Skip to main content
Log in

A helical actuator driven by biased SMA: design, model, and experiment

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

A helical actuator driven by biased shape memory alloy (SMA) patterns embedded into a soft composite ribbon base is presented in this work. Instead of common U-shape SMA wires, a single SMA wire is woven into planar patterns, which enable helical deformation of the composite ribbon from an initially flat geometry. An analytical static model is established for accurate and rapid prediction of the helical reconfiguration arising from the shape memory effect of woven SMA patterns, followed by validation of the static model using the finite element method (FEM). The finite element results are compared with the analytical solutions given by this static model, which show a high agreement. Parametric study of the influences of eight independent design variables on the dependent helical parameters, such as combined curvatures, pitches, and helical angles, is completed. It is found that the helically deformed geometry is mainly dominated by diameters, biased positions, inclined angles, and numbers of skewed segments of the SMA wire. Fabrication and in-situ experimental test of a prototype of such helical actuators qualitatively demonstrate its dramatic three-dimensional (3D) spiral reconfiguration from a two-dimensional (2D) flat ribbon. Such SMA patterns will allow more diverse designs of soft actuators for a wider range of robotic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Code availability

The authors will share the data and code presented in this work with anyone who makes reasonable request.

References

  1. Zhao, H., Gao, X., Qin, Q., Wang, J.: Formation of chiral morphologies of biological materials induced by chirality. Bioinspir. Biomimet. 16, 066005 (2021). https://doi.org/10.1088/1748-3190/ac1dfb

    Article  Google Scholar 

  2. Cheng, M., Li, Q.: Left-handed or right-handed? Determinants of the chirality of helically deformable soft actuators. Soft Robot. 9(5), 850–860 (2021). https://doi.org/10.1089/soro.2021.0067

    Article  Google Scholar 

  3. Armon, S., Aharoni, H., Moshe, M., Sharon, E.: Shape selection in chiral ribbons: from seed pods to supramolecular assemblies. Soft Matter 10, 2733–2740 (2014). https://doi.org/10.1039/C3SM52313F

    Article  Google Scholar 

  4. Li, C., Xie, K., Ren, Z., Yan, P.: Design and experiment on a novel SMA driven micro-catheter for active navigation in vascular interventions. In: 2022 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO), pp. 155–159. IEEE, Tianjin, China (2022). https://doi.org/10.1109/3M-NANO56083.2022.9941608

  5. Liu, Y., Yan, Z., Lin, Q., et al.: Guided formation of 3D helical mesostructures by mechanical buckling: analytical modeling and experimental validation. Adv. Funct. Mater. 26, 2909–2918 (2016). https://doi.org/10.1002/adfm.201505132

    Article  Google Scholar 

  6. Yu, X., Zhang, L., Hu, N., Grover, H., Huang, S., Wang, D., Chen, Z.: Shape formation of helical ribbons induced by material anisotropy. Appl. Phys. Lett. 110, 091901 (2017). https://doi.org/10.1063/1.4977090

    Article  Google Scholar 

  7. Yang, S., Xu, Q.: A review on actuation and sensing techniques for MEMS-based microgrippers. J. Micro-Bio Robot. 13, 1–14 (2017). https://doi.org/10.1007/s12213-017-0098-2

    Article  MathSciNet  Google Scholar 

  8. Li, Q., Wang, X., Dong, L., Liu, C., Fan, S.: Spirally deformable soft actuators and their designable helical actuations based on a highly oriented carbon nanotube film. Soft Matter 15, 9788–9796 (2019). https://doi.org/10.1039/C9SM01966A

    Article  Google Scholar 

  9. Wang, D., Li, L., Serjouei, A., Dong, L., Weeger, O., Gu, G., Ge, Q.: Controllable helical deformations on printed anisotropic composite soft actuators. Appl. Phys. Lett. 112, 181905 (2018). https://doi.org/10.1063/1.5025370

    Article  Google Scholar 

  10. Charrondière, R., Bertails-Descoubes, F., Neukirch, S., Romero, V.: Numerical modeling of inextensible elastic ribbons with curvature-based elements. Comput. Methods Appl.Mech. Eng. 364, 112922 (2020). https://doi.org/10.1016/j.cma.2020.112922

    Article  MathSciNet  MATH  Google Scholar 

  11. Wang, D., Li, L., Zhang, B., Zhang, Y.-F., Wu, M.S., Gu, G., Ge, Q.: Effect of temperature on the programmable helical deformation of a reconfigurable anisotropic soft actuator. Int. J. Solids Struct. 199, 169–180 (2020). https://doi.org/10.1016/j.ijsolstr.2020.04.028

    Article  Google Scholar 

  12. Armon, S., Efrati, E., Kupferman, R., Sharon, E.: Geometry and mechanics in the opening of chiral seed pods. Science 333, 1726–1730 (2011). https://doi.org/10.1126/science.1203874

    Article  Google Scholar 

  13. Chen, Z., Majidi, C., Srolovitz, D.J., Haataja, M.: Tunable helical ribbons. Appl. Phys. Lett. 98, 011906 (2011). https://doi.org/10.1063/1.3530441

    Article  Google Scholar 

  14. Guo, Q., Mehta, A.K., Grover, M.A., Chen, W., Lynn, D.G., Chen, Z.: Shape selection and multi-stability in helical ribbons. Appl. Phys. Lett. 104, 211901 (2014). https://doi.org/10.1063/1.4878941

    Article  Google Scholar 

  15. Chen, Z., Han, X., Zheng, H.: Residual stresses and Poisson’s effect drive shape formation and transition of Helical structures. J. Elast. 119, 321–333 (2015). https://doi.org/10.1039/C3SM52313F

    Article  MathSciNet  MATH  Google Scholar 

  16. Xu, S., Yan, Z., Jang, K.-I., et al.: Assembly of micro/nanomaterials into complex, three-dimensional architectures by compressive buckling. Science 347, 154–159 (2015). https://doi.org/10.1126/science.1260960

    Article  Google Scholar 

  17. Yan, Z., Zhang, F., Liu, F., et al.: Mechanical assembly of complex, 3D mesostructures from releasable multilayers of advanced materials. Sci. Adv. 2, e1601014 (2016). https://doi.org/10.1126/sciadv.1601014

    Article  Google Scholar 

  18. Fu, H., Nan, K., Bai, W., et al.: Morphable 3D mesostructures and microelectronic devices by multistable buckling mechanics. Nat. Mater. 17, 268–276 (2018). https://doi.org/10.1038/s41563-017-0011-3

    Article  Google Scholar 

  19. Cao, Y., Dong, J.: Fabrication, modeling, and characterization of soft twisting electrothermal actuators with directly printed oblique heater. J. Micromech. Microeng. 32, 035001 (2022). https://doi.org/10.1088/1361-6439/ac4956

    Article  Google Scholar 

  20. Cao, Y., Dong, J.: Programmable soft electrothermal actuators based on free-form printing of the embedded heater. Soft Matter 17, 2577–2586 (2021). https://doi.org/10.1039/D0SM02062A

    Article  Google Scholar 

  21. Ren, Z., Yuan, J., Su, X., et al.: Thermo-mechanical modeling and experimental validation for multilayered metallic microstructures. Microsyst. Technol. 27, 2579–2587 (2021). https://doi.org/10.1007/s00542-020-04988-2

    Article  Google Scholar 

  22. Ren, Z., Yuan, J., Su, X., et al.: Electro-thermal modeling and experimental validation for multilayered metallic microstructures. Microsyst. Technol. 27, 2041–2048 (2021). https://doi.org/10.1007/s00542-020-04964-w

    Article  Google Scholar 

  23. Ren, Z., Yuan, J., Su, X., et al.: Multilayered microstructures with shape memory effects for vertical deployment. Microsyst. Technol. 27, 3325–3332 (2021). https://doi.org/10.1007/s00542-020-05101-3

    Article  Google Scholar 

  24. Ren, Z., Yuan, J., Su, X., Shi, Y.: A novel design and thermal analysis of micro solar sails for solar sailing with chip scale spacecraft. Microsyst. Technol. 27, 2615–2622 (2021). https://doi.org/10.1007/s00542-020-05094-z

    Article  Google Scholar 

  25. Ren, Z., Yuan, J., Shi, Y.: Electro-thermo-mechanical modelling of micro solar sails of chip scale spacecraft in space. Microsyst. Technol. 27, 4209–4215 (2021). https://doi.org/10.1007/s00542-020-05204-x

    Article  Google Scholar 

  26. Sun, H., Luo, J., Ren, Z., Lu, M., Shi, Y.: Effects of deposition and annealing conditions on the crystallization of NiTi thin films by e-beam evaporation. Micro Nano Lett. 15, 670–673 (2020). https://doi.org/10.1049/mnl.2020.0004

    Article  Google Scholar 

  27. Sun, H., Luo, J., Ren, Z., Lu, M., Nykypanchuk, D., Mangla, S., Shi, Y.: Shape memory alloy bimorph microactuators by lift-off process. J. Micro Nano-Manuf. 8, 031003 (2020). https://doi.org/10.1115/1.4048146

    Article  Google Scholar 

  28. Ren, Z., Yuan, J., Su, X., et al.: Current divisions and distributed Joule heating of two-dimensional grid microstructures. Microsyst. Technol. 27, 3339–3347 (2021). https://doi.org/10.1007/s00542-020-05103-1

    Article  Google Scholar 

  29. Ren, Z., Yuan, J., Yan, P.: Digital control of active network microstructures on silicon wafers. In: Alimi, I.A., Aboderin, O., Muga, N.J., Teixeira, A.L. (eds.) Network-On-Chip - Architecture, Optimization, and Design Explorations. IntechOpen (2022). https://doi.org/10.5772/intechopen.101486

    Chapter  Google Scholar 

  30. Ren, Z., Yuan, J., Su, X., et al.: Vertical deployment of multilayered metallic microstructures with high area-to-mass ratios by thermal actuation. J. Micro Nano-Manuf. 7, 031002 (2019). https://doi.org/10.1115/1.4043987

    Article  Google Scholar 

  31. Su, X., Ren, Z., Sun, H., Shi, Y., Pan, Q.: The submicron fabrication process for t gate with a flat head. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, p. V004T008A018. American Society of Mechanical Engineers (2018). https://doi.org/10.1115/DETC2018-85581

  32. Ren, Z., Yuan, J., Su, X., Sun, H., Galos, R., Shi, Y.: A new fabrication process for microstructures with high area-to-mass ratios by stiffness enhancement. In: International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, p V004T008A034. American Society of Mechanical Engineers, Quebec, Canada (2018). https://doi.org/10.1115/DETC2018-86282

  33. Su, X., Ren, Z., Yan, J., Shi, Y., Pan, Q.: Microstructure and twisting ability of an adjusted antisymmetric angle ply laminate. Appl. Phys. Lett. 114, 211902 (2019). https://doi.org/10.1063/1.5089809

    Article  Google Scholar 

  34. Ren, Z.: Design, Fabrication and Control of Reconfigurable Active Microstructures for Solar Sails. Stevens Institute of Technology, (2020)

  35. Su, X., Ren, Z., Pan, Q., Lu, M., Camino, F., Shi, Y.: Design, modeling and experimental validation of a micro cantilever beam with an electro-controllable twisting ability. J. Micromech. Microeng. 31, 065010 (2021). https://doi.org/10.1088/1361-6439/abfc35

    Article  Google Scholar 

  36. Bhaskar, J., Sharma, A.K., Bhattacharya, B., Adhikari, S.: A review on shape memory alloy reinforced polymer composite materials and structures. Smart Mater. Struct. 29, 073001 (2020). https://doi.org/10.1088/1361-665X/ab8836

    Article  Google Scholar 

  37. Lee, S.-H., Kim, S.-W.: Self-sensing-based deflection control of carbon fibre-reinforced polymer (CFRP)-based shape memory alloy hybrid composite beams. Compos. Struct. 251, 112544 (2020). https://doi.org/10.1016/j.compstruct.2020.112544

    Article  Google Scholar 

  38. Huang, X., Kumar, K., Jawed, M.K., Mohammadi Nasab, A., Ye, Z., Shan, W., Majidi, C.: Highly dynamic shape memory alloy actuator for fast moving soft robots. Adv. Mater. Technol. 4, 1800540 (2019). https://doi.org/10.1002/admt.201800540

    Article  Google Scholar 

  39. Song, S.H., Lee, J.Y., Rodrigue, H., Choi, I.S., Kang, Y.J., Ahn, S.H.: 35 Hz shape memory alloy actuator with bending-twisting mode. Sci. Rep. 6, 21118 (2016). https://doi.org/10.1038/srep21118

    Article  Google Scholar 

  40. Ren, Z., Li, C., Xie, K., et al.: Smart material based multilayered microbeam structures for spatial self-deployment and reconfiguration: a residual stress approach. Compos. Struct. 304, 116468 (2023). https://doi.org/10.1016/j.compstruct.2022.116468

    Article  Google Scholar 

  41. Sherif, M.M., Ozbulut, O.E.: Tensile and superelastic fatigue characterization of NiTi shape memory cables. Smart Mater. Struct. 27, 015007 (2017). https://doi.org/10.1088/1361-665X/aa9819

    Article  Google Scholar 

Download references

Acknowledgements

National College Students Innovation and Entrepreneurship Training Program, China (02210422120), Postdoctoral Innovation Project of Shandong Province, China (202101004), Youth Project of Natural Science Foundation of Shandong Province, China (ZR2021QE077), and Major Basic Research Program of the Natural Science Foundation of Shandong Province, China (ZR2019ZD08) have in part supported this research. The research was in part carried out at the Center for Functional Nanomaterials (CFN), Brookhaven National Laboratory (BNL), which is supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. DE-SC0012704.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhongjing Ren or Peng Yan.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have influenced the work reported in this paper.

Ethical approval

The experimental protocol was reviewed and approved by the Institutional Review Board (IRB) at Shandong University, Jinan, China.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 138 KB)

Supplementary file2 (MP4 5362 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, K., Li, C., Sun, S. et al. A helical actuator driven by biased SMA: design, model, and experiment. Acta Mech 234, 2659–2676 (2023). https://doi.org/10.1007/s00707-023-03510-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-023-03510-9

Navigation