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Abstract We combine classical continuum mechanics with the recently developed calculus for mixed-
dimensional problems to obtain governing equations for flow in, and deformation of, fractured materials.
We present models in both the context of finite and infinitesimal strain, and discuss nonlinear (and non-
differentiable) constitutive laws such as friction models and contact mechanics in the fracture. Using the theory
of well-posedness for evolutionary equations with maximal monotone operators, we show well-posedness of
the model in the case of infinitesimal strain and under certain assumptions on the model parameters.

1 Introduction

The general topic of fractured porous media is of great importance in applications from biomedicine, to
industrial materials, to subsurface geophysics. Its successful mathematical treatment requires a combination
of classical elasticity [1] with contact mechanics [2], and poromechanics [3] all of which must be extended
to allow for complex geometric descriptions. Much progress has been made recently on the understanding
of fluid flow in fractured porous media utilizing the conceptual framework of mixed-dimensional geometries
[4,5], which allows for lower-dimensional representations of fractures and their intersections.

Despite the importance and recent attention, the mathematical modeling and analysis of flow and deforma-
tion in fractured porousmedia is still far behind the needs of numerical analysts and practitioners. As a response
to this, the current paper has twomain aims: First, to provide the first consistent and frame-invariant mathemat-
ical model for fractured porous media on mixed-dimensional geometries. Second, to provide a well-posedness
theory covering a broad class of problems of relevance to applications.

1.1 Introduction to modeling and analysis of fractured porous media

A realistic model of flow in fractured porous media necessarily requires a mathematical description of both the
fluid flow as well as the mechanical response. This combination includes important nonlinearities stemming
from the finite strain theory itself, combined with the contact-mechanical problem in the fracture and finally
the nonlinear dependence of fluid flow on the fracture aperture. These nonlinearities appear in the context of
a problem that essentially has a saddle-point structure due to the coupling of flow and deformation. To date,
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and to the best of the knowledge of the authors, this problem has not been successfully analyzed in full. In this
contribution, we will exploit recent developments in the form of mixed-dimensional calculus, together with
abstract results from the theory of nonlinear monotone evolutionary equations, to provide a frame-invariant
and self-consistent theory that, together with well-posedness results for poromechanics of fractured media,
extends well beyond existing analysis.

The present work needs to be seen in context of three independent developments over the last two decades.
Firstly, in terms of modeling, it has been recognized since the work of Martin et al. [5], that fluid flow in
fractured materials can be successfully modeled using a co-dimension one representation of the fracture. We
will refer to such models, where the underlying geometry is composed of domains with different topological
dimension, asmixed-dimensional. By now,mixed-dimensionalmodels for fluid flow in fracturedmedia arewell
established, both from the perspective of well-posedness [6], as well as their approximation properties relative
to the underlying equidimensional problem [7,8]. Secondly, the present authors have developed a general
framework for considering mixed-dimensional models of this type, where using the language of exterior
calculus and differential forms, basic concepts of mixed-dimensional functions and operators are established
[4]. This leads to a mixed-dimensional functional analysis, which has been shown to inherit many of the tools
associated with standard functional analysis. Thirdly, Picard and collaborators have developed the existence
theory for evolutionary equations in the setting of maximally monotone operators [9,10]. In particular, they
have shown how poroelasticity can be analyzed in this framework [11] and that the setting is well suited to
handle nonlinearities such as arise for contact problems [12]. The combination of these three developments
is the foundation that allows us to consider the poromechanical contact problem which lies at the heart of
poromechanics for fractured media. However, a key missing ingredient in the above is the representation of
poromechanics as a mixed-dimensional model.

Earlier works have considered this problem using more standard approaches. Girault et al. have considered
coupled poromechanics for fracture with a mixed-dimensional formulation for flow in the sense of a lower-
dimensional flow representation within the fracture [13]; however, in their analysis they have disregarded the
nonlinearities associated with changes in fracture aperture, both as it pertains to the flow problem, but also the
contact mechanics. Furthermore, geometric complexity is ignored as only a single fracture is considered. A
different perspective was taken by Yotov et al., who considered the problem in an equidimensional sense using
Stokes’ equation for the flow in the fracture, but again considering only infinitesimal aperture changes such that
contact was disregarded [14]. Bonaldi et al. show well-posedness for the case where nonlinearities arise due to
multiphase flow, but consider only linearized mechanics [15]. This expands on similar results for the single-
phase case in [16]. Finally, we mention also the work of Cusini et al., which address numerical method for this
coupled problem [17]. While they consider geometric complexity, they limit their discussion to quasi-static,
small-strain kinematics. This limitation, in particular, implies that only small slip-lengths are allowed in the
resulting problem. None of the works discussed above considered finite strain modeling. Numerical and other
modeling contributions have been summarized in two recent reviews [14,18], where important contributions
relevant for this paper include the work of Jha and Juanes [19], Garipov et al. [20], Norbeck et al. [21], Berge
et al. [22] and Stefansson et al. [23].

With the above background in mind, we here summarize the main contributions of this paper:

1. A frame-invariant formulation of finite strain suitable for fractured media within the context of mixed-
dimensional calculus, allowing for a large class of complex fracture networks, and its correspondence to
classical finite strain theory.

2. Governing equations for finite strain poromechanics of fractured media expressed in terms of mixed-
dimensional variables and operators for infinitesimal strain, while allowing for contact mechanics, frictional
sliding and lubrication theory for flow in fracture.

3. Well-posedness theory for a linearized strain model, in the presence of contact mechanics and friction,
under certain constraints on the constitutive laws.

1.2 Outline

The remainder of this paper is structured as follows. Section 2 introduces the fundamental definitions used
in the formulation and analysis of mixed-dimensional models. We discuss the mixed-dimensional continuum
assumption that is central in handling the different length scales inherent to these models. The admissible
geometry is then introduced and we keep track of the connectivity between subdomains using directed acyclic
graphs (DAGs). These DAGs allow us to create function spaces containing scalar and vector-valued functions
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that are relevant to modeling poromechanics in fractured media. All functions are defined on smooth reference
domains and we use concepts from exterior calculus to appropriately map these to physical space.

Section 3 derives invariant strain measures for the mixed-dimensional setting. The definitions follow a
“top-down" approach in which we a strain measure is formed as the linearization of a rotationally invariant
finite strain. Additional attention is given to the volumetric strain as it forms the key term that couples the flow
and mechanics equations in Biot poroelasticity models.

The mixed-dimensional poromechanics model is presented in Sect. 4. The model consists of the physical
conservation principles of mass and momentum supplemented by appropriate constitutive laws. Two models
are derived, based on the finite and linearized strain measures of Sect. 3, respectively. This section concludes
with a discussion relating our model to classic models of (poro)elasticity.

Section 5 focuses on the well-posedness analysis of our model. We introduce a set of simplifying assump-
tions on the constitutive laws that ensures that the system can be analyzed as an evolutionary equation. Using the
assumed monotonicity of our relations, we obtain well-posedness of our model in temporally weighted spaces.
To close the section, example models are presented that contain conventional choices for the constitutive laws
and satisfy our assumptions.

We conclude the paper in Sect. 6, highlighting the necessary aspects of our model that ensure physical
relevance and well-posedness. The paper is supplemented by Appendix A, which gives the background on
evolutionary equations necessary for the well-posedness analysis.

2 Preliminaries: mixed-dimensional modeling and analysis

In this section, we make precise the problem setting, its geometry and the operators adapted to the mixed-
dimensional problems. The first subsection is more general and introductory in nature providing a continuum
mechanical perspective on mixed-dimensional modeling, while the remaining sections lay the mathematical
foundation for the exposition that follows.

2.1 Problem setting and motivation

Classical continuummechanics (which we will refer to as fixed-dimensional whenever needed to avoid confu-
sion) is the modeling tool which allows for the derivation and statement of the classical field equations [1,24].
In particular, it leads to the development of conservation laws and constitutive laws satisfying suitable notions
of frame invariance. A key building block for continuum mechanics is the assumption that the notion of a
continuum is a reasonable modeling choice. We choose to formulate this as follows (the precise statement of
the continuum assumption is not essential, see, e.g., the thorough discussion in [24]):

Definition 2.1 (Fixed-dimensional continuum assumption) For a domain (Y ⊂ R
n), there exists a scale of

consideration l0, such that for any quantity of interest m, and a (n)-dimensional ball (Bn
x,l0

) centered on x
and with radius l0, the integral below is well-defined, and the approximation is sufficiently accurate for the
applications of interest:

m(x) ≈ 1
∣
∣
∣Bn

x,l0

∣
∣
∣

∫

Bn
x,l0

mdV . (2.1)

In other words, our formulation of the fixed-dimensional continuum assumption states that a point evaluation of
a quantity (say, porosity of a porous material) can be approximated by a (say, volume) integral of characteristic
size l0, and that this approximation is accurate enough that the precise size (and indeed shape) of the integral is
immaterial. As a classical example, one notes that for porosity, it is typically taken as a modeling assumption
that a scale of consideration exists, the so-called “Representative Elementary Volume" (on the order of 10 to
100 times the mean grain size), wherein the porosity is well defined [25,26]. At lower scales, the integral in
(2.1) will be strongly affected by the precise number of grains in the integration volume. In the continuation,
we will only be interested in continuum scales, and omit the overbar on the continuum quantity.

The classical continuum assumption is suitable for a wide range of applications, and underlies the vast
majority of real-world industrial computations in applied engineering.

Our interest herein is in problems for which the geometry in consideration contains high-aspect-ratio
inclusions �i , indexed by i , that in some sense interferes with the continuum assumption. To be concrete
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Fig. 1 Left: Illustration of a domain Y , with a high aspect-ratio inclusion �i , with maximal inscribed and minimum covering
balls shown in red and blue, respectively. Right: Illustration of the same domain Y , where the high aspect-ratio inclusion is now
modeled by a lower-dimensional manifold �i

(although the argument is more general), we consider thin fractures and their intersections. We characterize
these high-aspect ratio inclusions by two length-scales, lε and l1, corresponding to the diameter of themaximal
inscribed andminimum covering ball, respectively (as illustrated for a single manifold in the left part of Fig. 1).
We are furthermore interested in the case where the small length scale violates the continuum assumption, i.e.,
where the following ordering holds:

lε � l0 � l1. (2.2)

For such problems, the standard fixed-dimensional continuum assumption cannot be applied, since the high-
aspect feature (and variables within it) cannot be appropriately defined. Depending on the needs of the appli-
cation at hand, we may nevertheless be inclined to consider l0 as the appropriate modeling scale, in which
case we have no other choice than to represent the thin inclusions as manifolds of lower dimension. We note
that the intersection of such manifolds will have even lower dimension yet.

The above provides the motivation for considering a mixed-dimensional continuum assumption, wherein
we are still interested in a domain Y ⊂ R

n , but where we allow this domain to contain a set of manifolds of
topological dimension d < n (as illustrated for a single manifold in the right part of Fig. 1). We formulate this
extension of Definition 2.1 as follows:

Definition 2.2 (Mixed-dimensional continuum assumption) Any inclusion �i ⊂ Y which satisfies (2.2) can
be well-represented by a di -dimensional manifold �i . Moreover on the scale of consideration l0, then for any
quantity of interest m, and a di -dimensional ball Bdi

x,l0
⊂ �i centered on x ∈ �i , the integrals below are well

defined, and the approximation is sufficiently accurate for the applications of interest:

m(x) ≈ 1
∣
∣
∣Bdi

x,l0

∣
∣
∣

∫

B
di
x,l0

∫

�⊥i
mdV⊥dV‖. (2.3)

Here, we use the notation �⊥i to indicate the cross section of �i orthogonal to �i , and we denote the measure
of integration perpendicular and parallel to �i by dV⊥ and dV‖, respectively.

We remark that our definitions of continuum assumptions suffer from the usual weaknesses [24], in that
they are poorly adapted to quantities near boundaries and for variables which havemacroscopic discontinuities.
These issues can be resolved by appealing to more technical definitions. However, as we will not deal with the
issue of upscaling in the following, but merely use the result that continuum variables can be assumed to be
sufficiently accurate for applications of interest, we will not elaborate these details further.

In the following, we assume that we are always within the setting of Definition 2.2, and proceed to make the
notion of mixed-dimensional continuum variables precise, and apply the framework of continuum mechanics
to derive the governing equations for the poroelastic response in fractured porous media.



Mixed-dimensional poromechanical models of fractured porous media 1125

2.2 Geometry

To initialize our description of a mixed-dimensional problem, we first consider an admissible mixed-
dimensional partitioning. The partitioning of Fig. 1 is, in a sense, too simple since it does not keep track
of the boundaries between domains of different dimension. To achieve this, we herein introduce structured
partitions of the domain along with the corresponding graph representations. These graphs first provide a
canonical way to describe the connectivity between subdomains. Additionally, these definitions give the struc-
ture that allows us to define spaces of mixed-dimensional functions and the associated semi-discrete operators
in Sects. 2.3 and 2.4. For a detailed exposition of these concepts in the scalar setting, we refer to [4].

We will only consider problems embedded in a n-dimensional Cartesian ambient domain, and we are
primarily concerned with the case n = 3. Thus, let Y ⊂ R

n be given, and let it be decomposed into non-
overlapping, oriented manifolds �i of topological dimension di such that Y = ∪i∈I�i with I the index set.
In order to distinguish the domain and the partition, we will refer to the partition as � without a subscript.

We will not allow for arbitrary partitions, and therefore introduce a concept of admissible partitions. This
requires some preliminaries.We first give eachmanifold�i some additional hierarchical structure [4]. Each�i
is C1-diffeomorphic to a smooth reference domain denoted by Xi and we denote the corresponding mapping
by φ0,i : Xi → �i . We then endow each manifold with a directed acyclic graph, defined as follows.

Definition 2.3 A rooted directed acyclic graph (DAG) Si with i ∈ I , is conforming to �i if for all nodes
j ∈ Si :

• There exists a root s j ∈ I such that φ0, j (X j ) = �s j . Moreover, we assume si = i for each root i for
convenience.

• For each descendant l ∈ I j , where I j is the set containing the descendants of a node j ∈ F, a differentiable
map φ j,l : Xl → X j exists with bounded derivative. We denote its range by ∂l X j . Compound maps
telescope in the sense that

φk,l = φk, j ◦ φ j,l

for each ancestor k ∈ Si of j .
• The descendants uniquely cover the parent node in the sense that

⋃

j∈Si

φi, j (X j ) = Xi\φ−10,i (∂Y ∩ ∂�i ).

In other words, each point xi in reference domain Xi and on its boundary is uniquely associated to a node
j ∈ Si and a point x j ∈ X j such that xi = φi, j (x j ). For xi on the boundary ∂Xi , we have j a descendant
of i whereas for xi in the interior of Xi , we have j = i . All points that are mapped to the physical boundary
∂Y by φ0,i are exempt from this rule.

From this we see that each �i is indeed a manifold, and furthermore, we have access to a partition of its
boundary through the DAG Si . This partitioning is illustrated in Fig. 2.

Based on the structure given in Definition 2.3, we can now provide a global structure to partitions � of Y
as follows [4].

Definition 2.4 A forest F :=⋃

i∈I Si is conforming to� if the DAGsSi are conforming to�i for all i ∈ I in
the sense of Definition 2.3, and if for any j1, j2 such that s j1 = s j1 , it holds that X j1 = X j2 and φ0, j1 = φ0, j2 .

Our main concern is partitions with conforming forests, and for clarity, we encode this in the following
definition:

Definition 2.5 A partition � of Y is admissible if a conforming forest F exists. For any admissible partition,
we denote the product space of reference domains as Xi :=∏

j∈Si
X j and X :=∏

i∈I Xi .

Definition 2.5 allows for a rather large generality of domains, including curved and self-intersecting domains,
and multiple examples are provided in the cited reference [4]. In the present context, a relevant illustration for
the case of a single fracture is provided below.

Example 2.1 In the case of a single fracture, as was discussed in Fig. 1, it creates a geometry as illustrated in
Fig. 2. Note that in this example, only the domain �4 has a non-contractible reference domain X4 associated
with it, which comes in part from the fact that it has two boundaries (from “the top" and from “the bottom")
neighboring the fracture �3.
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Fig. 2 Left: Illustration of reference domains and mappings to a physical domain with a single slit. The domains that map to �2
and their respective images under the mappings φi, j are highlighted in red. To comply with Definition 2.4, each X j with equal
s j is considered equal. Right: The structure of the forest F and its component DAGs. For each node j , the value of s j denotes
index of the domain with which φ0, j (X j ) coincides in the physical domain. The k-forests Fk , depicted in blue, are introduced in
Sect. 2.4

Remark 2.1 This structure naturally allows for lower-dimensional domains to terminate at, or even exist entirely
on, the global boundary ∂Y . In turn, boundary conditions can naturally be inherited on the fractures through
the mappings φ0, j .

As a convention for indexing, we will use as above i ∈ I for the roots of the DAGs, j ∈ Si for the components
of DAG i , and finally we will write j ∈ F for the components of the full forest. We moreover define the
following index set

I d := {i ∈ I | di = d} , (2.4)

Additionally, let I dj :=
{

l ∈ I j | d j = d
}

. We will moreover use I d<n to denote the set {i ∈ I | di < n}.
For any domain Xi with �i = φ0,i (Xi ), we denote by Fi := Dφ0,i the Fréchet derivative of the C1

mapping φ0,i , defined as the linear operator such that for any vector v ∈ R
di and any point x ∈ Xi then

Fi (x)v = lim
ε→0

φ0,i (x + εv)− φ0,i (x)

ε
. (2.5)

Note that in terms of vector–matrix notation, which we conform to herein, we represent F by a matrix whose
rows correspond to gradients of the components of φ0,i .

We will need appropriate extensions of the mappings φ0,i , so that we can transform vectors in R
n . For root

nodes i ∈ I , i.e., the manifolds of dimension di , we define these in the following way:

Definition 2.6 Let i ∈ I . Let X̂i be an open domain such that dim(X̂i ) = n and Xi × {0}n−di ⊂ X̂i . Then,
the extended mapping φ̂0,i : X̂i → �̂i ⊂ Y is defined such that

• φ̂0,i = φ0,i in Xi × {0}n−di .
• Orthogonality with respect to Xi and �i is preserved, i.e., the standard basis vector(s) ed for d > di is/are
mapped to Dφ̂0,ien ⊥ T�i with T�i the tangent bundle of �i .

• φ̂0,i has a fixed scaling li with respect to the orthogonal complement of Xi , i.e., it holds that vol(Dφ̂0,i ) =
l
n−di
i vol(Dφ0,i ) in Xi × {0}n−di .
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We recall that the di dimensional volume spanned by the derivative of a map Dφ0,i is given by

vol(Dφ0,i ) :=
√

det((Dφ0,i )T Dφ0,i ). (2.6)

The definition of the extended mappings implies that for i ∈ I n , then simply φ̂0,i = φ0,i .
In Definition 2.6, the extension is given a length-scale designated by a parameter li ∼ lε . This is an

important point with respect to modeling, because this implies that we choose a conceptually arbitrary length-
scale transversely to the fractures. Indeed, this is a necessary consequence of themixed-dimensional continuum
assumption: Since the transverse opening of a fracture is negligible (relative to the metric of the problem), if we
are to nevertheless measure this opening, it must be measured in a different metric. This situation is analogous
to multi-scale expansions encountered in homogenization, where the model depends in a non-negligible way
on a (fine-scale) coordinate, which has negligible extent relative to the main (coarse-scale) coordinate of the
problem (see, e.g., [27]).

For the leaves of the DAGs, corresponding to, e.g., boundaries of the solid matrix and the tips of the
fractures, we have more freedom to choose an extended mapping, resulting in an arbitrary extended coordinate
system around the boundaries of domain.We specify the definition of the extendedmappings on the boundaries
of domains as follows:

Definition 2.7 Let i ∈ I and let j ∈ Ii be a descendant. Let X̂ j ⊂ R
n with X j × {0}n−d j ⊂ X̂ j . Then, an

extended mapping φ̂i, j : X̂ j → X̂i satisfies

• φ̂i, j = φi, j in X j × {0}n−d j .
• Orthogonality with respect to X j and Xi is preserved, i.e., the standard basis vector(s) ed for d > di is/are
mapped to Dφ̂i, jed ⊥ T Xi .

• φ̂i, j has a fixed scaling with respect to orthogonal complement of X j , i.e., it holds that vol(Dφ̂i, j ) =
vol(Dφi, j )(x) in X j × {0}n−d j .

The extended mapping to the physical domain is given by composition, φ̂0, j = φ̂0,i ◦ φ̂i, j .

The above definition does not uniquely specify an extended mapping whenever di − d j ≥ 2; however, the
precise choice of extensions has no impact on the following derivations, and we therefore omit a further
specification.

For mechanics, we will be interested in deformation. Thus, we will allow for the domain Y , the partition
�i , and the mappings φ0,i to be time-dependent. However, we will not allow for structure of the partition to
change, i.e., the DAGsSi , the topological dimensions di and the identification of root nodes si are not variable
and neither are the mappings φi, j for j ∈ Ii . Nor do we allow for any macroscopic opening of the fractures,
that is to say, we a priori assume that the dynamics stay within the range of validity of the mixed-dimensional
continuum assumption. Nevertheless, we allow for sliding of the fractures, as well as fracture opening on the
scale of lε . In order to capture this, we extend the definition of coordinate mappings:

Definition 2.8 For j, k ∈ F with s j = sk , we define the coordinate mapping

φ j,k := φ−10, j ◦ π j,k ◦ φ0,k,

with π j,k(xk) identifying the point on � j closest to xk , i.e.,

π j,k(xk) := argminx j∈� j

∣
∣xk − x j

∣
∣ .

Note that if j, k are members of the same conforming DAG, then π j,k is the identity operator. In turn,
Definition 2.8 generalizes the definition of φ j,k to nodes of different DAGs. Moreover, the mixed-dimensional
continuum assumption assures that the expression

∣
∣xk − x j

∣
∣ = O(�ε), and as such we infer that π j,k(xk)

should be uniquely defined in our context. We will interpret opening of fractures that are sufficiently large to
lead to non-uniqueness of π j,k(xk) as outside the range of validity of the modeling scales.

Remark 2.2 We recall that since the mappings φ0,i are time-dependent, the coordinate map π j,k will also be.
Thusmappingsφ j,k , when j and k belong to differentDAGsSi1 andSi2 ,will also in general be time-dependent.

Concluding this section, we provide an overview of the most important definitions related to mixed-
dimensional geometries (Table 1).
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Table 1 Summary of geometrical concepts

I Index set of roots, each root corresponds to a subdomain �i ⊆ Y
I d Subset of roots i ∈ I with dimension di = d
Si For each i ∈ I , a directed acyclic graphs (DAG) keeps track of its boundaries
F The forest is the collection of all DAGs
X j A smooth reference domain corresponding to node j
φi, j Coordinate map from X j to Xi . i = 0 indicates the mapping to physical space

Table 2 Summary of integers describing mixed-dimensional functions

n Dimension of the physical domain Y
d j Dimension of subdomain X j
k Order of the mixed-dimensional differential form
k j Local order of the differential form on X j

This depends on k and the codimension between X j and its root
p Integer to distinguish between scalar and vector-valued forms. Herein, we are interested in p = 1 for the

flow equations and p = n for elasticity

2.3 Mixed-dimensional function spaces

As a basis for mixed-dimensional modeling of the poromechanical system, we start by defining the appropriate
variables on the geometry from Sect. 2.2. A critical aspect of our model is that the variables will be defined
on reference domains, whereas the equations describing the physical model relate to the physical domain. It
is therefore important to correctly transform functions between these domains.

We approach these transformations systematically by using concepts from the field of exterior calculus,
in particular the equivalent representation of functions as differential forms (for a concise introduction, see,
e.g., [28]). The pullback operator then provides the appropriate transformation mappings and, additionally,
we obtain a canonical definition for trace operators. However, in order to make this presentation accessible to a
broader audience, we only briefly exploit the calculus of differential forms, and then translate the definitions in
terms of the representation by “standard" functions. We refer the interested reader to [4] for more details on the
mixed-dimensional exterior calculus framework. Readers not familiar with exterior calculus are encouraged
to skip ahead to Examples 2.3 and 2.4 and use these as a guide to the exposition.

We start with the following key building block, which is illustrated in the right part of Fig. 2:

Definition 2.9 The k-forest Fk⊆ F is defined for 0 ≤ k ≤ n as the subgraph induced by the nodes
⋃

i∈I
di≥n−k

{

j ∈ Si | di − d j ≤ n − k
}

.

As is apparent here, we keep track of the codimension between X j and Xi and the difference between n and
k. Later in this subsection, these determine on which boundary segments of given codimension we define
function traces. For ease of reference, we summarize the integer values that play important roles in this section
in Table 2.

We continue with our brief exposition of mixed-dimensional differential forms (a full account is given
in [4]). The following five definitions suffice for the purposes of this work (confer, e.g., [28] for a concise
introduction to fixed-dimensional differential forms).

Definition 2.10 For any 0 ≤ k ≤ n, let the mixed-dimensional reference domain Xk be denoted Xk :=
∐

j∈Fk X j with
∐

denoting the disjoint union. Each Xk is thus a collection of subdomains that corresponds to

a k-forest Fk , exemplified in Fig. 2.

We continue by defining the linear forms that are continuous on each X j ⊆ Xk .

Definition 2.11 For any 0 ≤ k ≤ n, let the mixed-dimensional locally continuous k-forms with values in R
p,

for p ∈ {1, n}, be denoted C̃Lk(Xk, R
p), and defined as a product space of alternating differential k j -linear

forms

C̃Lk(Xk, R
p) :=

∏

j∈Fk

C1	k j (X j , R
p),
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where the local order is given by k j = di − (n − k) for j ∈ Si , and where C1	k j (X j , R
p) are bounded

C1-continuous forms on X j .

We refer to a ∈ C̃Lk(Xk, R
p) as a mixed-dimensional differential form since it contains elements defined

on manifolds of different dimensionalities. An element of such a function space will be denoted using the
Gothic font. To extract a local form on, say, X j from a, we will use the notation ι ja ∈ C1	k j (X j , R

p).
This allows us to generalize the normal algebraic operators by insisting that they commute with ι, thus if also
b ∈ C̃Lk(Xk, R

p), then ι j (a+ b) = ι j (a)+ ι j (b), and similarly for subtraction, multiplication and division.

Example 2.2 We recall that a differential k-linear form a ∈ C1	k(X j , R), takes as argument k vectors from the
tangent space T X j = R

d j . Thus, a(x) : (Rd j )ki→ R. Moreover, the skew-symmetric (alternating) properties
of C1	k(X j , R) ensure that permutations of vectors alternate signs, e.g., for v1, v2 ∈ T X j , and k = 2 then
a(x)(v1, v2) = −a(x)(v2, v1).

Coordinate transformations are naturally handled in the context of exterior calculus through the pullback
operator, defined next.

Definition 2.12 For any differentiable mapping φ : X → φ(X), the pullback φ∗ of the differential form
a ∈ C1	k(φ(X), R

p) is the unique operator such that φ∗a satisfies for v1, . . . , vk ∈ T X

(φ∗a)(v1, . . . , vk) = a((Dφ)v1, . . . , (Dφ)vk)

Additionally, we have the trace operator that maps continuous differential forms to forms defined on the
boundary.

Definition 2.13 For the boundary ∂X , the trace of the differential form a ∈ C1	k(X, R
p) is denoted Tr∂Xa ∈

C1	k(∂X, R
p) and is defined as the restriction of a to the manifold ∂X .

We combine the locally continuous differential forms in order to establish a notion of globally continuous
forms by exploiting the pullback and trace operators.

Definition 2.14 For any 0 ≤ k ≤ n, let the mixed-dimensional continuous k-forms be denoted CLk(Xk, R
p),

and defined as

CLk(Xk, R
p) :=

{

a ∈ C̃Lk(Xk, R
p) | φ∗i, jTr∂ j Xi ιia = εi, j ι ja,

∀i, j ∈ Fk with i ∈ I and j ∈ Ii
}

.

Here, ε is the orientation indicator that takes the value εi, j = 1 if ∂ j Xi and φi, j (X j ) have the same
orientation, and εi, j = −1 otherwise.
Remark 2.3 The orientation εi, j can directly be calculated by verifying whether the composition φ̂−1j φ̂i of
extended coordinate maps preserves orientation in R

n .

An important detail is that the spaceCLk(Xk, R
p) is not globally continuous, as the continuity is only imposed

within each DAG Si . Pre-empting later developments, we note that, e.g., deformations in CL0(X0, R
n) are

therefore allowed to be discontinuous across fractures in physical space.
The above definitions ofmixed-dimensional differential forms, aswell as their pullback and trace operators,

allow us now to consider representations asmixed-dimensional functions as used in the remainder of this paper.
We first start by identifying the standard representation of differential forms in terms of classical functions
frommultivariate calculus. This discussion will exclusively consider the case of n = 3. Similar representations
are used for lower dimensions (see, e.g., [29]).

Definition 2.15 At any given point x ∈ X j , the space of differential forms C1	k(X j , R
p) has p

(d j
k

)

degrees
of freedom. The standard representation à = rá of a differential form á ∈ C1	k(X j , R

p) is given for p = 1
with respect to the standard basis for R

n as follows (when we need to distinguish between the form and its
representation, we denote the form by an accent aigu, and the representation by an accent grave):

1. For k = 0, the differential forms coincide with functions à ∈ C1(X j ), thus à = á.
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2. For k = 1, the differential one-forms 	k(X j ) are represented by vector functions à ∈ C1(X j , T X j ). This
representation is the Riesz representation, which satisfies for vector fields v1 ∈ T X j that á(v1) = v1 · à.

3. For k = n − 1, the differential forms 	k(X j ) are represented by “flux" functions à(x) ∈ C1(X j , T X j ).
This representation satisfies for vector fields v1, v2 ∈ T X j that á(v1, v2) = vol(à, v1, v2), where vol is the
volume of the parallelepiped spanned by its arguments.

4. For k = n, the differential forms a ∈ 	k(X j ) coincide with “density” functions à(x) ∈ C1(X j ). This
representation satisfies for vector fields v1, v2, v3 ∈ T X j that á(v1, v2, v3) = àvol(v1, v2, v3)

Since both pullback and trace act differently depending on the order of the form, we use the vernacular
“flux" to distinguish representations of n − 1 forms from representations of 1-forms, and similarly “density"
to distinguish representations of n-forms from representations of 0-forms.

Remark 2.4 From Definition 2.15, it is apparent that for n ≤ 2 (and importantly for our context, domains X j
for d j ≤ 2), the choice of representation is not unique, since, e.g., the possibility 1 = k = d j − 1 exists. This
is a classical observation, and is resolved in the current context by the following conventions: 1) For p = n,
representations as (vector) functions, i.e., 1. and 2. in Definition 2.15, are preferred over 3. and 4.When needed,
we emphasize this representation by the subscript r−. 2) For p = 1 representations as fluxes and densities,
i.e., 3. and 4. in Definition 2.15, are preferred over 1. and 2. When needed, we emphasize this representation
by the subscript r+.

Once a choice of representations has been established, we now have a one-to-one correspondence between
mixed-dimensional differential forms and their function counterparts, and the inverse representation r−1 is
thus well defined. The definitions of mixed-dimensional function spaces are now implied by the previous
developments.

Definition 2.16 For anymixed-dimensional form á ∈ CLk(Xk, R
p)wedenote its standardmixed-dimensional

representation as à = r±á ∈ C(Xk, R
p), iff r±ιi á = ιi à for all i ∈ I . For p = n the spaces of continuous

mixed-dimensional functions on Xk that are relevant for this paper are given for k = 0, 1 by the choice:

C(Xk, R
n) := r−CLk(Xk, R

n).

These are referred to as mixed-dimensional vector functions (k = 0) and matrix functions (k = 1).
For p = 1, the spaces of continuous mixed-dimensional functions on Xk that are relevant for this paper

are given for k = n − 1, n by the choice:

C(Xk, R) := r+CLk(Xk, R).

We refer to the latter spaces as mixed dimensional fluxes (k = n − 1) and densities (k = n).

Definition 2.17 The space of continuous mixed-dimensional functions with vanishing trace is given by

C̊(Xk, R
p) := {à ∈ C(Xk, R

p) | Tr∂Y X j ι j á = 0,∀ j ∈ Fk},
with ∂Y X j := φ−10, j (∂Y ∩ ∂� j ).

On C(Xk, R
p), we introduce a component-wise inner product as follows (we use angled brackets to denote

inner products, and reserve parenthesis for tuples):

〈a, b〉Xk :=
∑

j∈Fk

〈

ι ja,ι jb
〉

X j
, ∀a, b ∈ C(Xk, R

p). (2.7)

This naturally induces an L2-norm

‖a‖Xk := √〈a, b〉Xk , ∀a ∈ C(Xk, R
p). (2.8)

The space of L2 integrable functions can now be defined as the closure of the continuous functions with respect
to this norm [4]:

Definition 2.18 For 0 ≤ k ≤ n and p ∈ {1, n}, let the space of mixed-dimensional square integrable functions
on Xk be defined as

L2(Xk, R
p) := C(Xk, Rp).
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We emphasize that this definition is a direct result of the representation of differential in terms of conven-
tional function spaces. As is clear from the definition (and motivated by Definition 2.15), even when the space
is generated with p = 1, some function components may be vector-valued, as we will see in the examples
below.

Example 2.3 The following two cases exemplify the spaces for p = 1 that are relevant to our model.

• Let k = n, then Fn is given by the roots I . The number of degrees of freedom p
(d j
k

) = (n
n

) = 1 in this
case, so we have L2(Xn, R) = ∏

i∈I L2(Xi , R). This is the space in which we will define scalar density
functions such as fluid pressures. In Fig. 2, these roots have indices i with 1 ≤ i ≤ 4.

• Let k = n−1 and a ∈ L2(Xn−1, R). Then for each root i ∈ I with di ≥ 1, ιia is given by a vector function
in L2(Xi , R

di ). Moreover, for each j ∈ I di−1i , we have that ι ja ∈ L2(X j , R), i.e., a scalar distribution on
each boundary that models an interface between manifolds of codimension one. This will form our space
in which we define the fluid flux, both internal to each subdomain and across interfaces. In Fig. 2, these
functions are then vectors on the root nodes i = {3, 4} and scalars on the nodes j with 5 ≤ j ≤ 8. Note
that for �3, there are three nodes j ∈ {3, 7, 8} with s j = 3. This allows us to separate the tangential flux
inside the fracture ( j = 3) and the normal flux entering from the two sides ( j ∈ {7, 8}).

Example 2.4 Similarly, we give examples of the two relevant spaces for p = n.

• Let k = 0. We have that F0 consists of the roots i ∈ I n and all their descendants. Thus, for a ∈ L2(X0, R
n)

and i ∈ I n , we have that ι ja ∈ L2(X j , R
n) for all j ∈ Si . We will use this space of R

n-valued (vector)
distributions to model the displacement of the solid. In Fig. 2, these functions are defined on the root with
index 4 and the descendant nodes j with 7 ≤ j ≤ 10.

• Let k = 1 and n = 3. The 1-forest F1 then contains all roots i ∈ I 2 ∪ I 3 and their descendants j with
d j ≥ di − 2. For the roots i ∈ I 3, we have that ιia ∈ L2(Xi , R

3×di ) and for j ∈ I 1i ∪ I 2i , it follows that
ι ja ∈ L2(X j , R

3×d j ). On the other hand, for i ∈ I 2, we obtain ιia ∈ L2(Xi , R
3) and ι ja ∈ L2(X j , R

3)

for j ∈ I 0i ∪ I 1i . This space of R
3×d j -valued (tensor)-distributions will be used to model displacement

gradients, allowing us to define stresses and strains in the bulk matrix and its boundaries, as well as across
fractures. In Fig. 2, these functions are defined on the same domains as the flux functions discussed in
Example 2.3. However, for n = 3, the flux and stresses will have different domains of definition.

The final spaces required are those that are defined on all reference domains, which becomes particularly useful
when we consider volumetric strains in Sect. 3.3 and 3.4. These are defined for p ∈ {1, n} as, e.g.:

L2(X, R
p) :=

∏

j∈F
L2(X j , R

p). (2.9)

Analogous definitions extend to L∞(X, R
p) and Cm(X, R

p).
In summary, the mixed-dimensional function spaces are defined using their equivalent representations as

differential forms of order k. This gives us access to pullback and trace operators, as is illustrated in Fig. 3. In
turn, function spaces in the physical domain are defined in the next subsection such that their pullback onto
reference domains Xk have certain regularity properties.

2.4 Differential operators

The standard differential operators on manifolds can be extended to the setting of mixed-dimensional geome-
tries.However, in order to achieve the proper coupling between the domains, as required fromphysical relevance
(i.e., the use of the differential operators in conservation laws), manifolds of adjacent dimensionality must be
coupled via so-called jump operators.

This section presents the mixed-dimensional gradient and divergence operators, assuming continuous
functions of sufficient regularity. For a rigorous exposition of all mixed-dimensional differential operators
(including the curl), we refer again to [4], which follows a classical construction of Čech and de Rham
cohomology.

Let us start by defining the jump operator by d : C(Xk, R
p) → C(Xk+1, R

p) that maps between subdo-
mains of codimension one. We define this mapping by introducing a key set of indices.
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Fig. 3 The pullback φ̀∗ := rφ́∗r−1 of a function is defined using its representation as a differential form. Illustrated here is the
case of p = 1 and k = n − 1, i.e., the flux functions, for which the operator φ̀∗ is known as the Piola transform. The trace
operator on functions is defined analogously as T̀r := rT́rr−1. Due to the commutativity of this diagram, we omit the accents
when denoting these operators

Definition 2.19 For any root i ∈ I , let the index set Ji be given by

Ji :=
{

j ∈ F | s j = i and j ∈ Iĵ for some ĵ ∈ I di+1
}

.

In other words, this is the set of nodes that coincide in the physical domain with i and have a root of
dimension d j = di + 1. Then, the jump da ∈ C(Xk+1, R

p) of a continuous mixed-dimensional function
a ∈ C(Xk, R

p) is defined on a subdomain Xi with i ∈ I by the signed sum

ιi (da) = (−1)n−k
⎛

⎝
∑

l∈Ji
εi,lφ

∗
l,i ιla

⎞

⎠ , ∀i ∈ Fk+1 ∩ I

Where the pullback is used to map the function to the appropriate subdomain Xi . It is defined through the
representation of functions as differential forms, cf. Fig. 3.

The jump d is extended to descendants j ∈ Ii by imposing that da is in C(Xk+1, R
p). The remaining

values ι jda with j ∈ Fk+1\I are thus determined by trace values, cf. Definition 2.14.

For an illustration of the domain and range of the jump operator, we refer to Fig. 2, recalling that Xk is the
set of subdomains corresponding to the k-forest Fk .

We note, as emphasized inRemark 2.2, thatwhen = (t) is time-dependent, then so are the operatorsπl,i
and the mappings φl,i , and hence also the definition of the operatord(t). As a notational shorthand, we denote
this time-dependent jump in reference space as dt = d(t) when emphasis is needed, and otherwise simply
write d = d also for the jump operator on reference space to declutter the presentation. This dependence of
d on the mapping  has the (intended) consequence that the jump term dt remains local in physical space
for two points in contact, even when the domains they belong to are sliding relative to each other.

Remark 2.5 By the mixed-dimensional continuum assumption,
∣
∣πl,i (x)− x

∣
∣ = O(lε). This definition allows

for geometries that are slightlymore general than a conforming forest. Indeed, for geometrieswith a conforming
forest πl,i (x) = x . Furthermore, the closest point projection is Lipschitz continuous in the limit of infinitesimal
smooth deformations. As a consequence, for a configuration  and a smooth perturbation � tangential to all
boundaries, the derivatives considered from the “left" and “right" limits coincide, such that for all i ∈ I 2:

lim
ε→0

ε−1ιi (d+ε�) = lim
ε→0

ε−1ιi (d(+ε�)−ε�(− ε�)) = lim
ε→0

ε−1ιi (d(− ε�)).

This limit will be useful when considering the linearized theories later.
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Next, we will construct the mixed-dimensional differential operators. Formally, these can be defined based on
the differential forms and the exterior derivative [4], and then defining the differential operators on representa-
tions by requiring that commutation holds. However, as this introduces more formalisms than what is needed
in the current exposition, we will here present the differential operators directly on the mixed-dimensional
functions, with an understanding that mixed-dimensional exterior derivatives can similarly be defined on the
mixed-dimensional forms.

We consider first the gradient, for which we set k = 0, and define the local gradient operator ∇ :
C(X0, R

n) → L2(X1, R
n) as the standard gradient on each reference space, i.e., for a ∈ C(X0, R

n) let
∇a ∈ L2(X1, R

n) be such that

ι j (∇a) =
{

∇(ι ja), ∀ j ∈ F1 ∩ F0,

0, ∀ j ∈ F1\F0.

We emphasize that this operator takes the gradient not only of the components defined on the roots j ∈ I n ,
but also on its boundaries j ∈ Ii .

Definition 2.20 The mixed-dimensional gradient on vector functions D : C(X0, R
n) → L2(X1, R

n), is
defined as

Da := ∇a+ da, ∀a ∈ C(X0, R). (2.10)

The mappings  are usually implied from the context, we will then omit the subscript and writeD.

Similarly, for the mixed-dimensional divergence, we first define (∇·) : C(Xn−1, R)→ L2(Xn, R) such that

ι j (∇ · b) =
{

∇ · (ι jb), ∀ j ∈ Fn ∩ Fn−1,
0, ∀ j ∈ Fn\Fn−1.

Definition 2.21 The mixed-dimensional divergence (D·) : C(X0, R)→ L2(X1, R) is defined as

D · a := ∇ · a+ da, ∀a ∈ C(X0, R). (2.11)

The mappings  are usually implied from the context, we will then omit the subscript and write (D·).
It is important to note that these operators do not possess the same adjointness properties as the conventional
gradient and divergence operators since they are defined on different k-forests. However, the adjoints of mixed-
dimensional operators do play a vital role in ourmodel and, to properly define these, we consider the differential
operators as instances of densely defined unbounded linear operators (see, e.g., [30]) on L2(X0, R

p). Taking the
adjoint (see Definition A.6) of the mixed-dimensional gradient and divergence then leads us to the co-gradient
(D·) and co-divergence (D), respectively.

Definition 2.22 Let the mixed-dimensional co-gradient be denoted (D·) : dom(D·) ⊆ L2(X1, R
n) →

L2(X0, R
n) and the mixed-dimensional co-divergence be denoted D : dom(D) ⊆ L2(Xn, R) →

L2(Xn−1, R), defined such that for b ∈ L2(X1, R
n) and c ∈ L2(Xn, R),

〈D · b, a〉X0 = −〈Da, b〉X1 , ∀a ∈ C̊(X0, R
n), (2.12a)

〈Dc, a〉Xn−1 = −〈D · a, c〉Xn , ∀a ∈ C̊(Xn−1, R). (2.12b)

As with the gradient and divergence, we will in later sections mostly omit the subscript .

The differential operators D· and D coincide with the conventional divergence and gradient on the roots,
complemented by so-called half-jump operators on the boundaries ∂ j Xi that relate ιia and ιs j a. We refer the
interested reader to [4] for explicit representations. On the other hand, Definition 2.18 defines the mixed-
dimensional gradient and divergence on the more regular spaces C(Xk, R

p). We do not wish to require such
regularity in the weak formulation of our model and we therefore expand the definition.

Definition 2.23 Let the mixed-dimensional gradient and divergence with boundary conditions be given by

D̊ : dom(D̊) ⊆ L2(X0, R
n)→ L2(X1, R

n), D̊ := (−D·)′, (2.13a)

(D̊·) : dom(D̊·) ⊆ L2(Xn−1, R)→ L2(Xn−1, R), (D̊·) := (−D)′. (2.13b)



1134 W. M. Boon, J. M. Nordbotten

Remark 2.6 The circular accent on these operators indicates that the functions in the respective domains
have vanishing trace on ∂YX

k . This is a direct consequence of using test functions a ∈ C̊(Xk, R
p) in (2.12).

Moreover, the role of boundary conditions could have been reversed (and indeed generalized), but we will
retain the choice implied above for simplicity of exposition.

To conclude this section,we emphasize that all differential operators (and the co-differentials) introduced herein
are densely defined, unbounded linear operators mapping as L2(Xk, R

p) → L2(Xk+1, R
p), cf. Appendix A.

In particular, the density of C(Xk, R) in L2(Xk, R) was shown in Theorem 3.1 of [4]. A consequence of this
statement is that the spaces dom(D·), dom(D), dom(D̊) and dom(D̊·) are all Hilbert spaces with respect
to their respective graph norms.

3 Mixed-dimensional strain measures

Scalar elliptic mixed-dimensional equations are well understood [4], and the case of p = 1 and k ∈ {n − 1, n}
leads to the standard equations used for mixed-dimensional models of flow in fractured porous media [4,6,31].
The main outstanding challenge in constitutive modeling is thus the correct treatment of the mechanical
deformation in the mixed-dimensional setting. This is the topic of this section.

Our approach in this development is to follow the “top-down"modeling associatedwith classical continuum
mechanics, in the tradition of, e.g., [1,3,24,32], adapted to the mixed-dimensional geometry and spaces
presented in Sect. 2. Thus, we obtain a mixed-dimensional finite strain theory directly for the geometric
representation F. The converse approach, which we will not pursue in this work, would be to take the standard
theory of mechanics as applied to the domain Y with its high-aspect inclusions �i , and derive a finite strain
theory for F through an upscaling based on the limit process of lε → 0. We will discuss the relationship
between the results obtained in this work and classical theory as posed on Y in Sect. 4.5.

3.1 Recollection of fixed-dimensional finite strain theory

To provide context for the mixed-dimensional strain measure introduced later, we briefly recall the standard
setting of finite strain theory. We recall from (2.5) in Sect. 2.2 that for domains X and � = φ(X), we denote
by F = Dφ the derivative of the C1 mapping φ. Then,

Definition 3.1 The right Cauchy–Green deformation tensor C : T� → T� is defined for a configuration φ
as

C(φ) := FTF. (3.1)

Sinceweare only concernedwith problems embedded inR
n withCartesian coordinates,wewill in the following

use the same notation for all associated tensors. However, we will not have need for the full generality of tensor
calculus as all variables are defined on subsets of R

d j . We will therefore not distinguish notationally between
“raising and lowering indexes".

In our geometric setting, the reference domain X is without physical meaning, and we will be concerned
with a time-dependent physical configurations, represented by φ(t) and where the initial state is denoted
φ := φ(t = 0). These are naturally compared on the reference domain X , since the deformation tensor is
rotationally invariant here. Thus, we have

Definition 3.2 Green–Lagrange strain tensor with respect to the configurations φ and φ is defined by the
2-tensor

E(t) := 1

2
(C(φ(t))−C(φ)). (3.2)

The normalization factor 1
2 is somehow arbitrary, but is typically included to ensure that the linearized

strain becomes dual to the divergence operator on symmetric tensor functions. If furthermore the deformation
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is infinitesimal from the baseline configuration φ, i.e., that φ(t) = φ+u(t), and F = F+ Du, with |Du| � 1,
in the case of d = n leads to

E(t) = 1

2
((F+ Du)T (F+ Du)− FTF)

= 1

2
(FT Du + (Du)TF)+ (Du)T Du.

The linearized strain tensor is obtained by retaining the first-order terms in |Du|, as summarized below.

Definition 3.3 The linearized strain tensor with respect to the deformation u(t) = φ(t)− φ is defined by the
2-tensor

e(t) := 1

2
(FT Du(t)+ (Du(t))TF). (3.3)

When expressed as a linear operator on u(t), we refer to this operator as the symmetric gradient, and write

Dsu(t) := e(t). (3.4)

We remark that this definition simplifies whenever the reference configuration X is equal to the baseline
physical configuration �, since in this case φ(x) = x , and F = FT = I. However, due to the nature of
the mixed-dimensional geometries of interest herein, this will in general not be the case in our context. For
example, fractures are not restricted to be located on the xy-plane, but the corresponding reference domains
are.

3.2 Mixed-dimensional finite strain

We follow the same approach to derive a mixed-dimensional finite strain theory. To proceed, we first make
precise the needed extensions of fixed-dimensional calculus to the mixed-dimensional setting. In particular,
we have already defined the mixed-dimensional differential operators in Sect. 2.4. While these are in principle
sufficient to obtain a mixed-dimensional strain, a richer strain notion can be obtained by also considering the
derivative of the mixed-dimensional extended coordinate mappings, defined in Definitions 2.6 and 2.7. In the
same manner as above, we therefore introduce

Definition 3.4 The derivative of the mixed-dimensional extended deformation ̂ is denoted F := D̂, and
satisfies ι jF = Dφ̂ j for all j ∈ F.

Note that the forest F and the derivative F should not be confused.
It is an important point that the mixed-dimensional setting now deviates from the fixed-dimensional case,

in that D �= D �= D. These notions of a derivative of the configuration  (all in a sense “gradients")
have important distinctions. The derivative of the deformation F, defined on X, contains information of the
deformation of each�i , but has no information about the relative placements of domains. On the other hand, the
mixed-dimensional gradientD, defined onX1, contains information on relative placements (due to the jump
operator d), but only contains information regarding the deformation of the top-dimensional domains, i.e.,
those domains �i where di = n. It is therefore clear thatD contains the desired physical information (since
the lower-dimensional domains are fractures–voids–and their precise deformation is immaterial). Conversely,
the deformation F is required for coordinate transformations, and can be thought of as a “fabric" onto which
to project vectors.

The above discussion suggests:

Definition 3.5 The mixed-dimensional right Cauchy–Green deformation tensor is defined for a configuration
 as

C := (�1FT )D(�0), (3.5)

where �k is the restriction from X to Xk .
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Remark 3.1 The deformation F based on the extended mappings φ̂ allows for transforming vectors (and thus
forces) inR

n appropriately. Alternative suggestions for a “symmetric" deformation tensor, such as expressions
of the typeFTF or (D(�0))TD(�0), can be seen to be unsuitable, as the former contains no information of
relative placements of domains, while the latter only retains the magnitude of displacements across a fracture,
without orientation information.

Proceeding as in Sect. 3.1, we will use the mixed-dimensional right Cauchy–Green deformation tensor
as the basis for defining a strain measure on the reference domain. We therefore consider a time-dependent
mapping  = (t) from which we obtain a time-dependent deformation tensor C(t). By again identifying
time t = 0 as the reference time with  := (t = 0), then

Definition 3.6 Themixed-dimensional Green–Lagrange strain tensor with respect to the configurations and
 is defined by

E(t) := �(C(t)− C), (3.6)

where the mixed-dimensional gradients Dt are evaluated based on the configuration at time t , such that in
particular,C = FTD(t). Moreover, the normalization factor � is assigned the value ι j� = 1

2 for j ∈ Si and
i ∈ I n and the value ι j� = 1 otherwise. The justification for this choice will become apparent in Lemma 5.1.

Example 3.1 We consider the interpretation of the mixed-dimensional Green–Lagrange strain tensor on
domains of various dimensionality:

1. For top-dimensional domains, i ∈ I n , then as in the fixed-dimensional case,

ιiE(t) = Ei (t). (3.7)

2. On the boundaries of the top-dimensional domains i ∈ S j , where j ∈ I n , the deformation tensor is given
by ιiC = (F̂i )

TFi with F̂i := Dφ̂i . It is thus represented by a R
n × R

di matrix. Then, the strain takes the
form

ιiE(t) = 1

2
(F̂T

i (t)Fi (t)− F̂
T
i Fi ) =

1

2

(
FT
i (t)Fi (t)− FT

i Fi

0

)

. (3.8)

Note that due to Definition 2.7, the “extended" components of F̂i are orthogonal to Fi (whose columns are
vectors in the tangent space T�i ), thus the last n − di rows of ιiE(t) are identically zero, justifying the
claim that the precise choice of extensions in Definition 2.7 is immaterial for the developments.

3. For domains i ∈ I n−1 (the fractures), the mixed-dimensional gradient of the deformation is simply ιiD =
ιidt, i.e., the jump in φ j between the two n-dimensional neighbors to �i . Thus,

ιiE(t) = F̂
T
i (t)(ιidt(t))− F̂

T
i (ιidt).

As above, it is natural to decompose it into its parallel and normal components, denoted by subscripts ‖
and ⊥, respectively, which takes the form

ιiE(t) =
[

(ιiE(t))‖
(ιiE(t))⊥

]

=
[

FT
i (t)(ιidt(t))

F̂T
i,n(t)(ιidt(t))

]

−
[
FT
i (ιidt)

F̂
T
i,n(ιidt)

]

. (3.9)

Here, we denote the nth row of F̂T
i (t) by F̂T

i,n(t), which we note equals F̂T
i,n(t) = l

−1
i nTi (t), where ni is

the normal vector orthogonal to �i preserving the orientation of φ̂i . Therefore, the expression for the strain
can be simplified to

ιiE(t) =
[

FT
i (t)(ιidt(t))‖
l
−1
i (ιidt(t))⊥

]

−
[

FT
i (ιidt)‖

l
−1
i (ιidt)⊥

]

. (3.10)

Here, we have decomposed the displacement jump into its orthogonal and parallel components,

(ιidt)⊥ := nTi (ιidt) and (ιid0)‖ := ιid0 − ni (ιid0)⊥.
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Moreover, by the definition of the jump operator, the jump in the direction parallel to the fracture is
identically zero, (ιidt(t))‖ = 0, and this term can be omitted from (3.10). We furthermore note that by
the mixed-dimensional continuum assumption the jump in the direction perpendicular to the fracture is of
order lε , thus l

−1
i (ιidt(t))⊥ = O(1). In contrast, sliding is measured as (ιidt)‖, which measures the

slip of the two fracture surfaces from the initial state until the current configuration. We thus arrive at the
final expression for the strain in fractures,

ιiE(t) =
[

−FT
i (ιidt)‖

l
−1
i ((ιidt(t))⊥ − (ιidt)⊥)

]

. (3.11)

4. SinceD is void on domains � j with j ∈ I d<n−1, so is ιiE(t) for all i ∈ S j .

Again, we emphasize that the measure of opening of a fracture has arbitrary scale, depending on the choice of
li . This implies that E(t) is a multi-scale strain measure, which we will return to in Sect. 4 (Example 4.2). We
close this section by verifying that the mixed-dimensional finite strain E(t) is rotationally and translationally
invariant.

Lemma 3.1 Let (t) be a rigid body motion relative to . Then, E(t) = 0.

Proof A rigid body motion can be described by a rotation matrix R(t) and a vector V (t), both independent of
space and the rotation satisfying R−1(t) = RT (t). Then, (t) = R(t) + V (t), i.e., for all i ∈ F the local
mapping is given by

ιi(t) = R(t)φ0,i (0)+ V (t).

Then, since differentiation is a linear operator with constants in its null-space, we have both Fi (t) = R(t)Fi

and F̂i (t) = R(t)F̂i , while by the same argument the jump operator satisfies ιidt(t) = ιidt (R(t)) =
ιi R(t)dt.

Now a direct substitution gives

F̂T
i (t)Fi (t) = (R(t)F̂i )

T R(t)Fi = F̂i R
T (t)R(t)Fi = F̂iFi

and

F̂T
i (t)(ιidt(t)) = (R(t)F̂i )

T (R(t)ιidt)

= F̂i R
T (t)R(t)(ιidt) = F̂i (ιidt).

Comparison with the local expressions for ιiE(t) provided in Example 3.1 verifies the lemma. ��

3.3 Mixed-dimensional linearized strain

When considering a constitutive theory, our primary variable will be the displacement of the top-dimensional
domains u ∈ L2(X0, R

n). To be able to calculate the linearized strain in the remaining, lower-dimensional
subdomains, we require an extension operator onto the domain of , which we define as:

Definition 3.7 A bounded linear operator � : L2(X0, R
n)→ L2(X, R

n) is an X0-extension operator if it is a
right inverse of the restriction �0, i.e.,

�0�u := u, ∀u ∈ L2(X0, R
n). (3.12)

Remark 3.2 We note that the most natural choice for� is an averaging operator, such that for a fracture i ∈ I 2,
its displacement ιi (�u) is defined as the average displacement of the rock on the two sides. Such operators
allow us to consider the representation as the mean of neighboring (rock) positions in I n , such that for any
i ∈ I d<n

ιi (�u) = 1
∣
∣
∣ Î ni

∣
∣
∣

∑

j∈ Î ni
φ∗j,i (ι ju).

We study the role of extension operators in more detail in Sect. 3.4.
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We obtain a linearized strain by considering deformations (t) such that (t) = �u(t) +, and where the
mixed-dimensional gradients inDu are small in the sense that for all i ∈ F, and for all x ∈ Xi , it holds that

‖(ιiDu)(x)‖ � ‖Fi (x)‖. (3.13)

Using this we define the linearized strain as e(t), obtained by omitting “small" terms. More precisely, we define
the linearized strain as the Fréchet derivative of the finite strain in the following sense:

Definition 3.8 For some initial mapping , and some deformation u ∈ C(X0, R
n), let themixed-dimensional

linearized strain be defined as

e(u) := DE()(�u), (3.14)

where DE()(�) is the Fréchet derivative of E at  acting on the perturbation �. When expressed as a linear
operator on u(t), we refer to this operator as the symmetric gradient. Thus, Ds : C1(X0, R

n) → L2(X1, R
n)

is defined as

Dsu := e(u). (3.15)

Example 3.2 Continuing fromExample 3.1,we consider the interpretation of themixed-dimensional linearized
strain tensor ondomains of various dimensionality, keeping inmind that is the unstrained state, i.e.,E() = 0.

1. For top-dimensional domains, i ∈ I n , then as in the fixed-dimensional case, the linearized strain tensor
takes the form

ιi e(u) = 1

2
(FT

i Dui (t)+ (Dui (t))
TFi ). (3.16)

2. On the boundaries of the top-dimensional domains i ∈ S j , where j ∈ I n , the linearized strain tensor is
represented by a R

n × R
di matrix. It has the explicit form

ιi e(t) = 1

2
(F̂

T
i Dui (t)+ (Dûi (t))

TFi ) =
1

2

(

FT
i Dui (t)+ (Dui (t))TFi

0

)

. (3.17)

As in the case of the finite strain, the last n − di rows of ιi e(t) are identically zero.
3. For domains i ∈ I n−1 (the fractures), we calculate the Fréchet derivative as

ιi (DE())(�) = lim
ε→0

ε−1(ιiE(+ ε�)− ιiE())

= lim
ε→0

1

ε

[

−FT
i (ιid+ε�)‖

l
−1
i ((ιid+ε�(+ ε�))⊥ − (ιid+ε�)⊥)

]

= lim
ε→0

1

ε

[

−FT
i (ιid+ε�)‖

εl−1i (ιid+ε��)⊥

]

=
[

FT
i (ιid�)‖

l
−1
i (ιid�)⊥

]

.

(3.18)

In the final line, we have used the continuity of the jump operator, as elaborated in Remark 2.5. Substituting
in the extended deformation �u, we now obtain

ιi e(u) = ιi (DE())(�u) =
[

FT
i (ιid�u)‖

l
−1
i (ιid�u)⊥

]

=
[

FT
i (ιidu)‖

l
−1
i (ιidu)⊥

]

. (3.19)

Here, the extension operators vanish since they are identity operators on the top-level domains (by Defini-
tion 3.7).

4. As in the finite deformation case, the linearized strain is void for i ∈ I d<n−1.

Remark 3.3 Example 3.2 illustrates that the extension � plays no role in the final expressions for the lin-
earized strain. However, this situation changes when considering the linearization of volumetric strain in the
next section. Secondly, we emphasize the trivial (but sometimes forgotten) fact that while the finite strain is
rotationally invariant, its linearization is not. The importance in deriving a linearized strain from a rotationally
invariant quantity is thus to ensure consistency in the limit of small deformations.
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Fig. 4 Geometry considered in Example 3.3, where all mappings can be chosen such that φ0, j (0) = 0 and that (Fj )‖ = I near
the origin

Remark 3.4 It is an important detail that while in the finite strain case the differential operators are time-
dependent via their dependence on the jump operator d(t), it is clear from Definition 3.8 and Example 3.2
(see, e.g., (3.19)), that the differential operator in the linearized strain is evaluated at , and thus not time-
dependent.

We give a second example to be more concrete.

Example 3.3 Consider a circular fracture defined by the unit disk in the plane as illustrated in Fig. 3. We
choose an initial mapping that is the identity mapping near the origin, i.e., X1 = B2(x) ⊂ R

2, such that
φ
0,1

(x) = [x, 0] ∈ R
3 and �1 = φ

0,1
(X1). Let the domains “above" and “below" be enumerated 2, 3 with

mappings φ0,2(x) = x and φ0,3 = x on their respective domains X2 and X3, and let the extended mapping of

X1 be defined such that φ̂
0,1
=

[

x, l−11 y
]

for (x, y) ∈ X1 × [−ε, ε] for some ε > 0. Then on the fracture,

x ∈ X1, the fully linearized strain is simply

ι1e(t; x) =
(

ι2u‖(t; x)− ι3u‖(t; x)
l
−1
1 (ι2u⊥(t; x)− ι3u⊥(t; x))

)

∈ R
3, (3.20)

while on the lower boundary of the fracture, indexed by say j = 5 such that s5 = 1 and with φ̂
0,5
= φ̂

0,1
, the

strain is

ι5e(t; x) = 1

2
((Dι5u)

T + Dι5u) = 1

2

[

(D‖ι5u‖)T + D‖ι5u‖
0

]

. (3.21)

Thus, ι5e(t) is represented by a 3 × 2 matrix similar to the horizontal components of the linearized strain.
We note that when seen together, the fracture strain and (either of) the boundary strains can be combined and
considered as a representation of the full strain.

For the interior of the matrix, we recover the standard linearized strain, such as in, e.g., X3

ι3e(t; x) = 1

2
((Dι3u)

T + Dι3u). (3.22)
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3.4 Mixed-dimensional volume measure and the matrix trace operator

We will see in the continuation that flow is naturally formulated with pressures in L2(Xn, R) and fluxes in
L2(Xn−1, R), whereas the mechanics is naturally formulated with displacements in L2(X0, R

n) and strains in
L2(X1, R

n), cf. Examples 2.3 and 2.4. In order to develop appropriate coupling between flow and mechanics,
we will also need operators mapping between these spaces, particularly to capture the effect of volume changes
in the lower-dimensional domains (and conversely, the impact of fluid pressure on the total stress). As in the
preceding sections, we present the volume measure in the setting of finite deformation first, and subsequently
its linearization.

3.4.1 Finite deformation volumetric strain

By continuity, the determinant of the derivative of the transformation J := det(D̂) contains the volume
of the physical configuration relative to the volume of the reference domains. This is sufficient for the top-
dimensional domains, i ∈ I n; however, for lower-dimensional domains i ∈ I d<n , it is of interest to include
not only the static weight li , but also the change associated with the jump in displacement. We therefore define
the mixed-dimensional volume J as follows.

Definition 3.9 Let ω
j
i ∈ C1(Xi ) be a set of nonnegative weights for i ∈ I d<n and j ∈ F with s j = i . The

mixed-dimensional volume density J() is defined such that:

1. For i ∈ I n , then ιiJ() = vol(Fi ), defined in (2.6).
2. For i ∈ I d<n−1, then

ιiJ() = l
n−di
i

⎛

⎜
⎝1+

∑

j∈Jn−1i

ω
j
i l
−1
j φ∗j,i (ι jd)⊥

⎞

⎟
⎠ vol(Fi ), (3.23)

where Jn−1i is the set of indexes j ∈⋃

l∈I n−1 Sl such that s j = i .
3. For i ∈ I , and j ∈ Ii , then ι jJ() = 0.

The above definition ismotivated as follows (confer also Fig. 5): As stated in themixed-dimensional continuum
assumption, Definition 2.2, it is natural to consider that the idealization of the fracture has some effective
opening li , and that in general its volume per unit area changes linearly with perpendicular opening (or
closing) ιi (d)⊥ according to a proportionality constant ωi

i . Similarly, the cross-sectional area associated

with an intersection will have some lower limit ln−dii , and change proportionally to the opening of nearby

fractures meeting at that intersection, according to weights ω
j
i . We recognize that the definition stated in

point 1 above can be written as special case of point 2 (by introducing the convention that li = 1 for i ∈ I n),
but retain separate definitions for pedagogical clarity. Finally, it is typically not relevant to consider volume
changes of the surfaces (point 3).

3.4.2 Linearized volume change

We briefly recall under the small deformation assumption in fixed-dimensional continuum mechanics, the
linearization of the volumetric change of a deformation becomes the matrix trace. To be precise, let us as in
Sect. 3.3 consider a small deformation (t) such that (t) = �u(t)+, where (3.13) holds. Then, since the
determinant commutes with the matrix product, for any i ∈ I n we have the relationship (recall that in the case
when di = n, then vol = det, and for di < n, we have vol(Fi )

2 = det(FT
i Fi )):

Ji
J i
= det(Fi )

det(Fi )
= det(F−1i Fi ) = det(F−1i D(φ

i
+ ui )) = det(I + F−1i Dui )

= det(I + C−1i FT
i Dui )

= 1+ Trace (C−1i FT
i Dui )+O(|Du|2)

= 1+ Trace (C−1i e(ui ))+O(|Du|2).

(3.24)
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Fig. 5 Illustration of multi-scale contact mechanics, adapted from Oden and Martins [33]

where we see that the linear term is the trace of the linearized strain, scaled by the deformation tensor of the
undeformed state. Thus,

(DJi )(ui )

det(Fi )
= Trace (C−1i e(ui )). (3.25)

In the same spirit, we first consider the linearization of themixed-dimensional volume change, and secondly
identify its interpretation as a matrix trace.

Definition 3.10 For some initial mapping , and some deformation u ∈ C(X0, R
n), the linearized mixed-

dimensional volume change j ∈ L2(X, R) is defined as

j(u) := DJ()(�u), (3.26)

where DJ()(�) is the derivative of J at  for the perturbation �.

Example 3.4 Continuing fromExample 3.2,we consider the interpretation of themixed-dimensional linearized
volumetric strain on domains of various dimensionality.

1. For i ∈ I n , then we obtain as in the fixed-dimensional case

ιi j(u)

det(Fi )
= Trace (C−1i ιi e(u)). (3.27)

2. For i ∈ I n−1, then we first calculate the Fréchet derivative based on its action on � as (using that for a
conforming forest, (ιid)⊥ = 0 by definition, and introducing the shorthand notation d�( + ε�) =
d+ε�(+ ε�)− d(+ ε�)):

ιi DJ
(


)

(�) = lim
ε→0

ε−1
(

ιiJ
(

+ ε�
)− ιiJ

(


))

= lim
ε→0

ε−1
((

li + ωi
i

(

ιid+ε�

(

+ ε�
))

⊥
)

vol
(

D
(

φ
i
+ εψi

))

− livol
(

Fi

)
)

= lim
ε→0

ε−1
((

li + ωi
i

(

ιid+ε�

(

+ ε�
))

⊥
)

√

det

((

D
(

φ
i
+ εψi

))T
D
(

φ
i
+ εψi

))

− li

√

det
(

FT
i Fi

)

)
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= lim
ε→0

ε−1
((

li + ωi
i

((

ιid

(

+ ε�
))

⊥ +
(

ιid�

(

+ ε�
))

⊥
))

√

det
(

FT
i Fi + ε

(

FT
i Dψi + (Dψi )

T Fi

)+ ε2 (Dψi )
T Dψi

)

− li

√

det
(

FT
i Fi

)
)

= lim
ε→0

ε−1vol
(

Fi

)
( (

li + ωi
i

(

ιi
(

εd� + d�

(

+ ε�
)))

⊥
)

(

1+ ε

2
Trace

(

C−1i

(

FT
i Dψi + (Dψi )

T Fi

))

+O (

ε2
))− li

)

= vol
(

Fi

)
(

ωi
i

(

ιid�
)

⊥ +
li

2
Trace

(

C−1i

(

FT
i Dψi + (Dψi )

T Fi

)))

lim
ε→0

1+ ωi
ivol

(

Fi

) (

ιid�
)

⊥
2

Trace
(

C−1i

(

FT
i Dψi + (Dψi )

T Fi

))

lim
ε→0

ε + ωi
ivol

(

Fi

)

lim
ε→0

(

ιi
(

d�
))

⊥
(

1+ ε Trace
(

F̂
−1
i Dψ̂i

))

+O (ε)

= vol
(

Fi

)
(

ωi
i

(

ιid�
)

⊥ +
li

2
Trace

(

C−1i

(

FT
i Dψi + (Dψi )

T Fi

)))

. (3.28)

Here, we have used the continuity of the closest point projection in the definition of the jump operator to
conclude that limε→0(ιi (d�))⊥ = 0. Now it follows that:

ιi j(u)

livol(Fi )
= ιi DJ()(�u)

livol(Fi )

= ωi
i

li
(ιidu)⊥ + Trace

(

C−1i
1

2
(FT

i D(ιi�u)+ (D(ιi�u))TFi )

)

.

(3.29)

Here, we have used that for i ∈ I n−1, it holds that ιid�u = ιidu.
3. For i ∈ I d<n−1, a similar calculation as above gives

ιi j(u)

l
n−di
i vol(Fi )

=
∑

j∈ Î n−1i

ωi
i

li
(ι jdu)⊥

+ Trace

(

C−1i
1

2
(FT

i D(ιi�u)+ (D(ιi�u))TFi )

)

.

(3.30)

Here, we have used that the initial state is a conforming forest, thus since si = s j it holds that φ∗
j,i

is the
identity.

4. For i ∈ I , and j ∈ Ii , then ι j j(u) = 0.

The above calculation shows that for fractures and intersections, i ∈ I d<n , the linearized volume change has
two components, which have the natural interpretations of transverse opening and longitudinal stretching.

Motivated by the fixed-dimensional case, we wish to express the linearized volume change in terms of the
linearized strain. We begin by observing that with the representation of � as defined above, and i ∈ I d<n ,
then

Trace

(

C−1i
1

2
(FT

i D(ιi�u)+ (D(ιi�u))TFi )

)

= 1
∣
∣
∣ Î ni

∣
∣
∣

∑

j∈ Î ni
Trace

(

C−1i
1

2
(FT

i D(ι j û)+ (D(ι j û))
TFi )

)

= 1
∣
∣
∣ Î ni

∣
∣
∣

∑

j∈ Î ni
Trace (C−1i (ι j e)‖).

(3.31)
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Fig. 6 The mixed-dimensional trace operator T′ maps strains defined in L2(X1, R
n) to volumetric changes defined in L2(Xn, R)

for i ∈ I 2 (black), i ∈ I 1 (blue), i ∈ I 0 (red)

This calculation again exploits that the initial state is a conforming forest, since for si = s j it holds that
Fi = F j . Moreover, we recall that for i ∈ I n−1, it holds that 1

li
(ιidu)⊥ = (ιi e)⊥. This allows us to introduce

the following:

Definition 3.11 The mixed-dimensional matrix trace operator T′ : L2(X1, R
n) → L2(Xn, R) is defined as

follows. For u ∈ L2(X1, R
n), and e = Dsu ∈ L2(X1, R

n) the trace operator satisfies

j(u) := J()T′e = J()T′(Dsu). (3.32)

Example 3.5 Continuing from Example 3.4, we consider the interpretation of the mixed-dimensional matrix
trace on domains of various dimensionality.

1. For i ∈ I n , then as in the fixed-dimensional case

ιi (T
′e) = Trace(C−1i ιi e).

2. For i ∈ I d<n , then

ιi (T
′e) =

∑

j∈ Î n−1i

ω
j
i (ι j e)⊥ +

1
∣
∣
∣ Î ni

∣
∣
∣

∑

j∈ Î ni
Trace (C−1i (ι j e)‖).

3. For i ∈ I , and j ∈ Ii , then ι j (T
′e) = 0.

Example 3.6 Let n = 2 and consider the geometry from Fig. 6.

• Let i ∈ I 2. The linearized volumetric strain is given, as in the fixed-dimensional case by the trace of the
linear strain, depicted by black arrows in Fig. 6.

• Let i ∈ I 1. Volumetric changes of �i are measured using two metrics: changes with respect to tangential
dilation are captured using the strain on the adjacent skins whereas changes in the aperture are measured
using the locally defined strain vector. This is illustrated by the blue arrows in Fig. 6.

• Let i ∈ I 0. In this case, volumetric changes of �i are measured using the perpendicular components of
the strain vectors in the adjacent fractures. This is illustrated by the red arrows in Fig. 6.

• Let n = 3 and consider an extrusion of the geometry from Fig. 6 in the third dimension. Then, for i ∈ I 1,
�i represents an intersection line between fractures. Here, the tangential stretching is captured using the
trace of the three-dimensional strain in the four corner lines, whereas the opening is measured using the
change in aperture of the adjacent fractures.

We also define a mapping of pressures to stresses, generalizing the identity tensor. The following definition
ensures that the duality from the fixed-dimensional case is preserved in reference space.
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Fig. 7 The canonical structure of coupled poromechanics

Definition 3.12 Let the mixed-dimensional identity operator T : L2(Xn, R)→ L2(X1, R
n) be such that

〈Ta, b〉X1 := 〈a,T′b〉Xn , ∀a ∈ L2(Xn, R) and b ∈ L2(X1, R
n). (3.33)

We summarize the linearized operators constructed in Sect. 3.3 and 3.4.2 with the diagram shown in Fig. 7.
This diagram also includes the co-symmetric-gradient, (Ds ·), which will be defined in Sect. 4.5. Its duality
with Ds is discussed in Sect. 5.1.

4 Mixed-dimensional poromechanics

The preceding sections have laid the geometric foundations for considering deformation in mixed-dimensional
geometries. In this section, we use these foundations to develop a theory of poromechanics. Our presentation
will first establish the spatial structure of the system, as inferred from the geometry and differential operators
defined above. We then consider the physical modeling of fluid flow, thence mechanics, and finally summarize
the complete model. We close this section by discussing the relationship between mixed-dimensional porome-
chanics and classical equidimensional models. The exposition follows the standard modeling approach for
poromechanics, which in the fixed-dimensional case is carefully reviewed by, e.g., Coussy [3], and summa-
rized recently in [34].

We emphasize that all modeling in this section is considered on the reference domains X. This implies
that all variables and derivatives are with respect to these domains, such that, e.g., when considering a mass
density ρi , it is understood that this is mass density per unit volume form on Xi . With density as a concrete
example, and domains i with di = 3, this implies that density is a function of thermodynamics state (pressure
and temperature), as well as the volumetric deformation (pullback of n-forms). On domains i with di < 3,
we immediately get the interpretation of mass per measure, i.e., that the physical units of mass density are not
simply mass per volume, but rather mass per area, length, or point.

4.1 Primary variables and structure

We consider the quasi-static poroelastic system as the composition of a mass conservative description of fluid
flow, together with a mechanical system at equilibrium, as formulated on the reference domains Xk . As such,
we consider displacement u ∈ C(X0, R

n), total stress s ∈ C(X1, R
n), fluid mass density ρ(p) (represented

for simplicity by pressure p ∈ C(Xn, R) in absence of thermal effects) and fluid mass flux q ∈ C(Xn−1, R) as
primary variables. For the sake of exposition, we will frequently also refer to the strain E ∈ C(X1, R

n), which
we consider as a secondary variable derived from the displacement. In this section, we will assume enough
regularity for all the definitions below to be valid: a weak formulation where regularity is considered in more
detail is presented in Sect. 5.
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Before we detail the physical constitutive laws, we note that the structure of the function spaces and
constitutive laws essentially dictate the underlying canonical structure of the spatial operators. This is already
summarized in Fig. 7 above, which, with reference to the primary variables defined above, can be summarized
in terms of the following structures.

Conservation structure for fluid mass is stated on the space C(Xn, R), and can thus (apart from a source
term rm) only involve the quantities pressure p, volumetric strain J(�u+) and divergence of fluxD · q.

Similarly, the balance of mechanical forces is stated on the space C(X0, R
n), and can thus (apart from

external forces rs) only involve the quantities displacement u and co-gradient of stress D ·s. There are no other
operators that map to this space.

We will see that the system has two constitutive laws. For the fluid, this is a binary relationship on
C(Xn−1, R), involving the flux q and the gradient Dp.

For the mechanical forces, this is in principle a binary relationship on C(X1, R
n), involving the total stress

s and the strain E. However, as noted in Sect. 3.4.2, the linearized volumetric strain is actually a trace map
from the strain space to the mass density space, and thus its dual, the identity map, enters the force balance.

In the following, we will present the full temporal modeling for finite strain and nonlinear constitutive laws.
As aguide to this development,weprovide the following structure,whichweconsider the canonical “Laplacian"
of mixed-dimensional poromechanics, obtained from linearly combining the admissible relationships (with
unit weights):

Force balance: ∂2t u− Ds ·
s

︷ ︸︸ ︷

(Dsu+ Tp) = rm, (4.1a)

Mass balance: ∂tp+ T∗Dsu+D · (−Dp)
︸ ︷︷ ︸

q

= rs. (4.1b)

4.2 Fluid flow

As surveyed in the previous section, the conservation law for fluid mass can be stated as:

∂tm+D · q = rm, (4.2)

where the fluidmass content satisfies a constitutive relation dependent themechanical strain and fluid pressure,

m = m(E, p) ∈ C(Xn, R). (4.3)

The fluid mass flux is assumed to satisfy a linear proportionality with a gradient, specifically the co-divergence
D, of fluid pressure, which corresponds toDarcy’s law for intact porous rock (i ∈ I n) and laminar flow fractures
(i ∈ I n−1) [5,6]:

q = κ(E, q)(−Dp+ rq). (4.4)

With rq, the contribution due to gravity. Note that we have allowed the material coefficient to depend on
the strain, in order to accommodate that the fracture conductivity may be altered when there is slip along
the fracture. Moreover, the dependency on the fluid flux accommodates nonlinear relationships such as the
Darcy–Forchheimer law.

Remark 4.1 The permeability of a rock domain ιiκ(E, q) with di = 3 is the permeability on the reference
space Xi . Given a permeability Ki on the physical domain, these are related by the usual transformation rules
[1], e.g.,

Ki = det(Fi )
−1Fi (ιiκ(E, q))FT

i . (4.5)

In particular, this implies that a scalar permeability Ki in physical space may nevertheless be represented by
an anisotropic tensor ιiκ on Xi (and opposite). On the other hand, it is important to note that (4.5) preserves
symmetry properties, thus symmetry of ιiκ corresponds to symmetry of Ki . Similar comments apply to all
material properties introduced in this and the following sections.
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4.3 Mechanical response

We consider balance ofmomentum as the basis for modeling themechanical response.We state the equilibrium
assumption recognizing that D· (the co-gradient) is a divergence operator on the top-dimensional domains and
their boundaries. Thus for a stress variable s (with the interpretation of a Piola-Kirchhoff stress of the second
kind), a change in momentum ρr∂

2
t u in view of a mixture mass density for fluid and rock ρr leads us to the

following balance of momentum:

ρr∂
2
t u− D · (Fs) = rs, (4.6)

with rs describing body forces. This vector equation has components associated with the basis vectors of R
n .

The deformation F enters the momentum balance to transform forces on T X̂i → R
n [1] with X̂i the extended

domain defined in Definitions 2.6 and 2.7.
The mechanical stress state depends on both the strain and the fluid pressure. As we are primarily interested

in moderate deformations, we restrict our attention to linear (Saint Venant–Kirchhoff) stress–strain response
in the porous rock and its boundaries, j ∈ Si , with i ∈ I n [32,35]:

ι js(E, p) = C j : ι jE− ι j (αTp). (4.7)

With α a positive, symmetric linear operator generalizing the Biot–Willis constant [3] and C j the fourth-order
stiffness tensor.

Physical reality demands a greater generality than linear mechanical response of the fracture, since both
friction and contactmechanicswill in general be given by nonlinear relationships.Moreover, for finite deforma-
tion, determination of contact itself may be a nonlinear problem. Therefore, we allow for a (possibly nonlinear
and non-local in space) constitutive law Ai between stress and strain to be defined on fractures i ∈ I n−1 and
their boundaries [2]. We impose this by introducing Ai as a binary relation (see Appendix A) such that

(ιi (s+ αTp), ιi (γ̂ + γ̌ ∂t )E) ∈ Ai . (4.8)

Here, γ̂ and γ̌ are given parameters with γ̂ + γ̌ = 1 and γ̂ γ̌ = 0 on each Xi that allow us tomodel relationships
between either stress and strain or stress and strain rate, respectively. In Sect. 4.6, we will give examples of
particular choices of friction and contact laws.

We combine the constitutive laws for the bulk and fracture subdomains in the notation of a mixed-
dimensional binary relation:

(s+ αTp,(γ̂ + γ̌ ∂t )E) ∈ A. (4.9)

Remark 4.2 The presence of the material law (4.7) on boundaries implies that the constitutive modeling
is general enough to allow for materials with coated boundaries (say, covered by a thin membrane), or other
disturbances of thematerial parameters associatedwith the boundaries of the domain.Aperfectly homogeneous
material with no disturbance in material parameter at its boundaries will then be a degenerate case of the model
with A j = 0 (for j ∈ Ii with i ∈ I n).

4.4 Governing equations for mixed-dimensional finite strain poromechanics

We summarize the above developments in the system of equations for mixed-dimensional poroelastic fractured
media.
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Governing equations for mixed-dimensional finite strain poromechanics

Balance of forces: ρr∂
2
t u− D · (Fs) = rs (4.10a)

Balance of mass: ∂tm+D · q = rm (4.10b)

Finite strain: E = E (u) (4.10c)

Stress-strain binary relations:
(

s+ αTp,
(

γ̂ + γ̌ ∂t
)

E
) ∈ A (4.10d)

Darcy’s law: q = κ (E, q)
(−Dp+ rg

)

(4.10e)

Fluid mass content: m = m (E, p) (4.10f)

Finite deformation gradient: F = D
(

�u+ ̂
)

(4.10g)

By taking the right-hand sides rs and rm togetherwith themixture density ρr as given, aswell as appropriate
initial and boundary conditions, the above set of equations are formally closed. Superficially, we identify that
we have 7 equations for the 7 (mixed-dimensional) unknowns [u, s,F,m, q,E, p]. A careful counting of scalar
and vector equations on domains of various dimensionality supports this claim. The field equations should be
supplemented by appropriate boundary conditions, we will discuss one such choice in Sect. 5.

A well-posedness theory for the general finite deformation mixed-dimensional model is not within reach,
since it would require us to simultaneously address open questions in both contact mechanics and porome-
chanics. On the other hand, in the context of infinitesimal deformation, fairly general results are nevertheless
possible to establish. In the next sections, we will therefore restrict our attention to linearized strain and make
specific assumptions on the constitutive laws that allow us to rigorously establish an example of a well-posed
model for mixed-dimensional poromechanics.

4.5 Governing equations for mixed-dimensional linearized strain poromechanics

We continue by considering the model (4.10) in the context of the mixed-dimensional linearized strain from
Definition 3.8. Thus, we assume that the strain is given by

E(u) ≈ e(u) = Dsu.

Our exposition simplifies (and aswewill see, symmetrizes) by including the transformation of the reference
configuration in the definition of the divergence operators (in analogy to the fixed-dimensional case, see, e.g.,
[1]).

Definition 4.1 For an initial configuration ̂ with derivative F, let the mixed-dimensional co-symmetric-
gradient (Ds ·) : C1(X1, R

n)→ C(X0, R
n) be defined such that

Ds · s := D · (Fs).
Remark 4.3 Recall that in the fixed-dimensional case, the symmetric gradient is adjoint to the divergence
applied to symmetric tensor fields. This forms a key tool in the well-posedness for fixed-dimensional elasticity
models and we note that this property remains valid in the mixed-dimensional setting, as we show in Sect. 5.2.

Secondly, we linearize the fluid mass content relationship m(e, p). Consistent with the relationships dis-
cussed in [3], we obtain

m(e, p) ≈ m0 + T′(αe)+ βp.

Here, m0 is the initial mass content, T′ is the mixed-dimensional identity operator from Definition 3.12, α
is the generalized Biot–Willis constant from (4.7), and β is the specific storativity.

We summarize these simplifications in the following system of equations
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Governing equations for mixed-dimensional linearized strain poromechanics

Balance of forces: ρr∂
2
t u− Ds · s = rs (4.11a)

Balance of mass: ∂tm+D · q = rm (4.11b)

Linearized strain: e = Dsu (4.11c)

Stress-strain binary relations:
(

s+ αTp,
(

γ̂ + γ̌ ∂t
)

e
) ∈ A (4.11d)

Darcy’s law: q = κ (q, e)
(−Dp+ rq

)

(4.11e)

Fluid mass content: m (e, p) = m0 + T′ (αe)+ βp ((4.11f))

4.6 Connection to classical continuum mechanical formulations

In this section, we identify howfixed-dimensional formulations of contactmechanics and fluid flow in fractured
porous rocks appear as special cases of the governing equations derived in the preceding sections and as
summarized in Sect. 4.4. This identification will serve as support for our claim that our development is a
consistent generalization of accepted mathematical descriptions, extended to our current setting of mixed-
dimensional geometries.

4.6.1 Contact mechanics

We illustrate the connection to contact mechanics by omitting all fluid considerations, and restricting our
attention to a single fracture in the context of linearized strain, such as described in Example 3.3, and illustrated
by Fig. 4. The governing equations, assuming linearized strain, then simplify to (indexing of i corresponds to
indexing in Example 3.3).

Hooke’s law for solids:

σi = Ci : ε(ui ) for i = 2, 3. (4.12a)

Conservation of momentum for solids:

ρr,i∂
2
t ui − ∇ · (F̂iσi ) = rs,i for i = 2, 3. (4.12b)

Hooke’s law for surfaces:

σ j = C j : ε(u j ) for j = 4, 5. (4.12c)

Conservation of momentum on surfaces:

ρr, j∂
2
t u j − ∇‖ · (F̂ jσ j )+ (σ j−2 · n j − σ1) = rs, j for j = 4, 5. (4.12d)

Constitutive law for fracture:

F(εi , ε̇i , σ ) = 0 for i = 1. (4.12e)

These equations embody several classical formulations. Surface stress of elastic materials is an important
phenomenon at some scales [35], as we will discuss in Sect. 4.6.4. In this subsection, we will disregard these
terms, and consider a degenerate model withC j = 0 and hence σ j = 0 on domains j = 4, 5. In the quasi-static
case, ρr,i∂

2
t ui = 0, the above equations now exactly correspond to the classical equations of elasticity and

material contact, as summarized in the book of Kikuchi and Oden (see, e.g., the exposition in chapters 2 and
13 of [2]). We highlight the importance of two particular choices for the constitutive law for fracture.
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Example 4.1 (Signorini problem) Decomposing as in Sect. 4 the fracture strain into its tangential part (sliding)
ι1e‖ = 1

2F
T
i (ιidu)‖ and perpendicular part (opening) ι1e⊥ = l

−1
i (ιidu)⊥, we first state the constitutive

model for frictionless contact (see, e.g., equations (2.31) of [2]), where the absence of friction is given by:

ι1s‖ = 0, (4.13a)

and contact mechanics is given by the Karush–Kuhn–Tucker (KKT) triplet

(ι1s⊥)(ι1e⊥) = 0,

ι1s⊥ ≤ 0,

ι1e⊥ ≥ 0.
(4.13b)

The two inequalities state that the materials cannot interpenetrate, and the contact cannot be tensile, while the
equality states that one of the two conditions must hold as an equality. We recognize that equations (4.13) are
of the form given by the binary relation (4.8), with ι1γ̌ = 0.

Example 4.2 (Rough surfaces) The presence of l−1i in the perpendicular part of the strain measure, together
with the macroscopic condition that the deformation preserves the mixed-dimensional nature of the problem,
essentially provides a multi-scale representation of strain. Indeed with li � 1, we realize that fracture opening
is measured relative to a finer scale than the rest of the deformation. This makes sense relative to the mixed-
dimensional continuum assumption, Definition 2.2, since macroscopically, the fracture always has negligible
transversal width, while the strain nevertheless measures perturbations of the fracture at the scale of li .

At the length-scale transversal to a fracture opening, it is well known that the compression and crushing
of micro-roughness can significantly impact the stress–strain response. This is illustrated in Fig. 5, which has
been adapted from the classical presentation by Oden and Martins [33]. With access to such representations, it
is suggested that an appropriate stress–strain model for a fracture (see Chapters 11 and 13 of [2]) depends on
both rate of compression and effective opening (in these expressions the plus sign indicates that only positive
values are considered, e.g., (a)+ = max(a, 0), and Cl

1 correspond to material constants):

σ1,⊥ = −C1
1(−ε1,⊥)

C2
1+ − C3

1(−ε̇1,⊥)
C4
1+ . (4.14)

Complementing the perpendicular stress–strain law for fracture is the Coulomb law of friction, expressed as
the KKT triplet:

λ2(c51σ1,⊥ −
∣
∣σ1,‖

∣
∣) = 0, (4.15a)

c51σ1,⊥ −
∣
∣σ1,‖

∣
∣ ≥ 0, (4.15b)

λ2 ≥ 0, (4.15c)

where λ2 is a Lagrange multiplier associated with sliding:

ε̇1,‖ = λ2σ1,‖. (4.16)

While our framework as stated does not allow for the full generality of (4.14), with both C1
1 and C3

1 nonzero,
these contact laws are nevertheless admissible as a binary inclusion when either C1

1 or C3
1 are zero.

4.6.2 Fluid flow in rigid fractured porous media

In the absence of mechanical deformation, the mixed-dimensional equations (4.10) have previously been
shown to be algebraically equivalent to reduced-dimensional formulations of flow in porous media [4]. These
equations have become quite popular over the last decade, as illustrated by a recent literature review [18].
An important consideration is the validity of reduced-dimensional models for fracture flow. This has been
extensively studied, and is by now well established in the single-phase regime considered herein [5,8,36].
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4.6.3 Fluid flow in deformable porous media

Let us nowvalidate themodel equations in the casewithout fractures, wherein themixed-dimensional geometry
trivially reduces to the normal fixed-dimensional geometry, which is to say that I = I n = {1}, and �1 = Y .

A review of the definitions in Sect. 2.3 and 2.4 for this case of a single domain now verify that all the
mixed-dimensional functions revert to their standard definitions from calculus. Thus, e.g., a deformation
u ∈ C(X0, R

n) is identically equal to u ∈ C(Y, R
n), similarly, the differential operators also reduce to their

fixed-dimensional counterpartsD ∼ D ∼ ∇ whileD· ∼ D· ∼ ∇·.
Equations (4.10) are thus equivalent to the same equations written in “Latin letters", which correspond

exactly to the standard model for poromechanics subjected to large deformations, as summarized in, e.g., Table
3.4 of [3].

4.6.4 Coated deformable solids

In this final example, we will consider the special case of elastic solids with surface coatings. The continuum
theory for elastic material surfaces goes back to Gurtin and Murdoch [35], and our general mixed-dimensional
model includes some aspects of their theory, notably the momentum balance and elastic constitutive law.

To illustrate this, we consider a single internal domain �2, together with a lower-dimensional domain
contained on a part of its exterior boundary �4 ⊂ ∂Y . The numbering is chosen so that the example can be
considered as the upper domain of Fig. 4, and it is then the interpretation that the bottom part of this domain
is coated. In terms of the reference configurations, the governing equations in the finite strain case are now
given by equations (4.12a) and (4.12b) for the bulk material i = 2. For the surface j = 4, the surface stress is
given by (4.12c), while the momentum balance simplifies to

ρr,2∂
2
t u2 − ∇‖ · (F4σ4)+ σ2 · n = rs, j for j = 4. (4.17)

We recognize our surface momentum balance (4.17) and our surface stress (4.12c) as equation (6.1) and the
first equation of section 7 of reference [35], respectively. An important detail is the application to curved
surfaces, in which case the surface divergence term becomes (omitting the subscript 4 for clarity):

∇‖ · (F̂σ) = ∇‖ ·
(

F l−1n
)

σ = ∇‖
(

F l−1∇‖n
) · σ + F̂ · ∇‖σ. (4.18)

For curved surfaces, this relationship expresses the fact that the gradient of the normal component of a surface
enters the balance ofmomentum. This geometric relationship can also be expressed in terms ofmean curvature,
as in equation (2.9) of [35].

5 Well-posedness of the mixed-dimensional linearized strain model

In this section, we will analyze the linearized strain model (4.11). While strain is infinitesimal in the bulk,
the model retains two important (and non-trivial) nonlinearities in the constitutive laws: First, the frictional
contact law at the fractures, and secondly nonlinear relationship between pressure gradients and fluid flows.
This implies that the well-posedness results presented in this section are a significant generalization of the
analysis presented in previous work on flow and deformation in fractured media (see, e.g., the recent paper
[13] and references therein).

However, our analysis below excludes one important nonlinear dependence: That of fracture permeability
on the fracture opening. We will discuss this point in Sect. 6. Throughout this section, we will rely on the
theory for maximally monotone binary relations, as well as the existence theory of evolutionary equations,
both summarized in Appendix A.

5.1 The space of symmetric tensor fields

By Definition 3.8, the linearized strain e has symmetries in the sense that the representation of ιi e with i ∈ I n

is a symmetric tensor field in R
n×n . Moreover, for all boundaries j ∈ Ii ∩ F1, we recall that the tangential
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components ι j,‖e form a symmetric tensor in R
(n−1)×(n−1), whereas the normal components ι j,⊥e are zero, cf.

Example 3.2. These properties are captured in the definition of the following function space

G :=
{

e ∈ L2(X1, R
n)

∣
∣
∣
∣
∣

asym(ι j,‖e) = 0, ∀ j ∈ F1,

ι j,⊥e = 0, ∀ j ∈ F1 ∩ Ii , i ∈ I n

}

.

By the usual Cauchy arguments, the stress–strain relationship A retains these properties, i.e., we have that
the stress s belongs to G as well.

Note that this space generalizes the space of symmetric tensors that is often used in fixed-dimensional
linear elasticity. A strong tool in that setting is the adjointness between the divergence on symmetric tensors
and the symmetric gradient on vector fields. We now show that this adjointness property is retained in the
mixed-dimensional setting.

Lemma 5.1 The mixed-dimensional symmetric gradient and the co-symmetric gradient operators satisfy the
following integration by parts formula for all s ∈ dom(Ds ·) ⊂ G and u ∈ dom(D̊s) ⊂ L2(X0, R

n):

〈Ds · s, u〉X0 +
〈

s, D̊su
〉

X1
= 0.

Proof We first observe using Definition 4.1 and the duality from Definition 2.23 that

〈Ds · s, u〉X0 := 〈D · (Fs), u〉X0 = −
〈

s,FT D̊u
〉

X1
.

Thus, it remains to show that
〈

s,FT D̊u
〉

X1
=

〈

s, D̊su
〉

X1
for s ∈ dom(Ds ·) and u ∈ dom(D̊s). We do this by

dimension:

1. For i ∈ I n , the symmetry of ιis gives us
〈

ιis, ιiF
T D̊(u)

〉

Xi
=

〈

ιis,FT
i Dιiu

〉

Xi

=
〈

ιis,
1

2
(FT

i Dιiu+ (Dιiu)
TFi )

〉

Xi

=
〈

ιis, ιiD̊su
〉

Xi

2. For j ∈ Ii with i ∈ I n , the same argument as above applies for the tangential components. On the other
hand, the normal components of ι js are zero, immediately giving us

〈

ι js, ι jF
T D̊(u)

〉

X j
=

〈

ι js, ι jD̊su
〉

X j

3. For j ∈ Si with i ∈ I n−1, we obtain

ι jF
T D̊(u) = F̂

T
j ι jdu = ι jD̊su

Since this covers all j ∈ F1, we have FT D̊(u) = D̊s on X1 and thus 〈Ds · s, u〉X0 = −
〈

s, D̊su
〉

X1
. ��

Wewill require different treatment of the stress–strain relationships depending on whether the relationship
concerns strains or strain rates. Recall that we have introduced the parameters γ̂ , respectively γ̌ , in (4.8) to
make this distinction. Using these parameters, we define the restricted identity operators as follows.

Definition 5.1 Let the restricted mixed-dimensional identity operators Ť, T̂ : L2(Xn, R)→ S̃ be defined as

Ť := γ̌T and T̂ = γ̂T.

Similarly, let the restricted mixed-dimensional trace operators be defined as Ť′ := γ̌T′ and T̂′ := γ̂T′.
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5.2 Model equations for well-posedness analysis

Let us consider the system of equations from (4.11) with the goal of obtaining a system of four equations and
four variables. In particular, we aim to rewrite the system in terms of fluid pressure p, fluid flux q, and two new
variables; namely the bulk velocity v, and an augmented stress s̃:

v := ∂tu, s̃ := s+ αŤp. (5.1)

Note that s̃ corresponds to the mechanical stress in the fractures as this is the natural variable for which
frictional contact laws are formulated. In the bulk, it equals the original, poroelastic stress s since Ť is zero
there.

We proceed in four steps. First, substituting the definitions of v and s̃ in (4.11a), the balance of forces
becomes

ρr∂tv− Ds · (s̃− αŤp) = rs. (5.2)

We make the following assumptions on ρr :

Assumption 5.1 ρr is a coercive, linear operator with coercivity constant cρ > 0.

Second, we consider the stress–strain relationships. For that, we first take the derivative of (4.11c) with respect
to time and use the commutativity of ∂t andDs (cf. Remark 3.4):

∂te = ∂tDsu = Dsv.

Substituting this in (4.11d) together with the definition of s̃ from (5.1), we obtain

(s̃+ αT̂p,(γ̂ ∂−1t + γ̌ )Dsv) ∈ A. (5.3)

Note that ∂−1t implies integration in time. In the surrounding bulk (i ∈ I n), we assume that γ̂ = 1 (and
γ̌ = 0) giving us a stress–strain relationship Â. Conversely, we let γ̌ = 1 in the fractures leading to a stress–
strain rate relationship describing (frictional) contact Ǎ. More precisely, we define the restricted operators

Ǎ := γ̌A, and Â := γ̂A,

such that A = Ǎ+ Â. We now continue by making the following assumptions:

Assumption 5.2 Ǎ is bounded and č-maximal monotone relation for some č > 0, c.f. Definition A.5. More-
over, (0, 0) ∈ Ǎ. We emphasize that this means that for (s1, ė1), (s2, ė2) ∈ Ǎ, we have

〈

ι j (s1 − s2), ι j (ė1 − ė2)
〉

X j
≥ č

∣
∣ι j (s1 − s2)

∣
∣2
X j

, ∀i ∈ I n−1, j ∈ F1 ∩Si .

Assumption 5.3 Â is a coercive linear operator with coercivity constant ĉ > 0. Thus, for (s1, e1), (s2, e2) ∈ Â,
it follows that

〈

ι j (s1 − s2), ι j (e1 − e2)
〉

X j
≥ ĉ

∣
∣ι j (s1 − s2)

∣
∣2
X j

, ∀i ∈ I n, j ∈ F1 ∩Si .

With the assumed linearity of Â, we have

(s̃+ αT̂p,γ̂ ∂−1t Dsv) ∈ Â⇔ (s̃+ αT̂p,γ̂Dsv) ∈ ∂t Â.

Together with (s̃+ αT̂p,γ̌Dsv) ∈ Ǎ, the stress–strain (rate) relationships become

(s̃+ αT̂p,Dsv) ∈ Ǎ+ ∂t Â. (5.4)

Remark 5.1 More generally, we may assume 5.2 for Ai if ιi γ̌ = 1 and 5.3 if ιi γ̂ = 1. However, for ease of
presentation, we herein consider the case where these parameters are determined by dimension and thus have
5.2 in the fractures and 5.3 in the bulk and its surfaces.
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Our third equation concerns the mass balance. To capture volumetric change in terms of our four variables,
we first use the decomposition induced by γ̌ and γ̂ to rewrite

e = γ̂ e+ γ̌ e = Â(s̃+ αT̂p)+ ∂−1t γ̌Dsv.

Taking the derivative of (4.11f) with respect to time and substituting this equality, we have

∂tm = ∂t T̂
′αÂ(s̃+ αT̂p)+ Ť′αDsv+ ∂tβp.

Inserting this in (4.11b), the mass balance equation becomes

∂t T̂
′αÂ(s̃+ αT̂p)+ Ť′αDsv+ ∂tβp+D · q = rm. (5.5)

Here, we assume that

Assumption 5.4 β is a coercive, linear operator with coercivity constant cβ > 0.

Finally, in (4.11e), i.e., Darcy’s law, we neglect the dependency of the permeability on the strain e:

q = κ(q)(−Dp+ rg).

This is equivalent to stating that κ−1(q)q =− Dp + rg. This relation only contains two variables (due to
the negligence of strain dependencies) and we can consider this law, which is possibly nonlinear, as a binary
relation κ−1. Observing that the dependency on q is implied in the notation, we arrive at the binary relation

(q,− Dp+ rg) ∈ κ−1. (5.6)

Again, we make an assumption on the relation κ−1, namely that

Assumption 5.5 κ−1 is bounded and cκ -maximal monotone for some cκ > 0. Moreover, (0, 0) ∈ κ−1.

With these simplifications and assumptions in place, we have a system of four equations with four unknowns.

Governing equations for simplified mixed-dimensional poromechanics

Balance of forces: ρr∂tv− Ds ·
(

s̃− αŤp
)

= rs (5.7a)

Balance of mass: Ť′αDsv+ ∂t

(

T̂′αÂαT̂+ β
)

p+ ∂t T̂
′αÂs̃+D · q = rm (5.7b)

Stress-strain relations:
(

s̃+ αT̂p,Dsv
)

∈ Ǎ+ ∂t Â (5.7c)

Darcy’s law:
(

q,− Dp+ rg
) ∈ κ−1 (5.7d)

5.3 Weak formulation

To accommodate analysis of system (5.7), we next present the weak formulation of the poromechanics prob-
lem. The first step is to introduce the relevant function space on which to pose the problem. Following the
observations from Sect. 2.3, we consider the following four function spaces for the variables:

v ∈ U := L2(X0, R
n), p ∈ P := L2(Xn, R), (5.8a)

s̃ ∈ G ⊂ L2(X1, R
n), q ∈ Q := L2(Xn−1, R). (5.8b)

Recall that G, as defined in Sect. 5.1, contains symmetry properties for stress and strain. Together, these
spaces form the composite space U :

U := U×P×G×Q. (5.9)



1154 W. M. Boon, J. M. Nordbotten

The space U is naturally endowed with a L2-type inner product and norm, given by

〈u1, u2〉U =
〈[

v1 p1 s̃1 q1
]T

,
[

v2 p2 s̃2 q2
]T

〉

U

:= 〈v1, v2〉X0 + 〈p1, p2〉Xn + 〈

s̃1, s̃2
〉

Xn−1 + 〈q1, q2〉Xn−1 ,

‖u‖U :=
√〈u, u〉U .

With the function spaces defined, we continue by considering all operators in the system as binary relations,
including the linear operators. For example, we write

ρr ⊆ L2(X0, R
n)× L2(X0, R

n)

also in the case that ρr is simply multiplication by a constant (see Example A.2). To further emphasize this,
all mixed-dimensional differential operators (see Sect. 2.4) are also interpreted as binary relations:

D̊s ⊂ L2(X0, R
n)× L2(X1, R

n), (Ds ·) ⊂ L2(X1, R
n)× L2(X0, R

n),

(D̊·) ⊂ L2(Xn−1, R)× L2(Xn, R), D ⊂L2(Xn, R)× L2(Xn−1, R).

Recall that the domains of these differential operators are proper, dense subsets of the L2 spaces, e.g.,
dom(D̊s) ⊂ L2(X0, R

n). In turn, by searching the solution in these domains, we ensure that the solution has
sufficient regularity for the corresponding differentials to be well-defined. This same argument enforces the
boundary conditions on the variables. We note that our choice of enforcing boundary conditions on the D̊-
type differential operators implies zero (clamped) conditions on the displacement, and similarly zero normal
component (no-flow) conditions on the fluid flux. The development belowwould be equally validwith boundary
conditions imposed via D̊-type operators, which would correspond to zero normal stress (floating) conditions
for mechanics, and zero fluid pressure (open) conditions for flow.

Finally, we incorporate the time dependency. Following [10], we introduce the exponentially weighted
Bochner space L2

ν(R,U ) as follows.

Definition 5.2 Given ν > 0, let L2
ν(R,U ) :=

{

f : R → U | ∫
R

∥
∥e−νt f (t)

∥
∥2
U dt <∞

}

.

Let ‖u‖L2
ν (R,U ) :=

∫

R

∥
∥e−νt f (t)

∥
∥2
U dt be the endowed norm. The weight with positive ν ensures that causality

is preserved. The time derivative is then introduced as an operator acting on this weighted space.

Definition 5.3 Given ν > 0, let ∂0,ν : dom(∂0,ν) ⊆ L2
ν(R, H)→ L2

ν(R, H) be given by

∂0,ν := eνt (∂t + ν)e−νt .

Themotivation behind this definition can be found inDefinitionA.14.With the function space and interpretation
of operators in place, we arrive at the weak formulation (5.10) of the simplified hydromechanical problem
(5.7).

Weak formulation of the simplified mixed-dimensional poromechanics problem Given f :=
[

rs, rm, 0, rg
]T ∈ L2

ν (R,U ), find u := [

v, p,s̃, q
]T ∈ L2

ν (R,U ) such that

(u, f ) =
⎛

⎜
⎝

⎡

⎢
⎣

v
p
s̃
q

⎤

⎥
⎦ ,

⎡

⎢
⎣

rs
rm
0
rg

⎤

⎥
⎦

⎞

⎟
⎠ ∈

⎡

⎢
⎢
⎢
⎣

ρr∂0,ν Ds · αŤ −Ds · 0

Ť′αD̊s ∂0,ν

(

T̂′αÂαT̂+ β
)

∂0,νT̂
′αÂ D̊·

−D̊s ∂0,νÂαT̂ Ǎ+ ∂0,νÂ 0
0 D 0 κ−1

⎤

⎥
⎥
⎥
⎦

(5.10)

Remark 5.2 We refer to (5.10) as the weak formulation since the problem is posed in a Hilbert space setting
(the domains of the differential operators are Hilbert spaces [29,30]). As a direct consequence, we recall that
the solution, if it exists, is defined up to the equivalence classes of L2

ν(R,U ).
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Remark 5.3 The function space L2
ν(R,U ) does not ensure more regularity than square integrability in space

and (weighted) time. However, the presence of the differential operators ensures that the solution, if it exists,
has sufficient regularity for these to be well-defined. For example, the term ∂0,νv ensures that v ∈ dom(∂0,ν)

and thus ∂0,νv ∈ L2
ν(R,U). Similarly, the solution has v ∈ dom(D̊s) and thus D̊sv ∈ L2(X1, R

n).

Remark 5.4 This formulation does not allow for a constant effect of gravity throughout the past since rg
is assumed to be in L2

ν(R,Q). However, this effect can be properly incorporated by instead considering an
initial-value problem on the real half-line R>0, see [12] and Remark 3.3 in [10].

5.4 Well-posedness of the weak formulation

In order to analyze problem (5.10) in the appropriate setting, we recognize that the binary relation has a
favorable underlying structure. In particular, we recognize that problem (5.10) is an evolutionary equation
[10] of the form

(u, f ) ∈ ∂0,νM0 + M1 + Aν.

Here, the first two components M0 and M1 are linear operators, given by

M0 := �′

⎡

⎢
⎣

ρr
β

Â
0

⎤

⎥
⎦�, � :=

⎡

⎢
⎣

1
1

αT̂ 1
0

⎤

⎥
⎦ , M1 :=

⎡

⎢
⎣

0
0

č
cκ

⎤

⎥
⎦ . (5.11)

Furthermore, Aν ⊆ L2
ν(R,U )× L2

ν(R,U ) is a temporal extension (see Definition A.11) given by

Aν :=
{

u, v ∈ L2
ν(R,U ) | (u(t), v(t)) ∈ A0 + A1, for a.e. t ∈ R

}

.

Where the spatial relations A0 and A1 are given by

A0 :=

⎡

⎢
⎢
⎣

0
0

Ǎ− č
κ−1 − ck

⎤

⎥
⎥
⎦

, A1 :=

⎡

⎢
⎢
⎣

0 Ds · αŤ −Ds ·
Ť′αD̊s 0 D̊·
−D̊s 0

D 0

⎤

⎥
⎥
⎦

. (5.12)

The decomposition of the evolutionary equation in terms of the binary relations M0, M1 and A0, A1
highlights the structure of the problem: M0 and M1 contain the weights of the time-derivative and diagonal
terms, respectively, while A0 and A1 contain the nonlinearities and differential operators, respectively.

This identification of the problemallows us to use the solution theory of evolutionary equations, in particular
we recall the following key theorem.

Theorem 5.1 (Well-posedness of autonomous evolutionary inclusions) Let ν > 0 and r > 1
2ν . Let Aν ⊆

L2
ν(R,U ) × L2

ν(R,U ) be a binary relation and M0, M1 ⊆ U × U linear, bounded mappings. Assume the
following hypotheses:

H1 Aν is maximal monotone, time-translation invariant (autonomous), and satisfies
∫ 0

−∞
Re(〈u1(t)− u2(t), v1(t)− v2(t)〉)e−2νtdt ≥ 0, ∀(u1, v1), (u2, v2) ∈ Aν.

H2 ∃c > 0 such that z−1M0 + M1 − c is monotone for all z ∈ BC(r, r). Here, BC(r, r) denotes the open
complex ball with radius r , centered at r .

Then for each f ∈ L2
ν(R,U ), there exists a unique u ∈ L2

ν(R,U ) such that

(u, f ) ∈ ∂0,νM0 + M1 + Aν.

Moreover, the solution operator (∂0,νM0 + M1 + Aν)
−1 is causal and Lipschitz-continuous with a Lipschitz

constant bounded by 1
c .
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Proof See Theorem 3.2 of [10]. ��
This theorem leads to the statement of our main well-posedness result.

Theorem 5.2 (The main result) If assumptions 5.1–5.5 are fulfilled, then the mixed-dimensional poromechan-
ics problem (5.10) is well-posed. In particular, for any right-hand side f ∈ L2

ν(R,U ), a solution u ∈ L2
ν(R,U )

exists uniquely such that (u, f ) ∈ ∂0,νM0 + M1 + Aν . Moreover, a c > 0 exists such that the solution operator
is bounded:

‖u‖L2
ν (R,U ) ≤

1

c
‖ f ‖L2

ν (R,U ) .

Proof Lemmas 5.2 and 5.3, presented below, suffice to invoke Theorem 5.1. The bound is a direct consequence
of the Lipschitz continuity of the solution operator. ��

The proof of Theorem 5.2 requires validating maximal monotonicity of several operators, for which we
often need to take a difference between two elements u1, u2 ∈ U . As a short-hand notation, we denote

δu := u1 − u2

and let
[

δv,δp,δŝ, δq
]T := δu. Moreover, we omit the subscripts on inner products and norms for notational

brevity.

Lemma 5.2 (H1) If Assumptions 5.2, 5.5 are satisfied, then [H1] is fulfilled.

Proof First, A0 is maximal monotone by 5.2 and 5.5. Second, A1 is linear and skew self-adjoint and therefore
also maximal monotone. Furthermore, 0 is in the domain of both operators and A0 is bounded due to 5.2, 5.5.
We then invoke Lemma 7.1 from the appendix to conclude that the sum A0 + A1 is maximal monotone.

Next, we note that Aν is the temporal extension of A0+ A1 and we have that (0, 0) ∈ A0+ A1. Proposition
2.5 of [12] then ensures that Aν is maximal monotone.

Time-translation invariance follows directly from the definition of Aν . The positivity of the time integral
is clear by the monotonicity of A0 + A1. ��
Lemma 5.3 (H2) If Assumptions 5.1–5.5 are satisfied, then [H2] is fulfilled.

Proof Let (u1, v1), (u2, v2) ∈ z−1M0 + M1. The assumptions and Lemmas 5.4 and 5.5, presented below,
imply that

〈δu, δM0u〉 ≥ c0(‖δv‖2 + ‖δp‖2 +
∥
∥γ̂ δs̃

∥
∥2),

〈δu, δM1u〉 ≥ c1(‖δq‖2 +
∥
∥γ̌ δs̃

∥
∥
2
),

for some c0, c1 > 0. Using these bounds, we derive

Re(〈δu, δv〉) = Re(z−1 〈δu, δM0u〉 + 〈δu, δM1u〉)
≥ Re(z−1)c0(‖δv‖2 + ‖δp‖2 +

∥
∥γ̂ δs̃

∥
∥2)+ c1(‖δq‖2 +

∥
∥γ̌ δs̃

∥
∥2).

Since z ∈ BC(r, r), its real part satisfies Re(z−1) ≥ 1
2r and thus we obtain:

Re(〈δu, δv〉) ≥ c0
2r

(‖δv‖2 + ‖δp‖2 + ∥
∥γ̂ δs̃

∥
∥2)+ c1(‖δq‖2 +

∥
∥γ̌ δs̃

∥
∥2).

We then set c = min
{ c0
2r , c1

}

to conclude that

Re(〈δu, δv〉) ≥ c ‖δu‖2 .

��
Lemma 5.4 Given Assumptions 5.1, 5.3, and 5.4, then the relationship M0 satisfies

〈δu, δM0u〉 ≥ c0(‖δv‖2 + ‖δp‖2 +
∥
∥γ̂ δs̃

∥
∥2),

for some c0 > 0.
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Proof Assumptions 5.1,5.3 and 5.4 give us that

〈δu, δM0u〉 ≥ cρ ‖δv‖2 + cβ ‖δp‖2 + ĉ
∥
∥γ̂ (δs̃+ αTδp)

∥
∥2 .

Next, we use the continuity of α to obtain

cβ ‖δp‖2 + ĉ
∥
∥γ̂ δ(s̃+ αTδp)

∥
∥2 � 1

2
‖δp‖2 + 1

2
‖−δαp‖2 + ∥

∥γ̂ δ(s̃+ αTδp)
∥
∥2

� ‖δp‖2 + ∥
∥γ̂ δs̃

∥
∥2 ,

in which a � b implies that a c > 0 exists such that a ≥ cb. The combination of these bounds now proves
the result. ��
Lemma 5.5 Given Assumptions 5.2, 5.5, then M1 satisfies

〈δu, δM1u〉 ≥ c1(‖δq‖2 +
∥
∥γ̌ δs̃

∥
∥2),

for some c1 > 0.

Proof Substituting the definitions and using assumptions 5.3, 5.5, we have

〈δu, δM1u〉 = cκ ‖δq‖2 + č
∥
∥γ̌ δs

∥
∥2 .

The result therefore follows with c1 = min
{

cκ , č
}

. ��

5.5 Degeneracies: Maximal monotone contact relations with bounded inverse

For concrete applications, it may be desirable to relax some of assumptions 5.1–5.5. Such relaxations will often
correspond to sending a physical parameter to zero, and can therefore be considered as degenerate limits of the
base model (5.10) as analyzed in Sect. 5.4. As a general expectation, these limit models need to be analyzed on
a case-by-case basis, as they will in principle imply that the Lipschitz constant in Theorem 5.2 is not bounded.
To illustrate the implications of such degenerate limits, and to show how they can be treated within the theory
as presented above, we include an analysis of maximal monotone contact relations with bounded inverse.

We focus on the assumption 5.2 regarding the frictional contact law Ǎ. This may be too restrictive for some
conventional friction relations (we return to this in Sect. 5.6), in particular due to the bound on the constant
č > 0 and the assumed boundedness of the relation. In this section, we consider a more general class of models,
namely those concerning maximal monotone contact relations with bounded inverse. To be concrete, we adopt
the following relaxation of assumption 5.2:

Assumption 5.6 Ǎ⊆ G×G is a maximal monotone relation with (0, 0) ∈ Ǎ. Moreover, Ǎ−1 is bounded.

A key generalization from 5.2 is that we now allow for the case č = 0, and as such the treatment below is
a consideration of a degenerate limit of the main model equations from Sect. 5.2. The penalty we pay for
allowing this degeneracy is that we lose control over the L2-norm of the components ι js wherever ι j γ̌ = 1.
As a result, the problem now needs to be posed in a smaller space, which we define by

Ĝ := γ̂G. (5.13)

We remark that for ŝ ∈ Ĝ, we have ι j ŝ = 0 for ι j γ̂ = 0. This space is therefore isomorphic to a restriction of
G, but our definition (5.13) avoids the need for explicitly introducing restriction and inclusion operators. The
endowed norm is

∥
∥ŝ

∥
∥
2
Ĝ
:= ∥

∥ŝ
∥
∥
2
X1 =

∑

j∈F1,
ι j γ̂=1

∥
∥ι j ŝ

∥
∥
2
X j

, ∀ŝ ∈ Ĝ. (5.14)
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Importantly, (5.14) forms a natural choice for this setting since it does not contain any terms from the
fractures, i.e., on Xi for i ∈ I n−1 (and its descendants). The stress variable can be decomposed in a similar
manner as the stress–strain relationship, and we therefore define

s = ŝ+ š := γ̂ s+ γ̌ s.

We proceed by eliminating š from the system. For that, we note that since γ̌Dsv = dv, the stress–strain
relationship (š, γ̌Dsv) ∈ Ǎ can be restated as

(š,dv) ∈ Ǎ⇔ (dv,š) ∈ Ǎ−1 ⇔ (v,š) ∈ Ǎ−1d.

The momentum balance equation, i.e., the first row of (5.10), is rewritten using this substitution as
⎛

⎜
⎝

⎡

⎢
⎣

v
p
ŝ
q

⎤

⎥
⎦ , rs

⎞

⎟
⎠ ∈ [

ρr∂0,ν + d′Ǎ−1d Ds · αŤ −Ds · 0
]

with d′ the adjoint of the jump operator d. On the other hand, the stress–strain relationship in the bulk is now
given by

(ŝ+ αT̂p,γ̂Dsv) ∈ ∂t Â.

Since the stress component š does not influence the remaining equations, we are ready to pose the new
problem (5.15) in the composite space

Û := U×P×Ĝ×Q,

endowed with the norm ‖·‖Û = ‖·‖U .

Weak formulation of the mixed-dimensional poromechanics problem using maximal monotone
contact relations with bounded inverse
Given

[

rs, rm, 0, rg
]T ∈ L2

ν

(

R, Û
)

, find
[

v, p,ŝ, q
]T ∈ L2

ν

(

R, Û
)

such that

⎡

⎢
⎣

v
p
ŝ
q

⎤

⎥
⎦ ,

⎡

⎢
⎣

rs
rm
0
rg

⎤

⎥
⎦ ∈

⎡

⎢
⎢
⎢
⎢
⎢
⎣

ρr∂0,ν + ′Ǎ−1 Ds · αŤ −Ds · 0

Ť′αD̊s ∂0,ν

(

T̂′αÂαT̂+ β
)

∂0,νT̂
′αÂ D̊·

−γ̂ D̊s ∂0,νÂαT̂ ∂0,νÂ 0
0 D 0 κ−1

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(5.15)

Again, we recognize the structure of problem (5.15) as an evolutionary equation and we note that the
decomposition ∂0,νM0 + M1 + Aν now holds with M0 unchanged and M1 given by

M1 :=
⎡

⎢
⎣

0
0

0
cκ

⎤

⎥
⎦ . (5.16)

On the other hand, Aν is here the temporal extension of A0 + A1 with

A0 :=

⎡

⎢
⎢
⎣

d′Ǎ−1d
0

0
κ−1 − ck

⎤

⎥
⎥
⎦

, A1 :=

⎡

⎢
⎢
⎣

0 Ds · αŤ −Ds ·
Ť′αDs 0 D·
−γ̂Ds 0

D 0

⎤

⎥
⎥
⎦

.

Theorem 5.3 If Assumptions 5.1 and 5.3–5.6 are fulfilled, then themixed-dimensional poromechanics problem
with maximal monotone contact relations (5.15) is well-posed.
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Proof Lemmas 5.6 and 5.7, presented below, show that hypotheses [H1]–[H2] are fulfilled for (5.15). Theorem
5.1 then provides the result. ��
Lemma 5.6 (H1) If Assumptions 5.5, 5.6 are satisfied, then [H1] is fulfilled.

Proof The fact that A0 is maximal monotone and bounded follows from 5.5, 5.6. The skew self-adjointness
of A1 is verified by

〈−γ̂Dsv,ŝ
〉+ 〈

v,− Ds · ŝ
〉 = 〈−Dsv,ŝ

〉+ 〈

Dsv,ŝ
〉 = 0.

Now, the arguments from Lemma 5.2 provide the result. ��
Lemma 5.7 [H2] If Assumptions 5.1 and 5.3–5.5 are satisfied, then [H2] is fulfilled.

Proof Since M0 has remained unchanged, Lemma 5.4 gives us the bound

〈δu, δM0u〉 ≥ c0(‖δv‖2 + ‖δp‖2 +
∥
∥δŝ

∥
∥
2
)

for some c0 > 0. Continuing with M1, its definition (5.16) directly gives us

〈δu, δM1u〉 = cκ ‖δq‖2 .

Using these bounds, the arguments from Lemma 5.3 are followed to conclude the proof. ��

5.6 Exemplary models

We finalize this section by describing two example models. The two models differ on whether assumption 5.2
or 5.6 is satisfied. Since the only difference lies in the frictional contact law Č, we first present the other
components of the model.

Example 5.1
• Let the bulk density be given by a scalar cρ > 0. Then, the corresponding binary relation, defined by
multiplication with this scalar, is given by

ρr :=
{

(v1, v2) ∈ Lν(R,U)× Lν(R,U) | v2 = cρv1
}

and satisfies 5.1.
• Let the bulk medium and its boundaries be isotropic materials. Then, the stress–strain relationship Â can
be described, using the Lamé parameters μ, λ, as

Â := {

(s, e) ∈ Lν(R,G)× Lν(R,G) | ι js = 2μι j e+ λ(I : ι j e‖)I,∀ j ∈ Si , i ∈ I n
}

.

Here, I is the identity tensor in R
d j . It is easy to see that Â satisfies 5.3 with ĉ = (2μ+ nλ)−1.

• Similar to 5.1, we set β as multiplication with cβ > 0:

β := {

(p1, p2) ∈ Lν(R,P)× Lν(R,P) | p2 = cβp1
}

which satisfies 5.4.
• Finally, the constitutive law relating flux and pressure is assumed to be given by Darcy(-Forchheimer)
flow.

κ−1 := {(q,− Dp) ∈ Lν(R,Q)× Lν(R,Q) | −Dp = (κ1 + κ2 |q|)q} .
With the material parameters κ1,κ2 > 0, we have cκ > 0 in 5.5.

Next, we assume that the frictional contact law Ǎ is defined as the direct sum of disjoint relations:

Ǎ :=
⊕

i∈I n−1
j∈Si∩F1

A j,‖ ⊕ A j,⊥ (5.17)

Here, the subscript ‖ indicates the tangential friction law and ⊥ the perpendicular contact. It is clear that if
each A j.‖ and A j.⊥ satisfies 5.2, respectively 5.6, then so does Ǎ. We dedicate the following two subsections
to the description of two exemplary models that fulfill these respective assumptions.
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5.6.1 Maximal monotone contact relations with bounded inverse

We start by considering relations that satisfy 5.6, since this assumption is easier to fulfil in practice. For the
stress–strain relation in the parallel direction, let us consider Tresca friction. For a given threshold τ > 0, this
law is given by

A j,‖ :=
{

(σ, ε̇) ∈ ι j,‖G×ι j,‖G
∣
∣
∣
∣

τ ε̇ = |ε̇| σ or ε̇ = 0
|σ | ≤ τ

a.e. on X j

}

(5.18)

Lemma 5.8 Tresca friction A j,‖ of (5.18) satisfies 5.6, i.e., is maximal monotone, has (0, 0) ∈ A j,‖, and has
bounded inverse.

Proof The fact that (0, 0) ∈ A j,‖ is immediate and the boundedness of the inverse (cf. Definition A.8) follows
from the inequality |σ | ≤ τ . It remains to show maximal monotonicity. Let (σ1, ε̇1), (σ2, ε̇2) ∈ A j,‖. We
consider the inner product of the differences 〈δσ, δε̇〉X j

and distinguish three cases:

1. If τ ε̇k = |ε̇k | σk for both k, then

〈δσ, δε̇〉X j
= τ

〈
ε̇1

|ε̇1| −
ε̇2

|ε̇2| , ε̇1 − ε̇2

〉

X j

≥ τ

∫

X j

(|ε̇1| + |ε̇2| − |ε̇1| − |ε̇2|) = 0.

2. If ε̇k = 0 for both k, then δε̇ = 0.
3. If τ ε̇1 = |ε̇1| σ1 and ε̇2 = 0, then

〈δσ, δε̇〉X j
=

〈

τ
ε̇1

|ε̇1| − σ2, ε̇1

〉

X j

≥
∫

X j

(τ − |σ2|) |ε̇1| ≥ 0.

Hence, A j,‖ is monotone. Finally, we note that I + A j,‖ is surjective by the following arguments:

1. If |ε̇| < τ , then (σ, ε̇) ∈ I + A j,‖ for σ = ε̇.
2. If |ε̇| ≥ τ , then (σ, ε̇) ∈ I + A j,‖ for σ = τ ε̇

|ε̇| .

In turn, Theorem 1.6 from [37] ensures that A j,‖ is maximal monotone. ��
For the (perpendicular) contact law, we use the relation for rough surfaces described in Example 4.2. Setting

C1
j = 0, C3

j ≥ 0, and C4
j ≥ 1, this law is given by

A j,⊥ :=
{

(σ, ε̇) ∈ ι j,⊥G×ι j,⊥G | σ = −C3
j (−ε̇)

C4
j

+
}

(5.19)

Lemma 5.9 The contact law A j,⊥ of (5.19) satisfies 5.6.

Proof It is easy to verify that (0, 0) ∈ A j,⊥. Boundedness of the inverse relation follows from the fact that

|σ | ≤ |ε̇|C4
j . Secondly, it is easy to see that the function f (x) = −(−x)C

4
j

+ is monotone. Since A j,⊥ is the
inverse of the graph of f , it is a monotone relation as well. Finally, it is clear that no monotone extension of
A j,⊥ exists, and hence, it is maximal. ��

We finalize this subsection by stating the well-posedness, which is a direct result of Theorem 5.3.

Theorem 5.4 Problem (5.15), in which the relations are given by Example 5.1, (5.18) and (5.19), is well-posed
in the space L2

ν(R, Û ).
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5.6.2 Bounded, c-maximal monotone contact relations

On the other hand, our basemodel (5.10) contains assumption 5.2 which requires that the relation itself (instead
of its inverse) is bounded. This is not the case for Tresca friction introduced in (5.18). Thus, in order to obtain
a model that satisfies 5.2, we perform two regularizations. First, we introduce a maximal strain rate c∞ > 0
such that the regularized friction relation becomes

Areg
j,‖ :=

{

(σ, ε̇) ∈ ι j,‖G×ι j,‖G
∣
∣
∣
∣

τ ε̇ = |ε̇| σ or |σ | ε̇ = c∞1{|σ |>τ }σ
|ε̇| ≤ c∞ a.e. on X j

}

(5.20)

with 1{|σ |>τ } the indicator function of the set {|σ | > τ }. We emphasize that c∞ can be chosen sufficiently
large to ensure that this bound is not reached in physical applications. Secondly, we add a constant č to the
regularized law in order to ensure c-maximal monotonicity.

Lemma 5.10 The friction law (Areg
j,‖ + č) satisfies 5.2 for any č > 0. That is, it is bounded, č-maximal

monotone, and (0, 0) ∈ Areg
j,‖ + č.

Proof The fact that (0, 0) ∈ Areg
j,‖ + č is clear. Moreover, the boundedness of the post-set is guaranteed by the

inequality |ε̇| ≤ c∞. It remains to show that Areg
j,‖ is maximal monotone. Let (σ1, ε̇1), (σ2, ε̇2) ∈ Areg

j,‖ . We
distinguish three cases:

1. If τ ε̇k = |ε̇k | σk for both k, then we use the same arguments as the first case in Lemma 5.8.
2. If |σk | ε̇k = c∞1{|σk |>τ }σk for both k, then

〈δσ, δε̇〉X j
= c∞

〈

1{|σ1|>τ }
σ1

|σ1| − 1{|σ2|>τ }
σ2

|σ2| , σ1 − σ2

〉

X j

≥ c∞
∫

X j

(1{|σ1|>τ }(|σ1| − |σ2|)+ 1{|σ2|>τ }(|σ2| − |σ1|)) ≥ 0

3. If τ ε̇1 = |ε̇1| σ1 and |σ2| ε̇2 = c∞1{|σ2|>τ }σ2, then |σ1| = τ and so we obtain

〈δσ, δε̇〉X j
=

〈

σ1 − σ2, |ε̇1| σ1

|σ1| − c∞1{|σ2|>τ }
σ2

|σ2|
〉

X j

≥
∫

X j

(|ε̇1| (|σ1| − |σ2|)+ c∞1{|σ2|>τ }(|σ2| − |σ1|))

=
∫

X j

(|ε̇1| (τ − |σ2|)+ c∞1{|σ2|>τ }(|σ2| − τ))

The case |σ2| ≤ τ now follows directly. For the other case, we have

|ε̇1| (τ − |σ2|)+ c∞(|σ2| − τ) = (c∞ − |ε̇1|)(|σ2| − τ) ≥ 0.

Hence, Areg
j,‖ is monotone. Finally, maximality can now be shown by noting that 1 + Areg

j,‖ is surjective and
invoking Theorem 1.6 from [37]. ��

For the contact law, we encounter the same issue: The relation (5.19) is not a bounded relation because
the post-set of σ = 0 contains all ε̇ > 0. We therefore use the same regularization as in the friction law and
define a c∞ > 0 that is set outside of the relevant limits of the physical model. This leads us to the following
relation:

Areg
j,⊥ :=

⎧

⎪⎪⎨

⎪⎪⎩

(σ, ε̇) ∈ ι j,⊥G×ι j,⊥G

∣
∣
∣
∣
∣
∣
∣
∣

(σ + C3
j (−ε̇)

C4
j

+ )(ε − c∞) = 0
ε̇ ≤ c∞

σ ≥ −C3
j (−ε̇)

C4
j

+

a.e. on X j

⎫

⎪⎪⎬

⎪⎪⎭

. (5.21)

Lemma 5.11 The contact law (Areg
j,⊥ + ĉ) satisfies 5.2 for any ĉ > 0.
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Proof Boundedness and the fact that (0, 0) ∈ Areg
j,⊥ + č are easy to verify. We show monotonicity of Areg

j,⊥ by
considering three cases:

1. If ε̇k = c∞ for both k = 1, 2 then we have δε̇ = 0.

2. If σk = −C3
j (−ε̇k)

C4
j

+ for both k = 1, 2, then we use the fact that f (x) = −(−x)c+ is a monotone function
and thus

〈δσ, δε̇〉X j
= C3

j

〈

−(−ε̇1)
C4

j
+ + (−ε̇2)

C4
j

+ , ε̇1 − ε̇2

〉

X j

≥ 0.

3. If σ1 = −C3
j (−ε̇1)

C4
j

+ and ε̇2 = c∞ then σ1 ≤ 0 and σ2 ≥ 0 and so

〈δσ, δε̇〉X j
= 〈σ1 − σ2, ε̇1 − c∞〉X j

≥ 0.

This shows that Areg
j,⊥ is monotone. No monotone extension of this law exists and hence it is maximal. In turn,

(Areg
j,⊥ + ĉ) is ĉ-maximal monotone. ��

Remark 5.5 Applying the bound c∞ is equivalent to applying a cut-off operator on the strain rate similar to
[38,39]. We note that, in practice, one can always check a posteriori whether the solution has attained the
bound at any moment in time. If not, then the solution is independent of this bound, as desired. If the solution
attains the bound, however, then the value of c∞ can be increased. If no bounded c∞ exists, then the physical
model assumptions will at some point be violated, since this would indicate an arbitrarily large bulk velocity.

Thewell-posedness of the resulting problem is now a direct consequence of Theorem 5.2, which we present
formally in the following theorem.

Theorem 5.5 Problem (5.10), in which the relations are given by Example 5.1 and those analyzed in Lemmas
5.10 and 5.11, is well-posed in the space L2

ν(R,U ).

6 Summary and final remarks

In this manuscript, we have provided a general mixed-dimensional finite strain model for poromechanics in
the presence of fracture (Sect. 4.4), its simplification in the case of linearized strain (Sect. 4.5), and a well-
posedness theory allowing in the setting of linearized stain, still allowing for a generality in terms of the
constitutive laws (Sect. 5.4). These developments are to the best of our knowledge all new. Our finite strain
theory is rotationally invariant, and our mixed-dimensional model have several well-established models as its
simplifications (Sect. 4.6).

As presented, the model allows for a range of physical phenomena, some of which may be desirable to
neglect in various concrete applications. One such example arises in friction, where Tresca friction does not
conform to a parameterization of the full model, but instead is in a different class of maximally monotone
relations where there is no positive lower bound. This barely violates assumption 5.2, and is thus a degenerate
limit of our model framework (using our general theory, as stated in Theorem 5.2, leads to a continuity
constant that is unbounded). On the other hand, Tresca friction (and other models satisfying assumption 5.6)
can nevertheless be allowed by a small perturbation of the spaces considered, as illustrated in Sect. 5.5.

An example of a different kind of degeneracy, which is not analyzed herein, is related to the presence
of mechanical strain and stress terms at solid surfaces. This allows for modeling of surface effects, as may
appear due to mineral processes in the subsurface, or through surface coating in industrial applications. On
the other hand, such surface effects may be desirable to neglect for “clean" fractures. We consider this also as
a degenerate limit of our model, but in this case it is assumption 5.3 that is violated (and possibly also 5.1).

Another important point which is not covered by our well-posedness analysis is the dependency of fracture
permeability on aperture. In terms of the model structure, this enters in the sense of the permeability depending
on themixed-dimensional strain, as stated in (4.4). Such dependencies have recently been analyzed in the fixed-
dimensional case [40], and we are optimistic that their approach can be extended to the mixed-dimensional
setting.

We have previously shown how numerical methods can be derived for the simpler problem of flow in
porous media (see references in Sect. 4.6.2). Development of numerical methods for the current problem is
ongoing, and we look forward to reporting on this in future work.
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Appendix A: Evolutionary equations and monotonicity

This work employs the theoretical framework from [10] in order to present the model and its analysis. This
setting is more general than the conventional approach in which mappings in Sobolev spaces are used, and
therewith provides us three key advantages.

• First, the domains of differential operators are derived from the operator, rather than vice versa. This relieves
the need for characterizing the solution space and the theory is formulated in L2-type spaces instead.

• Second, it allows us to include constitutive laws in our model that are not, strictly speaking, mappings
between Sobolev spaces. In fact, we can consider the larger class of maximal monotone relations.

• Third, the theory of evolutionary equations naturally incorporates the time derivatives in a continuous
setting. This provides an existence result for the entire time domain, rather than requiring arguments based
on discrete time stepping.

In order to provide accessible reference, we recall the key concepts from this framework in this appendix. Let
H be a Hilbert space endowed with inner product 〈·, ·〉.
Definition A.1 A binary relation between H and H is a subset A ⊆ H × H .

This set-theoretical perspective on binary relations allows us to speak of closed relations (if the set A is closed)
and of the closure of a relation, which we denote by A.
Binary relations have an algebraic structure in the sense that for A, B ⊆ H × H and λ ∈ R, we have

A + λB =
{

(x, y) ∈ H × H

∣
∣
∣
∣

∃yA ∈ H with (x, yA) ∈ A,
∃yB ∈ H with (x, yB) ∈ B,

such that y = yA + λyB

}

. (A1)

Example A.1 Given a mapping f : H → H , then its graph Gr( f ) given by all pairs (x, f (x)) with x ∈ H
is a binary relation. The algebraic structure of binary relations naturally generalizes that of mappings in the
sense that

Gr( f )+ λGr(g) = Gr( f + λg).

We do not distinguish between a mapping and its graph and instead reuse the notation f , i.e., write (x, y) ∈
f ⊆ H × H when referring to the corresponding binary relation.

Example A.2 For a constant c ∈ R, we have (x, y) ∈ c if y = cx . The binary relation c ⊆ H × H therefore
corresponds to the multiplication by c. Importantly, this multiplicative structure implies that (x, ∂t y) ∈ ∂t c.

Example A.3 We adopt a matrix/vector notation for binary relations between tuples of variables. Thus, let

H = H1 × H2 and let u :=
[

u1
u2

]

∈ H and v :=
[

v1
v2

]

∈ H . Moreover, let Ai j ⊆ Hj × Hi for i, j ∈ {1, 2}.
We denote

(u, v) =
([

u1
u2

]

,

[

v1
v2

])

∈
[

A11 A12
A21 A22

]

(A2)

if and only if vi =∑

j vi j with (u j , vi j ) ∈ Ai j for each i and j .

http://creativecommons.org/licenses/by/4.0/
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Definition A.2 The domain and range of a binary relation A ⊆ H × H are denoted by dom(A) and ran(A),
respectively, and are given by

dom(A) := {x ∈ H | ∃y ∈ H s.t. (x, y) ∈ A} ,
ran(A) := {y ∈ H | ∃x ∈ H s.t. (x, y) ∈ A} . (A3)

As is common in a functional analysis setting, ran(A)may be a proper subset of H , i.e., the range of an operator
is allowed to be smaller than its codomain. In this setting, we typically also have that dom(A) is a proper subset
of H . Thus, it is important to remember that both the domain and range of A can be proper subsets of H ,
despite A being defined as A ⊆ H × H .

Definition A.3 A binary relation A ⊆ H × H is monotone if for all (x1, y1), (x2, y2) ∈ A it holds that

Re(〈x1 − x2, y1 − y2〉) ≥ 0.

Definition A.4 A binary relation A ⊆ H×H ismaximal monotone if it is monotone and if for all B ⊆ H×H
with B monotone and A ⊆ B, it follows that A = B.

Definition A.5 A binary relation A ⊆ H × H is c-maximal monotone for some c > 0 if A − c is maximal
monotone.

The following example illustrates the generality that these definitions allow for.

Example A.4 Let H := R and let the binary relation A⊂ R× R be given by

A :=
{

(x, y) ∈ R× R

∣
∣
∣
∣

y = 0 if |x | < 1
xy ≥ 0 if |x | = 1

}

.

Graphically, A is given by the horizontal line segment (x, 0) for −1 ≤ x ≤ 1 and the vertical half-lines
(sgn(y), y). In turn, dom(A) = [−1, 1], which we emphasize is a proper subset of R, and ran(A) = R. The
fact that A is monotone can be verified by a straightforward computation:

• |x1| , |x2| < 1. Then y1 = y2 = 0 and so 〈x1 − x2, y1 − y2〉 = 0.
• |x1| < 1 = |x2| .Then y1 = 0 and 〈x1 − x2, y1 − y2〉 = (x2 − x1)y2 ≥ 0 since the two terms have the
same sign.

• |x1| = |x2| = 1. Then, (x1 − x2) is either zero or has the same sign as (y1 − y2), giving the result.

Moreover, A is maximal monotone since there exists no monotone extension B⊆ R× R with A ⊆ B except
for B = A.

Definition A.6 The adjoint of a binary relation A ⊆ H1 × H2 is given by

A′ := {

(u, v) ∈ H2 × H1 | 〈u, y〉H2
= 〈v, x〉H1 ,∀(x, y) ∈ A

}

.

Definition A.7 The inverse of a binary relation A ⊆ H × H is given by

A−1 := {(x, y) ∈ H × H | (y, x) ∈ A} .
Importantly, this definition implies that any binary relation has an inverse relation. Moreover, it is easy to see
that the inverse of a maximal monotone relation is itself maximal monotone as well (by the symmetry of the
inner product).

Example A.5 Continuing with example A.4, we have

A−1 =
{

(x, y) ∈ R× R

∣
∣
∣
∣

y = sgn(x) if x �= 0
y ∈ [−1, 1] if x = 0

}

.

As is apparent here, A−1 can be described as a set-valued function. However, for the reasons mentioned at the
beginning of the section, we herein prefer the use of binary relations.

Even though the inverse of a relation is always well-defined, we often require more properties of the inverse,
in particular that it corresponds to a Lipschitz continuous mapping. This can be obtained by Minty’s theorem,
which lies at the heart of the analysis of evolutionary equations.
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Theorem A.1 (Minty’s theorem) Let A ⊆ H × H be a c-maximal monotone relation for some c > 0. Then
the inverse relation A−1 defines a Lipschitz continuous mapping with domain dom(A−1) = H and a Lipschitz
constant bounded by 1

c .

Proof See Theorem 1.1 of [10]. ��
Example A.6 Continuing with example A.5, let B = A + ε for some ε > 0. We then compute

B−1 =
{

(x, y) ∈ R× R

∣
∣
∣
∣
∣

y = sgn(x) if |x | ≥ ε

y = 1
ε
x if |x | < ε

}

.

Note that, by construction, B− c = A is maximal monotone with c = ε > 0. In turn, Minty’s theorem implies
that B−1 is Lipschitz continuous with possible Lipschitz constant 1

ε
and this can easily be verified. On the

other hand, we see that A−1 is not Lipschitz continuous at the origin. In turn, the converse of Minty’s theorem
implies that there is no c > 0 such that A is c-maximal monotone.

Minty’s theorem forms a powerful tool and it is therefore important to determine whether a binary relation is
maximal monotone. It becomes a natural question to ask whether the sum of two maximal monotone relations
is maximal monotone as well. To answer this, we first define bounded relations.

Definition A.8 A relation A ⊆ H × H is called bounded if for all bounded sets M ⊆ H , the post-set given
by {y ∈ H | ∃x ∈ M s.t. (x, y) ∈ A} is bounded as well.
We remark that if A corresponds to a mapping, the post-set is typically referred to as the image of M under
A. Using the boundedness property, we have the following result concerning the sum of maximal monotone
relations.

Lemma 7.1 Let A, B ⊂ H × H be maximal monotone, let A be bounded and let dom(A) ∩ domB) �= ∅.
Then, the sum A + B is maximal monotone.

Proof See Proposition 1.22 of [37]. ��
On the other hand, we will frequently encounter unbounded operators as well. An important class of these is
given by densely defined, unbounded linear operators.

Definition A.9 An operator A ⊆ H × H is densely defined if dom(A) is dense in H .

Differential operators are a primary example of unbounded operators in our work, defined asmappings between
L2-type spaces. We emphasize this using the following example

Example A.7 Let � ⊂ R
n be a Lipschitz domain with n ∈ {2, 3}. Let ∇̃0 be the gradient operator defined on

C̊∞(�), i.e., on the space of infinitely differentiable functions with vanishing trace on ∂�:

∇̃0 : C̊∞(�) ⊂ L2(�, R)→ L2(�, R
n).

Now, let the divergence (∇·) and its dual be given by

(∇·) := −(∇̃0)
′ and ∇0 := −(∇·)′.

Let H be the pair of spaces

H := L2(�, R)× L2(�, R
n).

Finally, let the relation A ⊆ H × H be given by

A :=
[

0 ∇·
∇0 0

]

.

We emphasize that the domain of the operator A follows from its definition. In fact, dom(A) is given by all
functions ( f, g) ∈ H with f ∈ dom(∇0) ⊆ L2(�, R) and g ∈ dom(∇·) ⊆ L2(�, R

n). For these functions, it
follows by definition that∇0 f ∈ L2(Rn) and∇ ·g ∈ L2(�, R). In turn, we have the following characterization
in more conventional notation (see Fig. 8)

dom(A) = dom(∇0)× dom(∇·) = H̊1(�)× H(∇·, �).

Finally, we note that dom(A) is dense in H and thus A is a densely defined, unbounded linear operator.
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Fig. 8 The gradient and divergence mappings defined as densely defined, unbounded linear operators. Note that both the domain
and range of ∇0 are a proper subset of L2. The fact that the range of ∇· equals L2 is classical

Remark A.1 Analogously, we may start with (∇̃0·) as the divergence acting on vector-valued, infinitely differ-
entiable functions with vanishing normal trace. By taking the appropriate adjoints, this leads us to the operators
∇ and (∇0·) with

dom(∇) = H1(�), dom(∇0·) = H̊(∇·, �). (A4)

Here, H̊(∇·, �) denotes the subspace of H(∇·, �) consisting of functions with zero normal trace on ∂�.

Example A.8 Continuing with example A.7, we note that A is linear and skew self-adjoint, and therefore
maximal monotone. In particular, for [ f1, g1]T , [ f2, g2]T ∈ dom(A), we have

〈[

f1 − f2
g1 − g2

]

, A

[

f1
g1

]

− A

[

f1
g1

]〉

= 〈 f1 − f2,∇ · (g1 − g2)〉 + 〈∇0( f1 − f2), g1 − g2〉
= 〈 f1 − f2,∇ · (g1 − g2)〉 − 〈 f1 − f2,∇ · (g1 − g2)〉
= 0.

(A5)

Here, we have used angled brackets for the inner products of both the product space H and its components.

In order to define an evolutionary equation, we next consider the spatiotemporal setting. Following [10], we
introduce an exponentially weighted Bochner-type function space.

Definition A.10 For ν > 0, let

L2
ν(R, H) :=

{

f : R →H |
∫

R

∣
∣e−νt f (t)

∣
∣
2
H dt <∞

}

Definition A.11 Given a binary relation A ⊆ H × H , its temporal extension Aν ⊆ L2
ν(R, H)× L2

ν(R, H) is
given by

Aν :=
{

u, v ∈ L2
ν(R, H) | (u(t), v(t)) ∈ A, for almost every t ∈ R

}

Definition A.12 An operator A : dom(A) ⊆ L2
ν(R, H)→ L2

ν(R, H) is time-translation invariant if for each
(u, v) ∈ A and h ∈ R, we have (u(· + h), v(· + h)) ∈ A.

Definition A.13 A closed mapping A : dom(A) ⊆ L2
ν(R, H) → L2

ν(R, H) is called causal if for all h ∈ R

and f, g ∈ dom(A) with f |t≤h = g |t≤h , it follows that (A f ) |t≤h = (Ag) |t≤h .
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Finally, we present the time derivative on the weighted space L2
ν(R, H). Its definition is motivated by the

following short calculation for differentiable f : R → R.

eνt∂t (e
−νt f ) = eνt (−νe−νt f + e−νt∂t f ) = (−v + ∂t ) f.

In turn, we have eνt (∂t + ν)e−νt f = ∂t f , which suggests the following definition.

Definition A.14 Given ν > 0, let ∂0,ν : dom(∂0,ν) ⊆ L2
ν(R, H)→ L2

ν(R, H) be given by

∂0,ν := eνt (∂t + ν)e−νt .
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