V according to
Eq. (23) (piezoelectric actuation). The voltage actuation is calculated according to Eq. (29) or (30).

– wVT S (red curves): deflection due to q(x) = 0N/m and V (x) �= 0V according to Eq. (23) of a Timoshenko
beam (piezoelectric actuation). The voltage actuation is calculated according to Eq. (28) or (31).

Figure3b shows the finite element results for comparison:

– wFE (grey-triangle curves): deflection due to q(x) = q0 = 1N/m and V (x) = 0V (mechanical actuation).
– wV

FE (light grey-circle curves): deflection due to q(x) = 0N/m and V (x) �= 0V according to the voltage
from Eq. (29) or (30) (piezoelectric actuation).

– wV
FE (grey-square curves): deflection due to q(x) = 0N/m and V (x) �= 0V according to the voltage from

Eq. (28) or (31) (piezoelectric actuation).

As already known from literature the mechanical and piezoelectric deflections using the Bernoulli-Euler shape
control method from Irschik [19] (black and red curves) are equal, but opposite in sign, see Fig. 3a. Note
that the results for the piezoelectric actuation (wVBE , wVT S , w

V
FE ) are sign-reversed (see the legend in Fig. 3a
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and b). The necessary voltage actuation is proportional to the quasi-static bending moment distribution and
reads according to Eq. (29)

VBE (x) = V0 + V1x/ l + V2x2/ l2

with V0 = − q0l2

2CM
, V1 = q0l2

CM
, V2 = − q0l2

2CM
, (30)

For the Timoshenko beam one obtains from Eq. (28)

VT S(x) = VBE (x) + VHO(x) with (31)

VHO(x) = q0l2

CMα

(
−43

2
+ 270

x

l
− 990

x2

l2
+ 9900

7

x3

l3
− 19305

28

x4

l4

)
(32)

The non-dimensional parameter α depends on the shear-bending stiffness ratio and the length

α = KQl2

KM
(33)

The deflection curves (Fig. 3a) following the Bernoulli-Euler theory caused by the distributed load and the
voltage actuation are denoted by wBE (black) and wVBE (red), respectively, those following the Timoshenko
theory are wT S (blue) and wVT S (light blue). As already mentioned the superposition of the Bernoulli results
wBE + wVBE vanishes (black curve in Fig. 3c). For the Timoshenko beam this is only approximately fulfilled,
a very small residual error remains, see wT S + wVT S (blue). Superposing the Timoshenko loaded beam with
the voltage actuation obtained from the BE-theory (30), wT S + wVBE (red), one observes a slightly larger
error. These results can be verified by the two-dimensional finite element results which agree quite well with
the analytical results based on Timoshenko’s theory: adding the deflection caused by the BE-shape control
actuation (30) to the force-loaded beam (light grey circle) is close to corresponding analytical resultwT S+wVBE

(red). Using the TS-shape control voltage distribution (31) yields a negligible deflection (dark grey square, cf.
analytical result (blue)). The shape control voltages from (30) and (31), which are almost equal, are shown in
Fig. 3d for comparison.

For the thicker beam (λ = 1/5) the results are shown in Fig. 4. Qualitatively the outcome is very close
to the results for the thinner beam, but the influence of the beam thickness becomes obvious. The residual
deflection for the thick beam is about 3.2% at x = l (red, Fig. 4c), while the mean residual deflection for the
thin beam (λ = 1/10, Fig. 3c) is about 0.8% of the non-controlled deflection if the BE-shape control voltage
is applied. The FE results also show a similar curve if the BE-shape control voltage is applied (compare red
and light grey curves). Although some other higher order influences come into play (e.g. the transverse normal
stress σzz or strain εzz and the transverse piezoelectric coupling constant e15), which are negligible for thinner
beams, the agreement between analytical and numerical shape control results is very good if TS-shape control
voltage is applied: the residual deflection varies around zero for the Timoshenko beam (blue) and only 0.8%
(8.6 · 10−13m at x = l) for the FE-model (compare blue and dark grey curves). Furthermore, the influence of
the thickness-ratio on the voltage actuation, see Eq. (32), according to BE and TS-theory is more visible (cf.
Figs. 3d and 4d). Although even for most practical problems the remaining deflection is small if the BE-shape
control voltage is used, the influence of shear is present and can be considered by the Timoshenko actuation
voltage (31), which may be important for high precision control.

5.1.1 Variation of the core thickness

In the previous section 5.1 the relative thickness of the substrate is λs = 0.8. Figure5 shows the residual
shape control deflection as a function of the substrate thickness. Hereby, the relative mean square error eSC is
calculated in the following manner

eSC =
√√√√∫ l

0

(
wa + wV

a

)2 dx∫ l
0 w2

a dx
a = BE or T S (34)

where the tracer a means Bernoulli-Euler (BE) or Timoshenko (TS). Assuming a thick beam again (λ = 1/5)
a piezoelectric bimorph is obtained if the substrate is neglected (λs = 0 → hs = 0mm, h p = 8mm). If the
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Fig. 3 Moderately thick piezoelectric three-layer beam (λ = 1/10): analytical and numerical (FE) deflection curves due to
mechanical and piezoelectric actuation (a and b); shape control results (c); shape control voltages according to the Bernoulli-
Euler (BE) and the Timoshenko (TS) theory, see Eqs. (30) and (31) (d)

substrate thickness ratio is λs = 0.99, the piezoelectric layers are very thin (λs = 0.99 → hs = 15.84mm,
h p = 0.08mm).

One observes again that shape control following theBE-theory yields a perfect annihilation of the deflection
(black), but this only holds for very thin beams. Assuming the TS-theory and using the voltage actuation (31)
the remaining deflection is also close to zero for thick beams (blue). Applying the BE-voltage (30) on the TS-
loaded beam yields a residuum between 3.5% and 6.2% of the uncontrolled deflection (red), but the numerical
result from FE-model shows a similar distribution and is close to it for λs > 0.6 (light grey circle, between
4.9% and 10.5%). Using the TS-shape control voltage (dark grey square) the numerical outcome converges to
the analytical outcome (blue) if the substrate thickness is larger and the layer thickness thinner.

5.2 Example II: shape control of a clamped-hinged beam with distributed load q(x) = q0(1 − x/ l)

The second example shows a clamped-hinged beam subjected to the linearly decreasing load q(x) = q0(1 −
x/ l). Again a thin beam (Fig. 6) and a thick beam (Fig. 7) are considered. The results from Irschik [19] show
that for statically indeterminate beams so-called nil-potent shape functions exist which do not cause any
deflections. The shape control voltage reads

VBE (x) = q0l2

6CM

(
2 − 3

x2

l2
+ x3

l3

)
+ Vnp

(
1 − x

l

)
(35)

where the second part does not affect the solution, i.e. the constant Vnp is arbitrary. It is noted that the solution
according to the minimization procedure presented in Sect. 4 yields
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Fig. 4 Thick piezoelectric three-layer beam (λ = 1/5): analytical and numerical (FE) deflection curves due to mechanical and
piezoelectric actuation (a and b); shape control results (c); shape control voltages according to the Bernoulli-Euler (BE) and the
Timoshenko (TS) theory, see Eqs. (30) and (31) (d)

Fig. 5 Relativemean square error eSC in case of shape control for a piezoelectric cantilever (analytical and FE results as a function
of the core thickness ratio λs )
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Fig. 6 Moderately thick piezoelectric three-layer beam (λ = 1/10): analytical and numerical (FE) deflection curves due to
mechanical and piezoelectric actuation (a and b); shape control results (c); shape control voltages according to the Bernoulli-
Euler (BE) and the Timoshenko (TS) theory, see Eqs. (35) and (36) (d)

VT S(x) = q0l2

6CM

(
2 − 3

x2

l2
+ x3

l3

)
+ q0l2

CMα

(
1 − x

l

)
(36)

In case of a thin beam, when α → ∞ holds, Eqs. (35) and (36) match if the linear nil-potent contribution is
disregarded Vnp = 0.

The results for the deflection of a thin piezoelectric beam are shown in Fig. 6. Analytical and numerical
results caused by mechanical or electrical actuation are shown in Fig. 6a and b. Superposition of both types
of actuation yields the residual shape control deflection, see Fig. 6c. This time one observes that perfect
annihilation can be also achieved by the Timoshenko model (blue). Calculating the shear force by inserting
(16), (17) and (36) into (9) one finds a vanishing reaction force at the clamped end Q(0) = 0 caused by the
lower order term on the right side of (36). This result is also obtained by the 2D finite element model where∫ c
−c σxz dz = 0 holds, but locally σxz �= 0 holds which cause deformations close to the clamped end.

For statically redundant beams the reaction force can bemanipulated such that the superposition ofmechan-
ically and voltage loaded beams becomes zero. This is quite impressive because differences of the necessary
shape control voltages by the TS- and the BE-model are rather small, see the zoomed part in Fig. 6d. Using
the BE-shape control voltage (35) for the Timoshenko model yields a maximum deflection of 1.1 · 10−12 m
(red), which is 6.2% of the maximum deflection without control. The FE outcome yields a similar results, but
sign-reversed, no matter if VBE (x) or VT S(x) is applied over the surface of the piezoelectric layers.

For the thick clamped-hinged piezoelectric beam the deflections of the Timoshenko beam are cancelled if
(36) is applied over the piezoelectric surface, see Fig. 7c. Using the BE-shape control voltage (35) the residual
deflection is 5.3 · 10−13m at x = 0.034m, which is approximately 20% of the maximum deflection without
control. The FE results show a smaller residual deflection, but the difference between the chosen shape control
voltage is negligible. It is noted that the results of the numerical simulation show that the thickness deformation
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Fig. 7 Thick piezoelectric three-layer beam (λ = 1/5): analytical and numerical deflection (FE) curves due to mechanical and
piezoelectric actuation (a and b); shape control results (c); shape control voltages according to the Bernoulli-Euler (BE) and the
Timoshenko (TS) theory, see Eqs. (35) and (36) (d)

(mainly caused by the thickness piezoelectric mode e33) has the same order of magnitude as the residual error.
Additionally, close to the clamped end at x = 0 (Fig. 7b and c) one observes influences in case of piezoelectric
actuation.

5.2.1 Variation of the core thickness

In Fig. 8 the residual shape control deflection is plotted as a function of the substrate thickness. One observes
that shape control can be achieved according to the BE or the TS theory if the corresponding shape control
voltages are applied. Using the BE-voltage in the Timoshenko model yields a mean deflection varying between
18 and 29% compared to the uncontrolled clamped-hinged piezoelectric beam. The numerical results show no
significant differences between both shape control voltages: shape control for a piezoelectric bimorph (λs = 0)
yields a residual deflection of 20%; if very thin piezoelectric layers are used shape control is rather efficient and
the deflection is only 3% of the uncontrolled deflection. This graph reveals that other piezoelectric coupling
constants play a dominant role beside the transverse one (e31) (e.g. the shear e15 and the thickness mode e33)
unless the piezoelectric layers are thin. In case of thin piezoelectric layers (as it is the case for λs = 0.99
even if the total thickness is large (e.g. λ = 1/5)), the dominant piezoelectric effect is the transverse mode,
thickness and shear effects can be disregarded.

Hence, it is inevitable to consider these coupling effects if one intends to improve analytical piezoelectric
models for thick laminate composites in the future. Nevertheless, from a practical point of view using the
BE-theory for shape control seems to be a good choice for at least two reasons:

– the difference between the shape control voltage of BE and TS is small. For practical reasons it is advan-
tageous to use so-called resistive electrodes or perfectly placed piezoelectric layers and an approximated
discretized voltage actuation in order to replace the ideal continuous distribution, see (36).
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Fig. 8 Residual shape control deflection (relative mean square error) of a clamped-hinged beam for analytical and FE results as
a function of the core thickness ratio λs

– Amore accurate analytical piezoelectric beam theory used for shape controlmust consider also the thickness
deformation and the corresponding piezoelectric coupling constant e33.

– The exact realization of the mechanical boundary conditions (e.g. a clamped end can be realized by
u(0, z) = w(0, z) = 0 or w(0, z) = u(0, 0) = ∫ hs

−hs
u(0, z) = 0 in the FE model) has a lower order

impact on the deflection, which is in the range of the residual deflection. Hence a higher order analytical
piezoelectric model may also consider (beside higher order piezoelectric effects due to e15 and e33) this
influence in order to be more accurate.

To the best knowledge of the author, no higher order analytical piezoelectric beam theory exists which takes
into account these last two points.

6 Conclusion

In this contribution shape control is investigated for thick beams. Based on the kinematic assumptions of
Timoshenko and on the constitutive relations for piezoelectricmaterials, the differential equation of amultilayer
beam are derived. For a cantilever the general solutions for the deflection curve and the cross-sectional rotation
are given in case of mechanical actuation (i.e. distributed load and tip force) and electrical actuation. By
minimizing an objective criterion which depends on the quadratic deflection over the beam length for a certain
polynomial load distribution, the optimized piezoelectric voltage distribution is obtained. Finally the outcome is
compared to two-dimensional finite element calculations which is considered as target solution. Two examples
are considered: a moderately thick (λ = 1/10) and a thick (λ = 1/5) three-layer beam (two piezoelectric
layers and an elastic substrate) with clamped-free and clamped-hinged boundary conditions are investigated.
Based on the given distribution of the mechanical load, the optimized voltage is calculated in order to perform
shape control. A special result is obtained by neglecting the influence of shear, where the output is compared to
previously obtained results from the scientific literature. The deflection curves are shown for mechanical load
and electrical actuation and their superpositions. It is found that the Timoshenko outcome for shape control is
in better agreement to the target solutions as the Bernoulli-Euler results. A parameter study where the relative
thickness of the substrate is varied yields that the agreement between analytical and finite element results is
much better if the piezoelectric layers are relatively thin as compared to a piezoelectric bimorph (i.e. if the
total thickness-to-length ratio remains constant) because higher order effects like deformations due to the shear
and the thickness piezoelectric mode are not considered by the present theory. Nevertheless, from a practical
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point of view it is found that the shape control theory according to the Bernoulli-Euler theory seems to yield
a sufficient reduction of the deflection.
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A Charge equation of electrostatics for layer k and forces and moments on beam level

Consider both the direct and indirect piezoelectric effect, the charge equation of electrostatic needs to be
considered which reads

Dx,x + Dz,z ≈ Dz,z = 0 (37)

The first term in (37) is a lower order term. One finds that the electric displacement Dz is constant and it does
not depend on z. Inserting

Dz = ẽ31εxx + κ̃33Ez (38)

and (2) into (37) it follows

Dz

∣∣∣∣
z=zk

= 1

hk

∫ z2k

z1k
Dz dz = 1

hk

∫ z2k

z1k

(
ẽ31zψ,x − κ̃33ϕ,z

)
dz

= ẽ31
(z2k + z1k)

2︸ ︷︷ ︸
zmk

ψ,x − κ̃33

hk
[ϕ(x, z2k) − ϕ(x, z1k)]︸ ︷︷ ︸

V k

(39)

Reinserting Eq. (39) into Eq. (38) the electric field follows as

Ek
z = −V k(x)

hk
+ ẽk31

κ̃k
33

(zmk − z) ψ,x (40)

Note that the electric field consists of two parts: the dominating term directly coming from the applied voltage
drop divided by the layer thickness, and secondly a lower part which depends on the rotation angleψ . Similarly,
the axial stress in (3) is

σ k
xx =

[
C̃k
11 + (ẽk31)

2

κ̃k
33

]
ψ,x z − (ẽk31)

2

κ̃k
33

ψ,x zmk + ẽk31
hk

V k(x) (41)

and the shear force and the bending moment are found be integration

M(x) = KMψ,x +
∑
k

ẽk31zmkbkV
k(x)

with KM =
∑
k

[
C̃k
11
z32k − z31k

3
bk + (ẽk31)

2 (z2k − z1k)3 bk
12κ̃33

]
(42)

Q(x) = KQ
(
ψ + w0,x

)
with KQ =

∑
k

C̃k
55 (z2k − z1k) bkκk (43)
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where the bending stiffness is denoted by KM , the shear stiffness by KQ .
In general the last term in KM , which depends on the piezoelectric coupling constant ẽ31 (see Eq. 42) can
be neglected. because its contribution to the beam bending stiffness is low. For example: for a piezoelectric
bimorph (PZT-5A) this piezoelectric stiffness is 3.25%, for a three-layer beam with λs = 0.8 (using the values
for steel and PZT-5A, Table 1), the piezoelectric stiffness is only 0.01%.
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