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Abstract Thermal convection in a fluid saturating an anisotropic porous medium in local thermal nonequilib-
rium (LTNE) is investigated, with specific attention to the effect of variable viscosity on the onset of convection.
Many fluids show a remarkable dependence of viscosity on temperature that cannot be neglected. For this rea-
son, we take into account a fluid whose viscosity decreases exponentially with depth, according to Straughan
(ActaMech. 61:59–72, 1986), Torrance and Turcotte (J. FluidMech. 47(1):113–125, 1971). The novelty of this
paper is to highlight how variable viscosity coupled with the LTNE assumption affects the onset of convection.
A numerical procedure shows the destabilising effect of depth-dependent viscosity. Moreover, it comes out
that the LTNE hypothesis makes the influence of viscosity more intense. Linear instability analysis of the
conduction solution is carried out by means of the Chebyshev-tau method coupled to the QZ algorithm, which
provides the critical Rayleigh number for the onset of convection in a straightforward way. The energy method
is employed in order to study the nonlinear stability. The optimal result of coincidence between the linear
instability threshold and the global nonlinear stability threshold is obtained. The influence of anisotropic per-
meability and conductivity, weighted conductivity ratio, and interaction coefficient on the onset of convection
is highlighted.

1 Introduction

Natural convection in fluid saturating a porous medium is a research topic of great interest because of its
several practical applications in real life and, specifically, in geophysical and engineering field. Most important
applications can be found in geothermal energy utilisation, underground contaminant transport, nuclear waste
disposal, heat exchangers, thermal insulation, and, more in general, in problems on removal and storage of
heat [3].

This paper is intended to investigate the effect of depth-dependent viscosity on the onset of convection in a
fluid-saturated porous medium. What motivated this paper is the strong viscosity dependence on temperature
and/or depth, for many fluids [2,4]. In several industrial problems, variations of viscosity with temperature
cannot be neglected. Main examples of such problems can be found in geophysical context and in engineering
field [1,2,5–7].

Actually, the correlation between viscosity and temperature deeply depends on which fluid is taken into
account. In fact, viscosity of gases increases with temperature, while viscosity of liquids shows the opposite
behaviour [3, p. 253]. For example, viscosity of glycerin decreases by three orders of magnitude for a 10 ◦C
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rise in temperature [8], while viscosity of water changes more than 1 order of magnitude between 25 and
350 ◦C [9]. Over the same temperature interval, water thermal conductivity exhibits only a 1% change [10].
Actually, as stated in [11], for most Newtonian liquids thermal conductivity is essentially constant over the
temperature range in which viscosity shows remarkable variations. For this reason, in this paper, we take into
account only viscosity variations.

Over the years, thermal convection in variable viscosity fluids has represented a topic of great interest for
many researchers. Early studies on thermal convection in clear fluids with temperature-dependent viscosity are
those of [2,12]. Since then, such a problem has been extensively investigated [4,13–18]. In [2], the influence of
strongly temperature- and/or depth-dependent viscosity has been studied,with particular attention to convection
in Earth’s mantle. In [4], the conditional nonlinear stability is investigated for a clear fluid whose viscosity
decreases linearly with temperature. In [15], a global nonlinear stability result is obtainedwhen viscosity shows
a maximum. Nonlinear stability results have been obtained also in [16], where viscosity shows exponential
dependence on temperature, and in [17] where viscosity is a convex function of temperature.

The problem of thermal convection in variable viscosity fluids saturating a porous medium has been
widely investigated, as well [1,9]. Nonlinear stability results have been determined in [19] and [20]. In [5],
linear stability analysis of convection in water-saturated porous medium is performed. The above-cited papers
deal with the problem of thermal convection in porous media under the hypothesis of local thermal equilibrium
(LTE) between solid and fluid phase, i.e. by employing a single temperature model. Nevertheless, once the
fluid velocity is sufficiently high, or as long as the solid thermal conductivity is much different from the fluid
one, the assumption of LTE is no longer suitable to describe the physical phenomenon [21]. Applications are
numerous and can be found in processes involving quick heat transfer, metal foams, and in everyday technology
such as microwave heating [8], tube refrigerators and heat exchangers (see [22] for more details). As a result,
the hypothesis of Local Thermal Non Equilibrium (LTNE) is employed to obtain more accurate results. This
assumption involves two different temperatures (one for the solid, one for the fluid) so as to take into account
heat exchanges between the phases. The problem of thermal convection in porous media in LTNE has been
widely studied over the last years, starting from [23,24], in which both a linear and nonlinear analysis is carried
out. Many papers analysed the effect of LTNE on the onset of convection, coupled to rotation and/or anisotropy
[25–29], magnetic field [30], vertical throughflow [31,32], and also in non-horizontal porous layer [33–35].
Interesting results are obtained once the assumption of LTNE is combined with the Cattaneo’s law for heat
conduction in the solid matrix, since in such a case convection by means of oscillatory motions can occur
[36–39].

At the best of our knowledge, natural convection in depth-dependent viscosity fluids in porous media in
LTNE has not received a proper attention so far, that is why we believe this paper may be of great interest.
The LTNE model has been employed in [8], where the onset of Darcy-Benard convection is investigated for a
temperature-dependent viscosity fluid with quadratic density constitutive equation.

The plan of the paper is the following. Section 2 is devoted to the formulation of the mathematical model
describing the motion of a depth-dependent viscosity fluid in presence of an anisotropic porous medium, in
LTNE regime. In this Section, the basic steady solution and the dimensionless model governing the evolution
of perturbation fields are determined. In Sect. 3, the instability analysis is performed in order to determine
the generalised eigenvalue problem which can be solved by means of the Chebyshev-tau method coupled to
the QZ algorithm. In Sect. 4, the global nonlinear stability analysis of the conduction solution is carried out
by employing the energy method. Finally, in Sect. 5, numerical results are reported, with particular attention
devoted to the influence of variable viscosity, mechanical and thermal anisotropy, weighted conductivity ratio,
and interaction coefficient on the onset of instability.
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2 Mathematical model

Let us take into account a horizontal porous layer, whose depth is d , saturated by an incompressible fluid
F initially at rest. We choose a Cartesian frame of reference (x, y, z), being the z-axis vertically upward. A
uniform temperature gradient is imposed and maintained across the medium. Let TL be the temperature on the
lower plane z = 0 delimiting the layer, and let TU be the temperature on the upper plane z = d . We assume the
layer to be heated from below, i.e. TL > TU . Moreover, the hypothesis of local thermal non-equilibrium holds
for the porous medium at stake, i.e. the heat exchange between solid matrix and fluid is allowed. Based on this
assumption, we need to define two different temperatures, one for the fluid phase, another for the solid one.

Let us denote by T f the temperature of the fluid phase and by Ts the temperature of the solid phase. Then, by
virtue of previous considerations,

Ts = T f = TL on z = 0; Ts = T f = TU on z = d, (1)

with TL > TU .
The porous medium exhibits some anisotropic properties. Specifically, permeability and solid thermal

conductivity are horizontally isotropic. Let K be the permeability tensor and let Ds be the solid thermal
conductivity one. By assuming that both tensors share the same principal axis (x, y, z), they can be written in
diagonal form, i.e.,

K = KzK∗, K∗ =
⎛
⎝

ξ 0 0
0 ξ 0
0 0 1

⎞
⎠ , ξ = KH

Kz
, (2.1)

Ds = κs
zD∗

s , D∗
s =

⎛
⎝

ζ 0 0
0 ζ 0
0 0 1

⎞
⎠ , ζ = κs

H

κs
z

. (2.2)

In addition, we allow viscosity to be strongly dependent on temperature, at least at the steady state where
temperature linearly increases with depth [10]. As a consequence, we assume the following behaviour of
viscosity with respect to z [1,2]:

μ(z) = μ0 f (z), f (z) = ec
′(z− d

2 ) (3)

being μ0 and c′ positive constants.
Under the previous assumptions, by employing the Oberbeck–Boussinesq approximation, the Vadasz–

Darcy model is [8] ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

ρ f cav,t = −∇ p′ + ρ f αgT f k − μ(z)K−1v

∇ · v = 0

ερ f c f T f ,t + ρ f c f v · ∇T f = εκ f �T f + h(Ts − T f )

(1 − ε)ρscsTs ,t = (1 − ε)∇ · (Ds∇Ts) − h(Ts − T f )

(4)

where v, p′, T f , and Ts are (seepage) velocity, pressure, fluid phase temperature, and solid phase temper-
ature, respectively; while μ(z) is the fluid viscosity according to (3); κ f , ρ f , ρs , c f , cs , g, α, ca , ε, h are
fluid thermal conductivity, fluid and solid density, specific heat of fluid and solid phase, gravity acceleration,
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thermal expansion coefficient, acceleration coefficient, porosity, angular velocity and interaction coefficient,
respectively.

The following boundary conditions are coupled to (4):

Ts = T f = TL on z = 0, Ts = T f = TU on z = d,

v · n = 0 on z = 0, d
(5)

where TL > TU and n is the unit outward normal to planes z = 0, d .
The basic steady solution of (4) is:

m0=
{
vb=0 , Tsb=T f b=−βz+TL , pb=−ρ f gαβ

z2

2
+ρ f gαTLz+cost

}
(6)

where β = TL−TU
d (> 0) is the adverse temperature gradient.

In order to study the stability of m0, let us introduce the perturbation fields (u, θ, φ, π) to velocity field,
fluid temperature field, solid temperature field, and pressure field, respectively.

After introducing perturbations to initial data, the following solution of (4) arises:

v = u + vb, T f = θ + T f b, Ts = φ + Tsb, p′ = p + pb. (7)

Once the following dimensionless quantities are defined,

xi = x∗
i d, t = t∗

d2ρ f c f

κ f
, p = p∗P, ui = u∗

i U, θ = θ∗T ′, φ = φ∗T ′ (8)

where

P = Uμ0d

Kz
, U = εκ f

ρ f c f d
, T ′ = βd

√
κ f εμ0

βgαKzρ
2
f c f d2

, (9)

omitting all asterisks, we obtain the following dimensionless model governing the evolution of perturbation
fields:

1

Va
u,t = −∇ p + Rθk − f (z)K−1u, (10.1)

∇ · u = 0, (10.2)

θ,t + u · ∇θ = Rw + �θ + H(φ − θ), (10.3)

Aφ,t = ζ�1φ + φ,zz − Hγ (φ − θ), (10.4)

being f (z) = ec(z− 1
2 ), c = c′d , �1 = ∂,xx + ∂,yy , and where

A = ρscsκ f

ρ f c f κs
z
, γ = εκ f

(1 − ε)κs
z
, H = hd2

εκ f
, (11.1–3)

R2 = Kzρ
2
f c f d2βgα

μ0εκ f
, Va = c f d2μ0

Kzκ f ca
(11.4, 5)

are diffusivity ratio, weighted conductivity ratio, inter-phase heat transfer coefficient, Rayleigh number, and
Vadasz number, respectively.

To (10.1), we add the initial conditions:

u(x, 0)=u0(x) , θ(x, 0)=θ0(x) , φ(x, 0)=φ0(x) , p(x, 0)= p0(x) (12)

where ∇ · u0 = 0, while the boundary conditions are

w = θ = φ = 0 on z = 0, 1. (13)
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Let

V =
[
0,

2π

ax

]
×

[
0,

2π

ay

]
× [0, 1] (14)

be the periodicity cell and let us define (·, ·) and ‖ · ‖ inner product and norm on L2(V ), respectively. Per-
turbations are assumed to be periodic in x and y directions with periods 2π

ax
and 2π

ay
, respectively. Moreover,

∀g ∈ {u, θ, φ, p},
g :(x, t)∈V × R

+ →g(x, t)∈R, g∈W 2,2(V ) ∀t ∈R
+,

and g can be expanded in a Fourier series uniformly convergent in V .

3 Linear instability analysis

In order to perform the linear instability analysis of m0, let us consider the linear version of (10.1), i.e.⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1

Va
u,t = −∇ p + Rθk − f (z)K−1u

∇ · u = 0

θ,t = Rw + �θ + H(φ − θ)

Aφ,t = ζ�1φ + φ,zz − Hγ (φ − θ)

(15)

that can be written as

N
∂

∂t
F(x, t) = MF(x, t) (16)

being F = (u, v, w, π, θ, φ), N with all zero entries and such that diag(N ) =
(

1
Va , 1

Va , 1
Va , 0, 1, A

γ

)
and

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− f (z)
ξ

0 0 − ∂
∂x 0 0

0 − f (z)
ξ

0 − ∂
∂y 0 0

0 0 − f (z) − ∂
∂z R 0

− ∂
∂x − ∂

∂y − ∂
∂z 0 0 0

0 0 R 0 � − H H

0 0 0 0 H ζ
γ
�1 + 1

γ
.

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (17)

It is straightforward to notice that the spatial operator M related to (15) is symmetric with respect to the
L2-scalar product. As a consequence, its spectrum involves only real numbers, and the strong version of the
principle of exchange of stabilities holds.

Moreover, system (15) is autonomous. Hence, we can look for solutions such that

ϕ′(x, t)=ϕ(x) eσ t ∀ϕ′ ∈{w, θ, φ, p}. (18)

Substituting (18) into (15), we get
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σ

Va
u = −∇ p + Rθk − f (z)K−1u

∇ · u = 0
σθ = Rw + �θ + H(φ − θ)

Aσφ = ζ�1φ + φ,zz − Hγ (φ − θ).

(19)

In order to determine the critical threshold of the Rayleigh number for the onset of instability, we focus on
the marginal state in (19). Accounting for the principle of exchange of stabilities, we set σ = 0 in (19), so that

0 = −∇ p + Rθk − f (z)K−1u, (20.1)

∇ · u = 0, (20.2)

0 = Rw + �θ + H(φ − θ), (20.3)

0 = ζ�1φ + φ,zz − Hγ (φ − θ). (20.4)
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By applying the double curl to (20.1) and retaining only the third component, from (20.1), one gets:
⎧⎪⎨
⎪⎩

ξ R�1θ − f ′(z)w,z − f (z)(ξ�1w + w,zz) = 0
Rw + �θ + H(φ − θ) = 0
ζ�1φ + φ,zz − Hγ (φ − θ) = 0

(21)

where the prime denotes ordinary derivative with respect to z.
Because of periodicity of the perturbations, unknown fields in (21) can be written as:

ϕ(x, y, z) =
+∞∑
n=1

ϕ̄n(x, y, z) ∀ϕ ∈ {w, θ, φ} (22)

where
�1ϕ̄n =−a2ϕ̄n (23)

with a2=a2x+a2y .

Now, let us substitute (22) in (21) and retain only the n-th component. Hence, by denoting D ≡ d
dz and

D2 ≡ d2

dz2
, (21) becomes ⎧⎪⎪⎨

⎪⎪⎩

(
D2 − ξa2

)
wn + cDwn = − f −1(z)ξa2Rθn

(
D2 − a2 − H

)
θn = −Rwn − Hφn

(
D2 − ζa2 − Hγ

)
φn = −Hγ θn

(24)

which will be solved subject to the boundary conditions

w = θ = φ = 0 on z = 0, 1. (25)

System (24) represents an eigenvalue problem of ordinary differential equations, where R is the eigenvalue.
Starting from (24), one can determine the function λ(a2) which describes how R depends on a2. As a conse-
quence, the critical Rayleigh number for the onset of stationary instability is given by

RL = min
a2∈R+

λ(a2). (26)

In order to solve the eigenvalue problem (24), we employ the Chebyshev-tau method coupled with the
QZ algorithm. This numerical procedure takes advantage of the orthogonality of Chebyshev polynomials with
respect to the scalar product,

〈 f, g〉 =
∫ 1

−1

f g√
1 − z2

dz, f, g ∈ L2(−1, 1), (27)

and many of their properties such as a recursive formula for multiplication between two polynomials, i.e.

2TrTq = Tr+q + T|r−q|. (28)

We will not go into further details of this numerical method, but we are going to give the main ideas to
carry out this procedure. For more details, interested readers can refer to [10,40–43].

Let Tk , k ∈ N, be the k-th Chebyshev polynomial. The solution of (24) can be expanded as finite series of
Chebyshev polynomials, i.e.

wn =
N+2∑
k=0

WkTk(z), θn =
N+2∑
k=0

�kTk(z), φn =
N+2∑
k=0

�kTk(z), (29)

We substitute (29) in (24), and then we take the inner product with Tk , k = 0, . . . , N , on the weighted
Chebyshev polynomial space. In such a way, we manage to write system (24) as a generalised eigenvalue
problem

Ax = RBx (30)
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where x = (W0,W1, . . . ,WN ,�0,�1, . . . , �N , �0, �1, . . . , �N )T ,

A =
⎛
⎝
D2 − ξa2 I + cD 0 0

0 D2 − (a2 + H)I H I
0 Hγ I D2 − (ζa2 + Hγ )I

⎞
⎠ , (31)

and

B =
⎛
⎝ 0 −ξa2F∗ 0

−I 0 0
0 0 0

⎞
⎠ (32)

being D2, D the Chebyshev representation of d2

dz2
and d

dz , respectively, I the identity matrix, and F∗ the matrix

representation of function f −1(z).
For coding purpose, we work with k = 1, . . . , N . Then, the above matrices are 3N ×3N , and F∗ is N ×N .

When the exponential function f −1(z) can be well approximated by a second-order polynomial, matrix F∗ is
computed by means of the following recursive formulas:

F∗
i,i = 1 + c

2
+ 3c2

8
, F∗

i,i+1 = − c

2

(
1 + c

2

)
,

F∗
i,i+2 = c2

8
, for i = 1, . . . , N − 2,

F∗
i,i−1 = − c

2

(
1 + c

2

)
, for i = 2, . . . , N ,

F∗
i,i−2 = c2

8
, for i = 3, . . . , N ,

F∗
2,1 = −c

(
1 + c

2

)
, F∗

3,1 = c2

4
, F∗

2,2 = 1 + c

2
+ c2

2
.

(33)

The eigenvalue problem (30)–(32) is then solved by the QZ algorithm which provides eigenvalues with no
trouble. In Sect. 5, we show numerical results.

4 Nonlinear stability

This Section is devoted to develop a nonlinear stability analysis for the conduction solution m0, in order to
determine a sufficient condition for its stability.

We perform the scalar multiplication of (10.1) by u, (10.3) by θ and (10.4) by φ, and then we integrate
over the periodicity cell V . The sum of the resulting equations can be written as

d

dt
E(t) = RI − D (34)

where

E(t) = ‖u‖2
2Va

+ ‖θ‖2
2

+ A‖φ‖2
2γ

Lyapunov Function, (35.1)

I (t) = 2(θ, w) Production term, (35.2)

D(t) = ‖∇θ‖2 + H‖θ − φ‖2 + ζ

γ
‖∇1φ‖2 + 1

γ
‖φ,z‖2

+
∫
V

(
f (z)

u2

ξ
+ f (z)

v2

ξ
+ f (z)w2

)
dV Dissipation term. (35.3)

Starting with (34), by defining
1

RE
= max

H
I

D
(36)
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where

H =
{
(u, θ, φ) : w = θ = φ = 0 on z = 0, 1; periodic in x and ydirections, with period

2π

ax
,

2π

ay
respectively; ∇ · u = 0; D < ∞

}
,

(37)

we obtain
dE

dt
= −D

(
1 − R

I

D

)
≤ −D

(
1 − R

RE

)
. (38)

By employing the Poincaré inequality in (35.3), we get

D(t) ≥ π2‖θ‖2 + π2ζ ∗

γ
‖φ‖2 + ξ∗e− c

2 ‖u‖2 (39)

being ξ∗ = min{1, ξ−1} and ζ ∗ = min{1, ζ }. Hence, (38), (39) yield the exponential decay of the energy
function E(t). In fact, by virtue of (39), inequality (38) becomes

dE

dt
≤ −

(
1 − R

RE

)(
π2‖θ‖2 + π2ζ ∗

γ
‖φ‖2 + ξ∗e− c

2 ‖u‖2
)

≤ −
(
1 − R

RE

)
kE(t)

(40)

where k = min

{
2π2,

2π2ζ ∗

A
, 2ξ∗e− c

2 Va

}
, from which

E(t) ≤ exp

{
−k

(
1 − R

RE

)
t

}
. (41)

By virtue of (41), as long as R < RE , perturbation fields on seepage velocity, fluid and solid temperature decay
exponentially in time. Thus, we have proved that R < RE is a sufficient condition for the global nonlinear and
exponential stability of the conduction solution m0.

Now, let us proceed to determine the critical threshold RE . With this aim, we write the Euler–Lagrange
equations by solving the variational problem (36), i.e.

⎧⎪⎨
⎪⎩

REθk −
(
f u

ξ
, f v

ξ
, f w

)
= ∇ω

REw + �θ + H (φ − θ) = 0
ζ�1φ + φ,zz − Hγ (φ − θ) = 0

(42)

where ω is a Lagrange multiplier arising from the incompressibility of u. System (42) coincides with (20.1).
As a consequence, we manage to obtain the coincidence between the global nonlinear stability threshold RE
and the linear instability threshold RL . As a result, condition R < RE is not only sufficient, but also necessary
for the stability of m0.

5 Numerical results

In the present Section, we report results obtained once the generalised eigenvalue problem (30) and the
subsequent minimum problem (26) have been solved. Given the coincidence between linear and nonlinear
threshold, we denote by R2

c the critical Rayleigh number beyond which thermal convection occurs.
The aimof this Section is to highlight the influence of variable viscosity, thermal andmechanical anisotropy,

weighted conductivity ratio, and interaction coefficient on the onset of convection. Let us remark that, since
the interaction heat transfer coefficient H cannot be easily measured, we set a range in which H can vary.
According to the choice done in [29,44], H ∈ (10−2, 106). As a consequence, the critical Rayleigh number is
plotted as function of H in every picture throughout the Section.
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Fig. 1 Critical Rayleigh number as function of H for different values of c with ξ = 1.5, ζ = 5, γ = 1

Table 1 Comparison between the critical wavenumber a2c ([1]) and the critical threshold R2
c ([1]) shown in Table 3 in [1] and the

critical wavenumber a2c and the rescaled critical threshold
R2
c γ

γ+1 obtained in the present paper when H → ∞, γ = 1, ξ = 1, ζ = 1

[1] H → ∞
c a2c ([1]) R2

c ([1]) a2c
R2
c γ

γ+1

0 9.873 39.478 9.87 39.478
1 10.104 39.220 10.10 39.226
2 10.826 38.357 10.84 38.419
3 12.172 36.681 12.17 36.699
4 14.326 34.005 14.33 34.048
5 17.608 30.336 17.58 30.357

Table 2 Comparison between the critical wavenumber a2c and the rescaled critical threshold R2
c γ

γ+1 obtained when H → ∞ (i.e.

LTE regime) and the critical wavenumber a2c and the critical threshold R2
c obtained when H = 100 (i.e. LTNE regime), with

γ = 1, ξ = 1, ζ = 1

H → ∞ H = 100

c a2c
R2
c γ

γ+1 a2c R2
c

0 9.87 39.478 10.70 72.34
1 10.10 39.226 10.99 71.75
2 10.84 38.419 11.96 70.07
3 12.17 36.699 13.72 66.00
4 14.33 34.048 17.03 60.11
5 17.58 30.357 22.64 52.21

It may be observed that the effect of variable viscosity on the critical Rayleigh number is substantial. As
shown in Fig. 1, as c increases, R2

c decreases for every choice of the interaction coefficient H , namely the
onset of convection gets easier. This result is physically reasonable and in agreement with what stated in [9],
i.e. fluids whose viscosity near the hot boundary is much lower than everywhere else in the layer are more
likely to become unstable sooner.

Let us remark that, as H → ∞, fluid and solid phases can be treated as a single phase since they exchange
heat so rapidly that they have nearly identical temperature. As a consequence, we recover the regime of LTE.
Whereas, when H → 0, fluid instability is not affected by the properties of the solid matrix. As pointed out in
[23], the respective mathematical problems are identical, except for a rescaling of the Rayleigh number. Table
1 shows the coincidence between results delivered in [1] under the assumption of LTE and results obtained in
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the present paper for H → ∞, after rescaling the Rayleigh number. In addition, one can notice that in the first
line in Table 1, where c = 0, we recovered the classical Rayleigh number 4π2 for the Darcy–Benard problem.

The decreasing trend of R2
c with respect to increasing c, i.e. a higher gradient of viscosity across the layer,

depends strongly on H . So, we analyse the behaviour of R2
c both for high values of H (for which the LTE

regime holds [23]) and for H = 100 (for which the LTNE regime holds). In Table 2, one can notice that the
decreasing trend of R2

c is less remarkable for H → ∞ rather than for H = 100, even though the critical
threshold for the LTE case is always lower than the one in LTNE. Such a result suggests that the effect of
variable viscosity on the onset of convection is less intense under the assumption of LTE rather than in the
case of LTNE. A similar result has been pointed out in [8].

When c = 0, function f (z) = 1, i.e. viscosity is constantly equal toμ0, the value assumed in the middle of
the layer. In case of isotropic porous medium, by assuming c = 0 we would expect to recover the same results
found in [45]. In Fig. 2 we compare results delivered in the present paper by the Chebyshev-tau method with
the analytical expression of the critical Rayleigh number found in [45]. The two neutral curves are perfectly
overlapped. In fact, one can compute the absolute error, which is 1.85 × 10−10 at most.

In Fig. 3, the influence ofmechanical anisotropy on the critical Rayleigh number is shown. The destabilising
effect of increasing permeability on the conduction solution is clear. The Rayleigh number decreases with ξ for
any H , in agreement with findings in [29,44,46,47]. This result is physically admissible. Based on definition
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(2.1), increasing ξ is due to an increase in the horizontal permeability KH , which means that the fluid is
allowed to move easier and easier in the horizontal direction. Thus, resistance to fluid motion reduces, and the
advective transport enhances [48].

On the other hand, solid thermal conductivity has a stabilising effect onm0, delaying the onset of convection.
In Fig. 4, such a behaviour is evident, specifically for large values of H . If κs

H grows, the onset of convection
is delayed because the solid matrix easily absorbs heat from the fluid. Actually, when H goes to zero, solid
thermal conductivity affects weakly the onset of convection. This result is in agreement with what is found in
[29], and it is physically reasonable since small values of H imply that the heat exchange between fluid and
solid phases occurs so slowly that the solid matrix does not manage to absorb enough heat to cool down the
fluid.

The onset of convection is encouraged by increasing values of the weighted conductivity ratio γ , as shown
in Fig. 5. Increasing values of κ f lead to an increasing γ , which imply a reduction of R2

c , i.e. a destabilising
effect. This behaviour is expected from a mathematical point of view, since looking at the Rayleigh number
definition in (11.4) we can notice that R2 is inversely proportional to κ f .
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6 Conclusions

A linear and nonlinear stability analysis of the conduction solution of the Vadasz–Darcy model describing the
motion of a depth-dependent viscosity fluid in an anisotropic porous medium in LTNE is performed. Linear
instability analysis leads to a generalised eigenvalue problemwhich can be solved by means of the Chebyshev-
tau method coupled with the QZ algorithm. Nonlinear stability analysis is carried out by employing the energy
method. The optimal result of coincidence between the linear instability threshold and the global nonlinear
stability threshold is obtained.

Viscosity decreasing exponentially with depth has a destabilising effect on the onset of convection, leading
to lower values of the critical Rayleigh number. In fact, viscosity drag reduceswith depth, namely the fluidmeets
fewer obstacles to its motion.Moreover, comparing results with those ones found under LTE assumption in [1],
we can remark that the presence of LTNEmakes the influence of variable viscosity more intense. Applications
can be found in oil cooling systems in hydraulic units that involve heat exchangers. Within the heat exchanger,
maintaining the oil cold is important in order to preserve its characteristics and proper operating conditions.
Findings in the paper show that the effect on the onset of convection of replacing a kind of oil with another
with a different law of viscosity is larger under the LTNE hypothesis than under the LTE one. A practical
example is given by two oils, i.e. SAE 10W-60 and SAE 0W-30, whose values of kinematic viscosity ν are
shown in the Table (see [49]). If the aim is to inhibit convection, a larger Rayleigh number is achieved if SEA
0W-30 is preferred to SAE 10W-60.

T [◦C] νSAE 10W-60 [mm2/s] νSAE 0W-30 [mm2/s]
0 1684.4 550.23
10 831.44 291.93
20 448.10 167.29
40 161.73 66.803

Furthermore, we proved the destabilising effect of both mechanical anisotropy and the weighted conduc-
tivity ratio, other than the stabilising effect of thermal anisotropy.
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