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Abstract We consider the problem of modelling nanobeams that dissipate thermal energy by radiation. We
approach such a problem in a one-dimensional case by discussing the behavior of nonlocal nanobeams based
on the Euler–Bernoulli assumptions. With these premises, we propose a thermoelastic model that takes into
account the effects of thermal energy radiation to the external environment, employing an extension of the type
II Green–Naghdi (GN-II) theory. We also deepen the formulated theoretical model making use of wave-form
solutions, to highlight the presence of dissipative effects.

1 Introduction

Nanotechnologies are receiving increasing attention from researchers in different fields, such as nanoelectronics
or nanomedicine. In fact, devices as charge detectors, biological tissues or electromechanical actuators are
often fabricated with nanostructures [1]. To viably design any of these devices at nanoscale, it is essential to
master an in-depth knowledge of the mechanical behavior of the nanostructures, defined as structures with at
least one dimension between 1 and 100 nm. These materials are classified as: zero dimensional (0D), where all
dimensions are at nanoscale (e.g. nanoparticles); one dimensional (1D), where two dimensions are at nanoscale
(e.g. nanobeams); two dimensional (2D), where only one dimension is at nanoscale (e.g. nanolayers); three
dimensional (3D) nanomaterials,made of amultiple arrangement of nanosized crystals in different orientations.
It is worth noting that, since the discovery of carbon nanotubes (CNTs) by Iijima [2], great attention has been
given to the study of the mechanics of the nanobeams [3–5]. Due to the difficulty of conducting experiments
or numerical simulations at the nanoscale, the theoretical study of such structures is crucial.

It is important to point out that the principles of mechanics usually applied at the macroscale are not
appropriate to describe the mechanics of nanostructures, as these neglect some elements that are significant
at the nanoscale (e.g. van der Waals forces, temperature scale effects). To catch size effects that arise in
nanomaterials, different approaches have been proposed, both atomistic and referred to various high-order
continuum theories. Among the former, the nonlocal elasticity theory proposed by Eringen [6] is widely used
to describe the mechanical behavior of nanostructures. This theory defines the stress in a reference point of the
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continuum as a function of the states of deformation of all points of the body, instead of being only a function
of the strains at that point.

In the literature, there are many authors who have applied and extended this nonlocal theory. Nonlocal
elasticity theories alternative to the Eringen’s one have been also formulated (e.g. [7] and [8] illustrate different
models of non-local bars). In 2003, Peddieson et al. [9] extended the Bernoulli/Euler beam model to include
a nonlocal elastic material response.

The dynamic problems of Bernoulli-Euler beams have been also discussed analytically by considering
the modified couple stress theory in [10]. Timoshenko beam models have been also applied to formulate a
microstructure-dependent theory or to investigate the vibrational behavior of microbeams [9,11,12].

In 2009, Aydogdu [13] applied the general nonlocal beam theory to nanobeam bending, buckling and
vibration.

Non-classical models to investigate on the vibration of these structures are also presented in [14] and [15].
An exact approach to the dynamics of small-size frames/trusses has been recently presented in [16].

In 2011, Ansari et al. [17] investigated the vibrational behavior of microbeamsmade of functionally graded
materials based on the strain gradient Timoshenko beam theory. A stress-driven integral model has also been
evaluated in [18]. A nonlocal model to study the size-dependent free transverse vibrations of nanobeams with
arbitrary numbers of cracks was formulated in 2022 [19].

Asmentioned above, nanostructures are also very susceptible to the temperature of the surrounding environ-
ment.When these structures are exposed to an environmentwith specific thermal features, the thermal stress that
is generated in the structures can cause bending phenomena. Some studies have been conducted on the effects
of temperature on the mechanical response of nanostructures, by considering the thermo-bending and dynamic
response of such structures [20,21]. A consistent stress-driven nonlocal integral model for nanobeammechan-
ics in a nonisothermal regime has been presented in [22]. In 2021, Zhao et al. [23] analytically investigated the
coupled thermoelastic forced vibration and the heat transfer process of an axiallymovingmicro/nanobeam. The
authors applied the Eringen nonlocal elasticity theory to their Euler–Bernoulli beam model. The heat transfer
of the nanobeam was defined by employing the type III Green–Naghdi (GN-III) theory (in [23], reference is
made to [24]).

The aim of this work is to investigate the thermoelastic response of a nanobeam modeled with the classical
Euler–Bernoulli theory, under suitable heat exchange assumptions. The Eringen nonlocal elasticity theory is
employed to derive the equation of motion of the beam. An extension of the type II Green–Naghdi (GN-
II) thermoelasticity theory [25] that accounts for the effects of radiation of thermal energy to the external
environment [26] is used to model the heat transfer processes.

It is worth mentioning that the (thermoelastic) GN-II theory, almost universally identified with the label
"without energy dissipation" [25] includes a thermal displacement gradient among the independent constitutive
variables and, in contrast to the classic entropy inequality, relies on an entropy balance equation. The use of this
thermomechanical model (without or, as in the present case, with energy dissipation) allows the activation of
the second-sound phenomenon, i.e. the possibility for the thermal energy to be transmitted through waves with
finite speed. It is well known that this kind of evolution of the thermal signal is able to capture effects related to
ultra-fast transients much better than what predicted by models of diffusive type (based, e.g., on the Fourier’s
law). The GN-III theory of thermoelasticity was formulated instead in [27]; The main difference between type
II and type III theories lies in the constitutive dependence, since GN-III also considers the temperature gradient.
In general, it can be said that the GN-III theory contains GN-II as a limiting case. For a concise but, at the
same time, exhaustive discussion (also referred to the non-linear cases) the reader is referred to [28] (Sect. 2.3
for Type II theory; Sect. 2.4 for Type III theory). The introduced theoretical model is formulated considering
its potential applications in many engineering fields, such as industrial or biomedical. For example, it could be
applied in industrial engineering to design precision devices, such as nanosensors and nanoscopes, subjected
to different thermal load conditions.

This paper is organized as follows. The formulated thermoelastic theory is illustrated in Sect. 2, and a
related application which involves the use of wave-form solutions is illustrated in Sect. 3. In particular, we
demonstrate that the radiating feature of the nanobeam results in the appearance of a damping term in the
corresponding solutions. Concluding remarks and directions for future works are discussed in Sect. 4.

2 Mathematical description of the thermoelastic model

The present section is related to the theoretical development of the proposed model. As it is well known,
Eringen’s nonlocal elasticity theory [29] accounts for scale effects, typical of the structures that concern our
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Fig. 1 Euler–Bernoulli nanobeam of length L and cross-sectional dimensions b × h

study. Based on this theory, the constitutive equation for Euler–Bernoulli nanobeams1 can be written as follows
[30]:

σ − (e0a)2
∂2σ

∂x2
= Eε, (1)

where σ is the nonlocal axial stress, ε is the axial strain and E is the Young modulus. In the above relation,
furthermore, e0 represents a dimensionless material constant, a is the internal characteristic length, and their
product, e0a, is the so-called small-scale parameter. By the product Eε we denote the classical local axial
stress σ loc in the isotropic case.

On the other side, it is well known from the linear theory of the thermoelasticity that, as for the most
general—anisotropic—local stress tensor σ loc

i j , the constitutive equation for a 3D continuum body assumes
the following form:

σ loc
i j = Ei jhk(εhk − αT

hkϑ) (2)

where Ei jhk is the elastic tensor, εhk is the strain tensor, αT
hk is the thermal expansion tensor, and ϑ(= T − T0)

is the temperature variation with respect to a constant reference temperature T0.
The constitutive relationship (Eq. 2) that links stress, strain, elasticity and thermal expansion tensors with

the temperature variation is assumed in a classical way according to the linear theory of thermoelasticity:
in this regard, reference can be made, e.g., to [31] (Sect. 1.1.1). Equation (3) is derived from it, under the
Euler–Bernoulli assumptions.

Resorting to the usual convention, lowercase subscripts are here understood to range over the integers
(1, 2, 3) and summation over repeated subscripts is implied. Under the Euler–Bernoulli assumptions, the
thermoelastic local stress reduces then to:

σ loc = E(ε − αTϑ), (3)

where αT is the (assumed constant) thermal expansion coefficient and so the product αTϑ represents the
thermal strain.

Let us consider for our nanobeam a classic geometry illustrated in Fig. 1 and assume that, as for the
temperature ϑ , it obeys a law of the type

ϑ (x, z, t) = T (x, z, t) − T0 = ϕ (x, t) [1 + sin (π z/h)] , (4)

which seems fully consistent—in terms of functional dependence on the spatial variables x and z—with the
Euler–Bernoulli assumptions.

The expression selected for ϑ (x, z, t) guarantees that, for each cross-section (i.e., orthogonal to the x axis),
the temperature of the beam is equal to the reference temperature T0 at the lower edge (i.e., at z = −h/2) and,
assuming ϕ (x, t) > 0 for any value of the independent variables, it increases as z increases.

From Eqs. (1–4), the following relation for the Euler–Bernoulli nonlocal axial stress σ (x, z, t) can be
deduced:

σ (x, z, t) − (e0a)2 σxx (x, z, t) = −Ezwxx (x, t) − αT Eϕ (x, t) [1 + sin (π z/h)] , (5)

where, from now and for the rest of thework, each lowercase subscript indicates a partial derivativewith respect
to the corresponding independent variable, and the involved functions are meant to be sufficiently smooth for
our purposes. According to, e.g., [30,32], the following relation has been used for the Euler–Bernoulli axial
strain ε (x, z, t):

ε (x, z, t) = −zwxx (x, t) , (6)

1 As clearly specified in [22], under the Euler–Bernoulli assumptions only normal stresses directed along the “x” axis exist,
and these will be denoted by σ .
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being w (x, t) the transverse displacement.
Now, let us assume (see again, for instance, [30]) a classical equation of motion for an Euler–Bernoulli

beam with nonlocal effects and without external excitation forces:

Mxx (x, t) = ρAwt t (x, t) , (7)

where ρ is the mass density of the beam, A is its cross-sectional area (both assumed constant), and so the
product ρA stands for the mass per unit length of the beam. Moreover, the nonlocal bending moment M (x, t)
can be defined as follows:

M (x, t) = b
∫ h/2

−h/2
zσ (x, z, t) dz. (8)

Following a procedure similar to that illustrated in [23], we multiply Eq. (5) by z and then integrate it in dz
over the interval [−h/2, h/2], obtaining:

∫ h/2

−h/2
zσ (x, z, t) dz − (e0a)2

∫ h/2

−h/2
zσxx (x, z, t) dz

= −Ewxx (x, t)
∫ h/2

−h/2
z2dz − αT Eϕ (x, t)

∫ h/2

−h/2
[z + z sin (π z/h)] dz.

(9)

Recalling the def. (8) and noting that
∫ h/2

−h/2
z2dz = h3

12
= I

b
(being I the area moment of inertia), through

simple integrations by parts it is possible to rewrite Eq. (9) as follows:

M (x, t) − (e0a)2 Mxx (x, t) = −E Iwxx (x, t) − αT E Jϕ (x, t) , (10)

the product E I representing the bending stiffness of the beam and once the geometric parameter J =
24I/

(
hπ2

)
(dimensionally, m3) has been defined.

By replacing the equation of motion (7) in (10) and deriving twice with respect to x , one gets the following
expression for Mxx (x, t):

Mxx (x, t) = (e0a)2 ρAwt t xx (x, t) − E Iwxxxx (x, t) − αT E Jϕxx (x, t) (11)

which, in turn replaced into Eq. (7), returns the following fourth-order partial differential equation2:

E Iwxxxx (x, t) + ρAwt t (x, t) − (e0a)2 ρAwt t xx (x, t) + αT E Jϕxx (x, t) = 0. (12)

As for the modeling of thermal energy transfer—which introduces, to the best of the authors’ knowledge,
an element of novelty with regard to the existing literature—we refer to the extended type II thermoelastic
theory by Green and Naghdi [25] accounting for a radiating effect, as in [26]. To this end, we complement the
equations previously used with the following:

ρcϑt t (x, z, t) + T0α
T Eεt t (x, z, t) = ρrt (x, z, t) + κ∗ [

ϑxx (x, z, t) + ϑzz (x, z, t)
]
. (13)

In the above relation, c is the (supposed constant) specific heat, ε (x, z, t)—we recall—stands for the
Euler–Bernoulli axial strain, κ∗ is a theory-specific parameter [25] with dimensions of J/

(
ms2K

)
and, for the

time derivative of the external rate of heat supply per unit mass rt (x, z, t), we select the following expression:

rt (x, z, t) = −4γ T 3
0 ϑt (x, z, t) , (14)

i.e.we admit that the beamcan radiate thermal energy towards the surrounding environment, in accordancewith
the (linearized version of the) Stefan–Boltzmann (SB) law. In Eq. (14) we mean γ = � ξSB P (ρA)−1, being
� the emissivity of the medium, ξSB the SB constant (≈ 5.67×10−8

(
W/m2

)
K−4) and P the cross-sectional

perimeter of the beam.

2 It is worth highlighting that Eq. (12) coincides with Eq. (8) in [23], if there one places v = f = 0 and chooses appropriately
ϑ (x, z, t) as in our Eq. (4).
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Substituting in Eq. (13) the expression (4) for ϑ (x, z, t), (6) for the axial strain ε (x, z, t) and (14) for
rt (x, z, t), through straightforward calculations we arrive at

ρcϕt t (x, t) [1 + sin (π z/h)] − T0α
T Ezwxxtt (x, t) = −4ργ T 3

0 ϕt (x, t) [1 + sin (π z/h)]

+ κ∗ {
ϕxx (x, t) [1 + sin (π z/h)] − ϕ (x, t)

(
π2/h2

)
sin (π z/h)

}
.

(15)

As already done for Eq. (5), we multiply Eq. (15) by z and then integrate it in dz over the interval [−h/2, h/2],
obtaining:

ρcϕt t (x, t)
∫ h/2

−h/2
[z + z sin (π z/h)] dz − T0α

T Ewxxtt (x, t)
∫ h/2

−h/2
z2dz

= −4ργ T 3
0 ϕt (x, t)

∫ h/2

−h/2
[z + z sin (π z/h)] dz

+ κ∗ϕxx (x, t)
∫ h/2

−h/2
[z + z sin (π z/h)] dz − κ∗ϕ (x, t)

π2

h2

∫ h/2

−h/2
z sin (π z/h) dz.

(16)

Further integrations by parts, along with appropriate manipulations allow us to rewrite Eq. (16) in the form:

κ∗ [Jϕxx (x, t) − 2bϕ (x, t)] − ρcJϕt t (x, t) − 4ρ Jγ T 3
0 ϕt (x, t) + T0α

T E Iwxxtt (x, t) = 0. (17)

Together with Eq. (12), Eq. (17) defines our coupled thermoelastic system for radiating nanobeams under
nonlocal Euler–Bernoulli and extended GN-II theories.

3 Wave-form solutions exhibiting damping

The purpose of this section is to show that, assuming wave-form expressions for the unknown fields w (x, t)
and ϕ (x, t), the radiating effect that characterizes the nanobeam results in the appearance of a damping term
in the corresponding solutions. To achieve this goal, we refer to the Eqs. (12) and (17) (in dimensional form)
that define our model, and introduce the following dimensionless quantities:

x = x

L
; t = t

t0
; w = w

h
; φ = ϕ

T0
,

where L is assumed to be the size of the nanobeam in the x direction (i.e., the external length scale parameter)
and t0 = L

√
ρ/E .

Through appropriate manipulations and straightforward calculations, which we omit for reasons of syn-
thesis, we arrive at the following dimensionless counterparts of the Eqs. (12) and (17):

A1wxxxx (x, t) + A2wtt (x, t) − A3wttxx (x, t) + A4φxx (x, t) = 0, (18)

B1φxx (x, t) − B2φ (x, t) − B3φtt (x, t) − B4φt (x, t) + B5wxxtt (x, t) = 0, (19)

where the dimensionless parameters A1, ... A4, B1, ... B5 are defined as follows:

A1 = h J

L4 ; A2 = AhJ

I L2 ; A3 = AhJ

I

(e0a
L2

)2 ; A4 = T0α
T J 2

I L2 ;

B1 = J

bL2 ; B2 = 2; B3 = ρcJ

κ∗bt20
; B4 = 4

T 3
0

t0

ργ J

κ∗b
; B5 = αT E I

κ∗b
h

(Lt0)2
.

Remaining in a dimensionless context, we assume a wave-form expression for the unknown fields:

[w, φ] (x, t) = [W, �] exp [i (kx − ωt)] ,

being W, � the (dimensionless and real) amplitudes, k the (dimensionless and real) wave number and ω
the (dimensionless and, in general, complex) angular frequency. By replacing the above expressions in the
Eqs. (18) and (19) we get the following linear homogeneous algebraic system:{(

A1k4 − A2ω
2 − A3k2ω2

)
W − A4k2� = 0

B5k2ω2W + (−B1k2 − B2 + B3ω
2 + i B4ω

)
� = 0
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Table 1 Behavior of real and imaginary parts of the two complex admissible solutions ω1 and ω2 when the nonlocal parameter
τ varies [34] from 0 to 0.3

τ (with � = 0.5) Re (ω1) (×10−6; ↓) Im (ω1) (×10−9; ↑) Re (ω2) (↓) Im (ω2) (×10−11; ↓)
0 (local theory) 6.26441039351 −4.2252536257 0.01446 −1.73179994
0.1 6.26441039349 −4.2252536256 0.01439 −1.73179995
0.2 6.26441039342 −4.2252536254 0.01418 −1.73179997
0.3 6.26441039330 −4.2252536251 0.01385 −1.73180000

The case τ = e0a = 0 corresponds to not considering the nonlocal effects. The emissivity� is fixed here at 0.5, while the arrows
directed upwards or downwards indicate an increase or decrease of the corresponding real/imaginary part when τ increases

in the unknowns W and �. To get non-trivial solutions, we impose the determinant of the coefficients matrix
equal to zero, thus obtaining the following dispersion relation:

B3
(
A3k

2 + A2
)
ω4 + i B4

(
A3k

2 + A2
)
ω3

− [
(A1B3 + A3B1 + A4B5) k

4 + (A2B1 + A3B2) k
2 + A2B2

]
ω2

− i B4
(
A1k

4)ω + A1k
4 (

B1k
2 + B2

) = 0,

(20)

a fourth degree polynomial equation inω, fromwhichwe can deriveω as a function of k. It is worth highlighting
that the parameter B4, the only one in which the coefficient γ –connected to the radiating effect—is present,
determines the presence of the odd powers ofω. In the event that such an effect is absent (i.e., γ = B4 = 0), the
dispersion relation degenerates into a classic biquadratic equation, characteristic of the GN-II theory actually
without energy dissipation.

Given the complexity of the dispersion equation in its most general form (20), we opt for a numerical
approach able to highlight the presence of the dissipative effect. To do this, let us consider a nanobeammade of
stainless steel (see azom.com for reference), with the following features: L = 100 nm, b = 10 nm, h = 5 nm;
e0a = τ L , being τ (assumed, for the moment, equal to 0.2) the nonlocal parameter, ρ = 7.96 × 103 kg/m3,
E = 196.5GPa, T0 = 293 K , αT = 17 × 10−6 K−1, c = 510 J/ (kg K ). Being interested in bringing out
the dissipation effect, we assume a unit value for the theory-specific parameter κ∗ (although it means, at least
dimensionally, a thermal conductivity over time) as well as, for the moment, an emissivity � equal to 0.5.
Moreover, we take into account waves with assigned wavelength (see [33], p. 280), and thus set also for k—at
least for now—a unit value. As expected, the dispersion Eq. (20) (with radiating effect) returns two complex
admissible solutions, namely ω1 = 6.2644104 × 10−6 − 4.2253 × 10−9i and ω2 = 0.0141824 − 1.7318 ×
10−11i ; in contrast, setting γ = B4 = 0, the admissible solutions of the dispersion equation without odd
powers of ω are ω1 = 6.2644118 × 10−6 and ω2 = 0.0141824. The effect deriving from the insertion of the
term γ is twofold: on the one hand it determines a very slight decrease in the real part of ω (as for the second
admissible solution, it appears in correspondence with the 17th decimal digit), and thus a very slight reduction
of the corresponding wave speed Re (ω) /k; on the other hand, it lets a not null (precisely, strictly negative)
imaginary part of ω emerge, which results in the appearance of a damping factor over time proportional to
exp [Im (ω) t].

For completeness of information, in further parametric investigations (the results of which are reported in
Tables 1 and 2), we consider different values of the nonlocal parameter τ and of the emissivity � , i.e. of the
coefficient γ related to the radiating effect. The main features that can be highlighted are the following: while
the increase of τ or � (i.e., γ ) is always accompanied by a reduction of the real parts Re (ω1) and Re (ω2),
that is a reduction of the corresponding wave speed Re (ω)/k, the situation becomes more complex if we take
into account the imaginary parts Im (ω1) and Im (ω2), linked—we remember—to the damping factor over
time proportional to exp [Im (ω) t]. In fact, as the emissivity � increases, both admissible solutions become
dampened with greater strength (and this is certainly an expected result); conversely, as the nonlocal parameter
τ increases, it is interesting to note a sort of “compensation” between the imaginary parts of ω1 and ω2, which
tend to increase and decrease, respectively.

We subsequently consider k variable (see Fig. 2) and focus our attention, byway of example, on the solution
ω2: the reduction of the corresponding wave speed Re (ω2) /k is easily detectable as the value of k increases,
passing from case without energy dissipation to the damped model.

All the simulations were carried out using the software Wolfram Mathematica.
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Table 2 Behavior of real and imaginary parts of the two complex admissible solutions ω1 and ω2 when the emissivity � varies
from 0 to 1

� (with τ = 0.2) Re (ω1) (×10−6; ↓) Im (ω1) (×10−9; ↓) Re (ω2) (↓) Im (ω2) (×10−11; ↓)
0 (undamped case) 6.2644118 0 0.014182438580876467 0
0.2 6.2644116 −1.69 0.014182438580876465 −0.69
0.4 6.2644109 −3.38 0.014182438580876460 −1.39
0.6 6.2644098 −5.07 0.014182438580876451 −2.08
0.8 6.2644082 −6.76 0.014182438580876441 −2.77
1 6.2644061 −8.45 0.014182438580876425 −3.46

The case � = γ = B4 = 0 corresponds to considering the theory without energy dissipation. The nonlocal parameter τ is fixed
here at 0.2, while the arrows directed downwards indicate a decrease of the corresponding real/imaginary part when � increases

Fig. 2 Wave speed (Re (ω2)/k) vs. wave number (k) without and with energy dissipation (solid black curve and dashed red curve,
respectively) (Color figure online)

4 Concluding remarks

We have presented a thermoelastic theoretical model that accounts for scale effects typical of nanostructures,
as well as thermal energy radiation effects towards the external environment; specifically, we considered
radiating deformable nanobeams. The Eringen nonlocal elasticity theory was applied to the Euler–Bernoulli
beam model to take into account the dimensions of the analyzed structures. As for the thermal aspect, the
heat exchange processes were defined for the nanobeam by employing an extension of the type II Green–
Naghdi (GN-II) theory [25,26]. Such a theory [26] extends the concept of thermoelasticity without energy
dissipation and discusses the form of the external rate of heat supply, by including the radiation effect of
thermal energy towards the external environment. The joint use of these theories has led to the formulation
of a coupled thermoelastic model capable of adequately representing the behavior of the analyzed structures.
Some applications showing the dissipation effect have also been proposed.

Results illustrated in Sect. 3 show that the radiating effects (introduced with the γ term different from zero)
result in damped thermoelastic waves. The corresponding dispersion relation shows a decrease in the speed of
the wave, as well as the appearance of a damping term in the solutions of the problem. As mentioned above, the
formulated model could be addressed to all the precision devices used in industrial, electronic or biomedical
engineering (e.g. nanosensors), where the effect of temperature on the mechanics of the micro/nano-device is
non-negligible.

Future extensions of this work will be the generalization of the proposed theory, taking into account the
presence of external excitation forces, rather than a comparison with alternative heat exchange mechanisms,
starting from the Fourier’s law.
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