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Abstract This paper presents an investigation of the dynamic behavior of bi-directionally functionally graded
(BDFG)micro/nanobeams excited by a moving harmonic load. The formulation is established in the context of
the surface elasticity theory and themodified couple stress theory to incorporate the effects of surface energy and
microstructure, respectively. Based on the generalized elasticity theory and the parabolic shear deformation
beam theory, the nonclassical governing equations of the problem are obtained using Lagrange’s equation
accounting for the physical neutral plane concept. The material properties of the beam smoothly change along
both the axial and thickness directions according to power-law distribution, accounting for the gradation of
the material length scale parameter and the surface parameters, i.e., residual surface stress, two surface elastic
constants, and surface mass density. Using trigonometric Ritz method (TRM), the trial functions denoting
transverse, axial deflections, and rotation of the cross sections of the beam are expressed in sinusoidal form.
Then, with the aid of Lagrange’s equation, the system of equations of motion are derived. Finally, Newmark
method is employed to find the dynamic responses of BDFG subjected to a moving harmonic load. To validate
the present formulation and solution method, some comparisons of the obtained fundamental frequency and
dynamic response with those available in the literature are performed. A parametric study is performed to
extensively explore the impact of the key parameters such as the gradient indices in both directions, moving
speed, and excitation frequency of the acting load on the dynamic response of BDFG nanobeams. The obtained
results can serve as a guideline for assessing themulti-functional and optimal design ofmicro/nanobeams acted
upon by a moving load.

1 Introduction

Functionally graded materials (FGMs) are composite materials with nonhomogeneous microstructures. FGMs
are composed of two ormore differentmaterialswith specific gradients leading to a desired continuous variation
of the material properties in specific spatial direction(s). In comparison with the traditional composites, FGMs
can provide many advantages such as higher strength, higher stiffness, lower stress intensity factor, higher
thermal resistance, higher corrosion resistance, and elimination of residual stresses and interlaminar shear
stress, [1, 2]. Due to their unique characteristics, FGMs are speedily used as structural elements in various
engineering fields such as nuclear, aerospace, automotive,marine industry, biomedical, and optical engineering,
[3]. As a consequence, a very huge number of studies has been performed using analytical, semi-analytical,
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and numerical techniques to investigate the static and dynamic problems of FGM structures, whose material
properties are graded in only one direction, i.e., transversely functionally graded in the thickness direction
(TFG), or axially functionally graded in the length direction (AFG), (see Refs. [4–6]).

In the last decades, the design and analysis of nanomaterials and nanostructures have been exten-
sively increased because of their superior mechanical, thermal, and electrical properties. Nanostructures
such as nanorods, nanobeams, nanoplates, and nanoshells have recently been used in many applications in
micro/nanoscale devices such as sensors and actuators. For modelling of micro/nanoscale structures, the size
effect on theirmechanical and physical properties should be considered. Since the classical continuummechan-
ics is size-independent, it cannot capture the effect of small size [7–12]. In this regard, the molecular dynamic
approaches and size-dependent continuum mechanics are employed to include the small-scale effect in micro-
and nanostructures [13, 14]. Numerical simulations based on the molecular dynamic approaches are, however,
generally complex and computationally expensive, especially for complicated structures with a huge number
of atoms, and thus the nonclassical size-dependent continuummechanics is extensively used. Several different
nonclassical continuum mechanics theories including additional material length scale parameter(s) have been
developed and employed to model the size-dependent phenomenon in miniaturized systems, such as the strain
gradient theory “SGT” ([15, 16]), couple stress theory “CST” ([17–19]), nonlocal continuum elasticity theory
“NET” ([20]), modified strain gradient theory “MSGT” ([9]), nonlocal strain gradient theory ([21]), modified
couple stress theory “MCST” ([22]), and surface elasticity theory “SET” ([23, 24]). Critical reviews on mod-
elling of micro/nanostructures based on the different nonclassical continuum mechanics theories have been
presented by [25, 26]. The main difficulty encountered in the nonclassical continuum theories is the determi-
nation of the microstructural material-dependent length scale parameters. The MCST proposed by [22] has
the advantage of involving only one additional microstructure-dependent length scale parameter for isotropic
materials. Here, the MCST will be employed to capture the microstructure effect on the predicted response.

Structures and components in advanced machines such as aerospace shuttles and craft require advanced
composites whose properties vary continuously in more than one direction to satisfy the requirements of
temperature and stress distributions in twoormore directions [27].By the rapid advancement in nanomechanics,
the static and dynamic characteristics of bi-directional functionally graded (BDFG) micro/nanosized beams
have been modelled and investigated based on the differential nonlocal elasticity theory “DNET” ([6, 28–34]),
MCST ([35–42]), and the differential nonlocal strain gradient theory “DNSGT” ([43–45]).

One of the most important characteristics of nanoscale structures is their extremely increasing ratio of
surface area-to-bulk volume. As a result, the energy associated with the surface atoms is different from that
of the bulk. Unlike in classical continuum mechanics, the surface energy cannot be neglected as it contributes
significantly to the total energy. This is because the effects of the surface residual stress (surface tension) and
surface elasticity are of the most important size-dependent effects in the analysis of the mechanical behavior of
the nanoscale structures [46].Gurtin andMurdoch ([23, 24]) proposed a surface elasticity theory to approximate
the contribution of surface energy by assuming an elastic body with elastic surface layers of zero thickness that
is perfectly bonded to the surface of the bulk continuum. The Gurtin and Murdoch surface elasticity theory
(GM-SET) has been successfully employed in conjunction with the other nonclassical continuum theories in
the analysis of homogeneous and one-dimensional FG structures, i.e., GM-SET combined with the DNET
([47–49]), GM-SET combined with the SGT ([50]), GM-SET combined with the DNSGT ([51]), GM-SET
combined with theMCST ([52–64]), and GM-SET combined with theMCST in the framework of DNET ([65,
66]). Based on these studies, it has been shown that incorporating the influence of surface energy may show a
stiffness-hardening or stiffness-softening of the studied nanostructures depending on whether the signs of the
surface elastic constants are positive or negative.

Considering the surface effect on BDFG nanobeams, only few models have been recently developed. Lal
and Dangi [67] adopted the differential nonlocal elasticity theory together with GM-SET to investigate the
vibration response of BDFG Timoshenko nanobeam using the differential quadrature method (DQM). Power
law was used to express the gradation of the material properties of the bulk continuum in the thickness and
length directions, whereas the surface elastic constants were assumed to vary in thickness direction only, and
the nonlocal parameter was assumed to be spatially-independent. Shanab and Attia [68–70] studied the bend-
ing, buckling, and vibration characteristics of uniform and tapered BDFG Euler–Bernoulli and Timoshenko
micro/nanobeams in the framework of the MCST and GM-SET. Unlike [67], all the material properties of the
bulk and surface continuums were assumed to vary in both the thickness and length directions via power law.

Furthermore, analysis of structures’ response under moving mass and moving load is very important
for many practice engineering applications, such as bridges, tunnels, and rail. The vibration problems of a
homogenous beam subjected to moving loads were extensively studied by [71–75]. The dynamic performance
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of one-directional FGM beams undergoing a moving load was studied based on the material gradation in the
thickness direction by [76–82] or the material gradation in the length direction by [83–85]. Taking the features
of BDFG into account, Şimşek [86] investigated the free and forced vibration responses of BDFG Timoshenko
beams acted upon bymoving loads using Ritz and the implicit time integration methods. Exponential functions
were adopted to express the material variation in both thickness and length directions. Utilizing finite element
method (FEM) and Newmark method, the vibration of a BDFG Timoshenko beam under a moving load was
investigated by [87] assuming that the material properties were varied in both thickness and length directions
via power law functions. Yang et al. [88] studied the vibration characteristics of a tapered BDFG Timoshenko
beam subjected to a moving harmonic force employing the meshfree boundary-domain integral equation in
conjunction with 2D elasticity theory. The exponential distribution was assumed for the variation of Young’s
modulus and mass density in transverse and axial directions. Employing Ritz method and Gram-Schmidt
orthogonalization procedure, [89] studied the free and forced vibrations of functionally graded graphene
nanoplatelet-reinforced beams due to multiple moving loads based on third-order shear deformation beam
theory. Recently, [90] utilized FEM with the aid of Newmark method to explore the dynamic response of a
sandwich Timoshenko beam with BDFG face layers under a moving load. Power law functions were adopted
to express the material properties of the skin layers. This work was extended by [91] to explore the effect of
a partial Pasternak support on the dynamic response of BDFG sandwich beams under a moving mass using a
quasi-3D theory. Based on the third-order shear deformation theory, the influences of Coriolis and centrifugal
forces on the dynamic response of an inclined BDFG sandwich beam were considered by [92]. For the double-
BDFG porous Timoshenko beam system subjected to moving load, its vibration performance was studied
by [93] adopting Ritz and Newmark methods. Based on Timoshenko beam theory, [94] utilized Ritz method
with the aid of Newmark method to explore the free and dynamic responses of a sandwich beam with TFG
face layers under harmonic moving loads with elastic foundation for different boundary conditions. Using
Chebyshev collocation method, and based on the third-order shear deformation theory, the free vibration of
TFG beam and sandwich plates resting on an elastic foundation was investigated by [95] and [96], respectively.
Recently, [97] utilized the Gram–Schmidt procedure to generate the shape functions for the Ritz method, and
then the Newmark method was used to explore the dynamic response of TFG sandwich plates under multiple
moving loads.

To capture the scale phenomena of micro/nanoscale beams acted upon by moving loads, [98, 99] adopted
the DNET to study the dynamic response of simply supported TFG Euler–Bernoulli nanobeams subjected
to a constant moving load. Based on DNET, the influences of surface energy and viscoelastic foundation on
the steady-state response of Euler–Bernoulli nanobeam in a thermal environment and subjected to a moving
concentrated load were examined by [100] using the multiple scales method. In [101], the forced vibration
response of TFG nanobeams resting onWinkler–Pasternak foundation and under a uniform harmonic dynamic
load was investigated employing a higher-order shear deformation beam theory in the context of DNET. In the
context of MCST, [102] used the FEM and Wilson-theta method to study the forced vibration of nonuniform
BDFG microbeams resting on a linear elastic foundation and acted upon by a moving harmonic load/mass.
The influence of various models of the material gradation was presented. In the framework of parabolic shear
deformation theory (PSDPT), [103] employed the MCST to study the vibration response of BDFG porous
microbeams excited by a moving harmonic load using FEM. For even and uneven porosity distributions, power
law functions were adopted to model the material variation in both thickness and length directions. The authors
[104] adopted the MCST to explore the effects of thermal rise and moving load on the vibration response of
a BDFG microbeam using FEM. Temperature-dependent material properties were assumed with a power law
distribution in both the thickness and length directions. In the framework of NSGT, the dynamic performance
of TFG nanobeams under a moving load was studied by [105, 106].

Based on the above-mentioned review, it is observed that the dynamic performance of BDFG nanobeams
is still limited. The main objective of the present study is to develop an integrated microstructure-surface
energy-based model for the dynamic response of BDFG nanobeams under a moving harmonic load based on a
higher-order shear deformation beam theory, for the first time. Effects of microstructure and surface energy are
captured via theMCST and GM-SET, respectively. The material properties of the bulk and surface continuums
of the nanobeam are varying gradually along both the thickness and length directions according to power
law functions. Based on the generalized elasticity theory, the formulation accounts for the physical neutral
axis concept. Employing Lagrange’s equation, the nonclassical equations of motion and boundary conditions
are derived. Ritz method in conjunction with Newmark method is used to obtain the dynamic deflection of
a BDFG nanobeam under moving load. Both the present formulation and solution procedure are verified by
comparing the predicted results with previous studies. By a parametric study, the effects of gradient indices
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Velocity 

Fig. 1 Illustration of a BDFG nanobeam with surface layers exposed to a moving load

in both thickness and length directions, velocity of moving load, excitation frequency, microstructure, and
surface energy on the dynamic response of simply supported BDFG nanobeams are explored in detail.

2 Theory and formulation

Consider a straight uniform BDFG microbeam with length L , width b, and thickness h, as demonstrated in
Fig. 1, in a Cartesian coordinate system (x , y, z) that denotes the geometrical neutral plane (midplane). The
beam is excited by a moving load with a constant velocity v. The BDFG beam is composed of a mixture
of ceramic and metallic constituents, where the lowermost (x � 0, z � −h/2) and uppermost (x � L , z �
h/2) surfaces of the nanobeam are pure metal “m” and pure ceramic “c”, respectively. The effective material
properties describing the bulk and surface continuums of BDFG can be expressed via power law in both axial
and transverse directions, such that [40, 41, 102]:
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where the superscripts “s” and “B” refer, respectively, to the surface and bulk continuums of the beam. EB ,
ν, and ρB are, respectively, Young’s modulus, Poisson’s ratio, and the mass density of the bulk continuum, l
represents the material length-scale parameter describing the microstructure effect on the bulk continuum, and
τ s , λs , μs , and ρs are the surface residual stress, elastic parameters, and surface mass density of the surface
continuum. kx and kz are the gradient indices in the axial and transverse directions, respectively. The classical
Lamé’s parameters of the bulk continuum are given by

λB(x, z) � EB(x, z)ν(x, z)

(1 + ν(x, z))(1 − 2ν(x, z))
and μB(x, zm) � EB(x, z)

2(1 + ν(x, z))
. (4)

Ignoring the Poisson’s effect yields
[
λB(x, z) + 2μB(x, z)

] ≡ EB(x, z) as adopted by [43, 44, 103].
In Eqs. (1–3), the axially (AFG) and transversely (TFG) functionally graded distributions can be recovered

by setting kz � 0 and kx � 0, respectively. An homogeneous beam made of pure metal constituent is obtained
when kx � kz � 0.
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Due to the nonsymmetric distribution of the material properties of the BDFG beam about its midplane, the
geometrical neutral plane (GNP) does not coincide with the physical neutral plane (PNP), as demonstrated in
Fig. 1. The deviation between the positions of GNP and PNP is given by [40, 41, 68, 69]

en(x) �
∫ h/2

−h/2

∫ b/2
−b/2z

[
λB(x, z) + 2μB(x, z)

]
dydz

∫ h/2
−h/2

∫ b/2
−b/2

[
λB(x, z) + 2μB(x, z)

]
dydz

, zn(x) � z − en(x). (5)

Unlike the TFG beam, the position of the physical neutral axis “en” in a BDFG beam depends on the
x-coordinate. For simplicity, Cartesian coordinates are used to approximate the zn-coordinate instead of the
curvilinear coordinates.

2.1 Kinematics and constitutive relations

In this study, a general shear deformation theory is used to express the kinematics of the BDFG nanobeam, in
which the displacement field is given by

ux (x, z, t) � u(x) + f (zn)
∂w(x,t)

∂x + R(zn)φ(x, t),
uy(x, z, t) � 0,
uz(x, z, t) � w(x, t)

(6)

where u and w are the displacement components of the midplane along, respectively, x and z directions, and
φ is the transverse shear strain, and t denotes time. Accounting for the physical neutral plane concept, the
shear-strain function R(zn) � R(z) − rn(x), where
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Various beam theories can be satisfied by appropriate section of the functions f (zn) and R(zn). Adopting
the third-order parabolic shear deformable beam theory (PSDBT), [107],

f (zn) � −zn(x)andR(zn) � z

(

1 − 4z2

3h2

)

− rn(x). (8)

In the framework of generalized elasticity theory in combination with the modified couple stress theory,
[22], the infinitesimal Green strain tensor ε, classical Cauchy stress tensor σ B , symmetric curvature tensor χ ,
and the deviatoric part of the couple stress tensor m are given by [55, 65]:

ε � 1

2

[
∇u + (∇u)T

]
, (9.1)

σ B � λB(x, z)tr(ε)I + 2μB(x, z)ε, (9.2)

χ � 1

2

[
∇θ + (∇θ)T

]
, θ � 1

2
curl(u), (10.1)

m �
[
2l2(x, z)μB(x, z)

]
χ (10.2)

where u and θ represent the displacement field and rotation field vectors, respectively. l denotes the material
length scale parameter (MLSP) of the material, which captures the size-dependent effect of the material
microstructure. Here, the gradation of the MLSP in both thickness and length directions of the BDFG beam is
considered, as depicted in Eq. (2).

Based on the Gurtin–Murdoch surface elasticity theory, the surface layer of a bulk material is assumed to
be of zero thickness and fulfills different constitutive equations involving the surface parameters, i.e., residual
surface stress τ s and the surface elastic constants λs and μs , [23, 24]. According to this theory, the in-plane
(σ s) and out-of-plane (σ s

nα) components of the surface stress tensor are given by Gurtin and Murdoch [23, 24]
as follows, respectively:

σ s± � 2
[
μs±(x, z) − τ s±(x, z)

]
ε± +

[
τ s±(x, z) +

[
λs±(x, z) + τ s±(x, z)

]
tr
(
ε±)]I + τ s±(x, z)∇su±,

(11.1)
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σ s±
nα � τ s±(x, z)u±

n,α, α � 1, 2, (11.2)

In Eqs. (11), signs (+) and (−) stand for the upper and lower surface layers of the BDFG beam, respectively.
ni denotes the components of the outward unit normal vector n to the beam lateral surface.

The nonzero components of the Green strain and the symmetric curvature tensor in accordance with Eqs.
(6), (8), (9.1), and (10.1) can be obtained as
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where subscript x represents the derivative w.r.to x . It should be mentioned that the derivative ∂2R(zn)
∂z∂x will be

zero.
In light of Eqs. (9.2) and (10.2), the nonzero components of the classical Cauchy stress tensors and the

deviatoric part of the couple stress tensor are [40, 41]
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(15)

Besides, the nonzero components of the surface stresses in the BDFG nanobeam based on PSDBT can be
obtained by substituting Eqs. (6) and (12) into Eq. (11), such that

σ s
xx � τ s±(x, z) + E

s(x, z)εxx ,Es(x, z) � λs±(x, z) + 2μs±(x, z),

σ s
xs � [

2μs±(x, z)εxz − τ s±(x, z) ∂w
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xzny,
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τ s±(x, z) ∂w
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]
nz

(16)

where ny and nz denote the components of the unit outward normal vector n to the beam lateral surface in the y
and z directions, respectively, i.e., with θ the angle between the y-axis and the normal vector n, then ny and ny
are given by, respectively, cosθ and sinθ . The subscript “s” represents the direction of the unit tangent vector
s on the boundary of the beam. σ s

xz represents the in-plane shear stress component on the two lateral surfaces
(parallel to the xz plane) of a beam with a uniform rectangular cross section. When θ � 0, the values of σ s

zx
and σ s

xz , equal those of σ s
sx and σ s

xs , respectively. It is important to emphasize the fact that the in-plane shear
stress tensor defined by Eq. (11.1) in not symmetric, and thus σ s

xz and σ s
zx are not equal [53]. Many authors

employed the Gurtin–Murdoch surface elasticity theory claiming a symmetric in-plane shear stress tensor in
their variational models.



On the dynamic response of bi-directional functionally graded nanobeams 3297

2.2 Variational formulation

In the context of the generalized elasticity theory in combination with the surface elasticity theory andmodified
couple stress theory, the total strain energy (U) of an isotropic elastic BDFG deformed nanobeam can bewritten
as follows [55, 65]:

U � 1
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where A and ∂A are, respectively, the cross-sectional area and the boundary of the beam. Substitution of Eqs.
(14–16) into Eq. (17) yields
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Substituting Eqs. (14–16) and (19) into Eq. (18) and with some mathematical manipulations, the total
strain energy of the BDFG nanobeam including the microstructure and surface energy effects can be obtained
in terms of the displacement field as follows:
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φ

}

+

[

Bxz +
1

4
Exz

]

φ2

+

[

Cs
0
∂u

∂x
− Cs

1
∂2w

∂2x
+ Cs

2
∂φ

∂x

]

+ Cs
n

(
∂w

∂x

)2
}

dx

in which
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Axx (x)

Bxx (x)

Dxx (x)

Exx (x)

Fxx (x)

Hxx (x)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

�

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

AB
xx (x)

BB
xx (x)

DB
xx (x)

EB
xx (x)

FB
xx (x)

HB
xx (x)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

+

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

As
xx (x)

Bs
xx (x)

Ds
xx (x)

Es
xx (x)

Fs
xx (x)

Hs
xx (x),

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (21.1)

Bxz(x) � BB
xz(x) + Bs

m(x) − 1

2
Bs
t (x) (21.2)
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with
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

AB
xx (x)

BB
xx (x)

DB
xx (x)

EB
xx (x)

FB
xx (x)

HB
xx (x)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

�
∫ b/2

−b/2

∫ h/2

−h/2
E
B(x, z)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

zn

z2n

R(zn)

zn R(zn)

R2(zn)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

dzdy, (22.1)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

As
xx (x)

Bs
xx (x)

Ds
xx (x)

Es
xx (x)

Fs
xx (x)

Hs
xx (x)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

� ∮

∂AE
s(x, z)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

zn

z2n

R(zn)

zn R(zn)

R2(zn)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

dS, (22.2)

BB
xz(x) �

∫ b/2

−b/2

∫ h/2

−h/2
μB(x, z)

(
∂R(zn)

∂zn

)2

dzdy, (22.3)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Axz(x)

Bxz(x)

Dxz(x)

Exz(x)

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

�
∫ b/2

−b/2

∫ h/2

−h/2

[
l2(x, z)μB(x, z)

]

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1
(

∂R(zn)
∂zn

)2

∂R(zn)
∂zn(

∂2R(zn)
∂zn2

)2

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

dzdy, (22.4)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Cs0
Cs1
Cs2
Csn

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

�
∮

∂A
τ s(x, z)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

1

zn

R(zn)

n2z

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

dS, (22.5)

⎧
⎨

⎩

Bs
m

Bs
t

⎫
⎬

⎭
�

∮

∂A

⎧
⎨

⎩

μs(x, z)

τ s(x, z)

⎫
⎬

⎭

(
∂R(zn)

∂zn

)2

n2ydS. (22.6)

It is worth noting that the stiffnesses BB
xx (x) disappear in case of neutral axis analysis.

The kinetic energy of the BDFG nanobeams accounting for the surface effects can be expressed as

T ≡ 1

2

∫ L

0

∫

A
ρB (x, z)

[(
∂ux
∂t

)2

+

(
∂uz
∂t

)2
]

d Adx +
1

2

∫ L

0

∮

∂A
ρs (x, z)

[(
∂ux
∂t

)2

+

(
∂uz
∂t

)2
]

dsdx

� 1

2

∫ L

0

[(

IA
∂u

∂t
− IB

∂2w

∂x∂t
+ IE

∂φ

∂t

)
∂u

∂t
+ IA

(
∂w

∂t

)
∂w

∂t

−
(

IB
∂u

∂t
− ID

∂2w

∂x∂t
+ IF

∂φ

∂t

)
∂2w

∂x∂t
+

(

IE
∂u

∂t
− IF

∂2w

∂x∂t
+ IH

∂φ

∂t

)
∂φ

∂t

]

dx

(23)
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in which the mass moments of inertia, incorporating the mass density of the bulk and surface continuums, are

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

IA(x)

IB(x)

ID(x)

IE (x)

IF (x)

IH (x)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

�
∫ b/2

−b/2

∫ h/2

−h/2
ρB(x, z)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

zn

z2n

R(zn)

zn R(zn)

R2(zn)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

dzdy +
∮

∂A
ρs(x, z)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

zn

z2n

R(zn)

zn R(zn)

R2(zn)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

dS. (24)

A general form for the virtual work done by the forces applied on the current beam in the context of the
modified couple stress theory and surface elasticity theory can be expressed as [53, 65]:

δW �
∫

�

(f • δu + fc • δθ)d� +
∮

∂A

(
t.δu + s.δθ

)
dS (25)

where f and fc are, respectively, the body force resultant and body couple resultant, both per unit volume, t
and s are, respectively, the traction resultant and surface couple resultant, both per unit area. In the absence
of an applied compressive force, assuming the externally applied harmonic load moves with a constant speed
ignoring its inertial effect, and employing zero initial conditions, the virtual work can be obtained as

δW �
∫ L

0

{

fuδu +

[

P (t)w(xQ, t)δ (x − vt) + q +
∂

∂x

(

fc − 1

2
fcac(x)

)]

δw −
(
1

2
fcac(x)

)

δ
∂w

∂x

+

(
1

2
fcac(x)

)

δφ

}

dx +

{

Nδu +

[

V −
(

fc − 1

2
fcac(x)

)]

δw − (
Mc + Mnc

)
δ
∂w

∂x
− Mcδφ

}
L
0

(26)

where v is the velocity of the moving harmonic load, δ represents the Dirac-delta function, fu and q are,
respectively, the distributed loads in x- and z-directions per unit length along the x-axis, fc is the y-component
of the body couple per unit length along the x-axis. N , V , Mc, and Mnc are, respectively, the applied axial
force and lateral force, classical external bending moment, and the nonclassical external bending moment due
to the couple stress exerted at the two ends of the beam, and ac is defined as

ac(x) �
∫ b/2

−b/2

∫ h/2

−h/2

∂R(zn)

∂zn
dzdy. (27)

The applied external moving harmonic load is given by

P(t) � P0sin(�t) (28)

in which P0 and � are, respectively, the amplitude and frequency of the applied moving load. The location of
the moving load at any instant, measured from the left end of the beam, is defined as

xQ(t) � vt, 0 < xQ < L , 0 < t < L/v. (29)

Finally, the total energy of the BDFG nanobeam is given as

� � T − (U +W). (30)
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3 Solution procedure

In this Section, the Lagrange’s equations are used to obtain the system of equations of motion. For this
purpose, trigonometric Ritz method (TRM) is applied first. The displacement functions w(x, t) u(x, t), and
φ(x, t) are approximated by series of trigonometric functions that satisfy the geometric simply supported
boundary conditions as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

w(x, t)

u(x, t)

φ(x, t)

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

�

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

M∑

r�1
Ar (t)θwr (x)

M∑

r�1
Br (t)θur (x)

M∑

r�1
Cr (t)θφr (x)

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(31)

where Ar (t), Br (t), and Cr (t) are the unknown time-dependent coefficients to be determined. The admissible
trigonometric functions are defined as follows:

θwr (x) � sin
( rπx

L

)
,

θur (x) � θφr (x) � dθwr
dx ,

(32)

Substituting Eqs. (31, 32) into Eq. (30), and then using Lagrange’s equations given by Eq. (33)

d

dt

(
∂�

∂q̇k

)

− ∂�

∂qk
� 0, k � 1, 2, 3, . . . , 3M (33)

in which

qk �

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ak(t), k � 1, 2, . . . M

Bk(t), k � M + 1, . . . 2M

Ck(t), k � 2M + 1, . . . 3M

. (34)

Applying the Lagrange equations yields the following system of equations of motion:

[K]{qk(t)} + [M]{q̈k(t)} � {
Ft} −

{
FSE

}
(35)

where the elements of the stiffness matrix [K] and the mass matrix [M] are, respectively, defined as
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K11(r, k)

K12(r, k)

K13(r, k)

K21(r, k)

K22(r, k)

K23(r, k)

K31(r, k)

K32(r, k)

K33(r, k)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

�

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
Dxx + Axz

]
θ

′′
wrθ

′′
wk +

(
Csn + z20,x A

B
xx

)
θ

′
wrθ

′
wk

−Bxxθ
′
urθ

′′
wk − z0,x AB

xxθ
′
urθ

′
wk

−[
Fxx + 1

2Dxz
]
θ

′
φrθ

′′
wk + z0,xr0,x AB

xxθφrθ
′
wk + z0,x E B

xxθ
′
φrθ

′
wk

−Bxxθ
′′
wrθ

′
uk − z0,x AB

xxθ
′
wrθ

′
uk

Axxθ
′
urθ

′
uk

Exxθ
′
φrθ

′
uk − r0,x AB

xxθφrθ
′
uk

−[
Fxx + 1

2Dxz
]
θ

′′
wrθ

′
φk + z0,xr0,x AB

xxθ
′
wrθφk − z0,x E B

xxθ
′
wrθ

′
φk

Exxθ
′
urθ

′
φk − r0,x AB

xxθ
′
urθφk

[
Hxx + 1

4 Bxz
]
θ

′
φrθ

′
φk +

[
Bxz + 1

4 Exz + r0,x AB
xx

]
θφrθφk − r0,x E B

xx

(
θ

′
φrθφk + θφrθ

′
φk

)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

dx,

(36)
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⎧
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

M11(r, k)

M12(r, k)

M13(r, k)

M21(r, k)

M22(r, k)

M23(r, k)

M31(r, k)

M32(r, k)

M33(r, k)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

�
∫ L

0

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

IAθwrθwk + IDθ
′
wrθ

′
wk

−IBθurθ
′
wk

−IFθφrθ
′
wk

−IBθ
′
wrθuk

IAθurθuk

IEθφrθuk

−IFθ
′
wrθφk

IEθurθφk

IHθφrθφk

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

dx, (37)

Due to the presence of the three terms
[
Cs0 ∂u

∂x − Cs1 ∂2w
∂2x

+ Cs2 ∂φ
∂x

]
in the total strain energy, Eq. (20), an

internal right-hand side is obtained when applying the Lagrange equations. These terms are nonzero when
including the effect of the surface residual stress of the BDFG nanobeam, i.e., when τ s �� 0 and kz �� 0 as seen
from Eq. (22.5). So, these terms act as self-excitation loading and cause deformation of the nanostructure at
no external load [63].

The force vector
{
FSE

}
represents a self-excitation force resulting from the surface energy contribution,

i.e.,

{
FSE

}
� 0.5

∫ L

0

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−Cs1θ
′ ′
wr

Cs0θ
′
ur

Cs2θ
′
φr

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

dx, (38)

and the force vector’s
{
Ft

}
components due to the external moving harmonic load are given by

{
Ft} �

⎧
⎨

⎩

[
P0 sin(�t)θwr

(
xQ

)]

k×1
0k×1
0k×1

⎫
⎬

⎭
, k � 1, 2, . . . M. (39)

The system of equations of motion, Eq. (35), is solved by using the implicit time integration Newmark
method ([108, 109]). After obtaining the time-dependent coefficients {Ar (t), Br (t),Cr (t)}, the displacements,
velocities, and accelerations of the beam at the considered point and time are determined for any time t between
0 < t < L/v.

For better numerical analysis of the forced vibration, the following nondimensional quantities are intro-
duced:

w(x, t) � w(x, t)

D0
, ω1 � ω1L

2
√

ρcbh/Ec I , v � v

Vc
, Vc � Lω1

π
, τ � t

L/v
(40)

wherew(x, t) represents the normalized dynamic deflections of the BDFG beam, D0 is the deflection of a pure
metal beam under a point load P0 at mid-span (D0 � P0L3/48Em I ), I � bh3/12. ω1 is the dimensionless
fundamental frequency of free vibration analysis. v indicates the dimensionless velocity of the external load,
where Vc is the critical velocity (the velocity at which the maximum magnitudes of the maximum deflections
occur). τ denotes the dimensionless time, and 0 < τ < 1. It is worth mentioning that, when τ is larger than
one, the load leaves away from the BDFG microbeam. In addition, for the Newmark procedure, 2000-time
increments are adopted for each dynamic response.
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Table 1 Comparison of the peak values of maximum normalized dynamic deflection w p and corresponding absolute velocity vp
of simply supported TFG SUS304/Al2O3 beam

Source kz � 0.2 kz � 0.5 kz � 1.0 kz � 2.0 Pure Al Pure Al2O3

w p Present, PSDBT 1.0406 1.1510 1.2575 1.3458 1.7384 0.9384
Songsuwan et al. [94] (TBT) 1.0370 1.1366 1.2287 1.3093 1.7379 0.9382
Nguyen et al. [87] (TBT) 1.0402 1.1505 1.2566 1.3446 1.7420 0.9380
Simsek and Kocatürk [76] (2009) (EBT) 1.0344 1.1444 1.2503 1.3376 1.7324 0.9328

vp Present, PSDBT 220 196 178 164 131 252
Songsuwan et al. [94] (TBT) 222 198 179 164 132 252
Nguyen et al. [87] (TBT) 222 197 178 163 131 251
Simsek and Kocatürk [76] (EBT) 222 198 179 164 132 252

(a) (b)

Fig. 2 Comparison of the variation of the dimensionless maximum dynamic deflection at the center of the beam with the gradient
index of simply supported TFG SUS304/Al2O3 beam for (a) � f � 40 (b) � f � 80 rad/s

4 Validation studies

This Section is devoted to study the accuracy and convergence of the developed model and solution procedure
by comparing the obtained results with those in the previous works. In the first example, a simply supported
transversely functionally graded (TFG) beam composed of a mixture of metal (SUS304 steel) and ceramic
(Al2O3) is considered. Young’s modulus is taken as Em � 210 GPa and Ec � 390 GPa, and mass density
of ρB

m � 7800 kg/m3 and ρB
c � 3960 kg/m3, for the metal and ceramic materials, respectively. The beam

has width, thickness, and length of 0.4 m, 0.9 m, and 20 m, respectively. Table 1 compares the predicted
maximum dynamic magnification factors, i.e., peak values of the maximum normalized deflections

(
w p

)
and

the corresponding absolute velocities
(
vp

)
of the simply supported TFG SUS304/Al2O3 beam with the results

reported by Simsek and Kocatürk [76] and Nguyen et al. [87], for Euler–Bernoulli beam theory (EBT) and
Timoshenko beam theory (TBT), respectively, at � f � 0. In the same example, the variation of the maximum
normalized deflection at the center of a simply supported TFG beam with the power-law exponent kz for� f �
40 and 80 rad/s is also predicted and compared with by [76], as shown in Fig. 2. It is depicted that the present
results well agree with the published one for the dynamic response of a TFG beam based on the classical
formulation.

In the second example, the dynamic response of the simply supported BDFG microbeam predicted by the
presentmodel and that obtained byZhang andLiu [103] is compared. Thematerial properties of SUS304/Al2O3
mentioned above are used with a constant material length scale parameter of lm � lc � 0.5h. The beam dimen-
sions are b �1 μm, h �10 μm, and L � 20h. Based on the MCST, the dimensionless central deflections are
plotted in Fig. 3 at a dimensionless moving velocity of v � 0.1. Under these conditions, themaximum dynamic
magnification factors, i.e., peak values of the maximum normalized deflections

(
w p

)
, and the corresponding

dimensionless velocities
(
v p

)
are obtained and compared as provided in Table 2. A very good agreement

between the present results with those of [103] is observed from Fig. 3 and Table 2.
Finally, the third validation example compares the predicted dimensionless fundamental frequency (ω1) of

the present PSDBT simply supported BDFG with that reported by Shafiei et al. [110], as illustrated in Fig. 4.
In this example, Young’s modulus, Poisson ratio, and mass density are, respectively, Em � 201.04 GPa, νm �
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Fig. 3 Comparison of the dimensionless dynamic deflection at the center of a simply supportedBDFGSUS304/Al2O3 microbeam
based on MCST (v � 0.1, lm � lc � 0.5h)

Table 2 Comparison of the peak values of maximum normalized dynamic deflection w p and corresponding dimensionless
velocity v p for a simply supported BDFG SUS304/Al2O3 microbeam based on MCST

Source kx � 0.5 kz � 0.5

kz � 0 kz � 0.5 kz � 1.0 kz � 2.0 kx� 0 kx� 0.5 kx� 1.0 kx� 2.0

w p Present (Neutral) 0.5151 0.5887 0.6273 0.6677 0.5231 0.5887 0.6440 0.7124
Present (Geometrical) 0.5151 0.5916 0.6326 0.6738 0.5231 0.5916 0.6445 0.7129
Zhang and Liu (2020) 0.5160 0.5925 0.6335 0.6745 0.5249 0.5925 0.6468 0.7144

v p Present (Neutral) 0.6090 0.6116 0.6125 0.6164 0.6160 0.6116 0.6095 0.6047
Present (Geometrical) 0.6090 0.6128 0.6128 0.6142 0.6160 0.6128 0.6094 0.6083
Zhang and Liu [103] 0.5977 0.5941 0.6025 0.6072 0.5989 0.5941 0.5894 0.5941

0.3262, and ρB
m � 8166 kg/m3 for the metal material, and Ec � 349.55 GPa,νc � 0.24, and ρB

c � 3800 kg/m3

for the ceramic material. The geometrical parameters of the microbeam are h � 15μm, b � h, and L � 100h,
and the material length scale parameter is taken as lm � lc � 0.25h. It is observed from Fig. 4 that there is a
good agreement between the present model for the free vibration response of BDFGmicrobeams. Considering
the comparison presented in Figs. 2, 3, and 4 and Tables 1 and 2, it can be concluded that the developed model
and solution procedure can accurately predict the dynamic response of BDFG beams subjected to a moving
load.

5 Results and discussion

In this Section, numerical results are presented to investigate the effect of the gradient indices in length and
thickness directions, velocity of the moving load, and excitation frequency on the dynamic response of simply
supported BDFG nanobeams exposed to a moving load. The influences of microstructure and surface energy
are considered. Unlike most of the existing models, the present model accounts for the exact location of the
physical neutral axis, and the gradation of Poisson’s ratio, material length scale parameter, residual surface
stress, two surface elastic constants, and surface mass density. The BDFG beam is made of a mixture of
aluminum (metal) and silicon (Si) materials. Young’s modulus, Poisson’s ratio, and the bulk mass density of
the metallic constituent are, respectively, Em � 90 GPa, νm � 0.23, and ρB

m � 2700 kg/m3, and of the ceramic
constituent are Ec � 210 GPa,νc � 0.24, and ρB

c � 2331 kg/m3, respectively, [111]. The surface residual
stress τ sm � 0.5689 N/m, surface elastic constants μs

m � –5.4251 N/m, λsm � 3.4939 N/m, and the surface
mass density ρs

m � 5.461 kg/m2 for the metallic constituent, while the corresponding values of the surface
parameters for the ceramic constituent are τ sc � 0.6056 N/m, μs

c � –2.7779 N/m, λsc � –4.4039 N/m, and
ρs
c � 3.1688 kg/m2, respectively, [70]. Since the value of the material length scale parameter (MLSP) differs

from a material to another, it is not reasonable to assume a constant MLSP in FGMs. Unfortunately, there is
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Fig. 4 Comparison of the dimensionless fundamental frequency of a simply supported BDFG microbeam based on MCST (lm� lc � 0.25h)

Fig. 5 Variation of the distances en and rn between the physical neutral and the midplane surfaces at different gradient indices

no available experimental data for the MLSP of Al/Si FGM, and therefore, the ratio of MLSP of silicon to that
of aluminum (lc/lm) is assumed [38, 66, 112]. The dimensions of the nanobeam are taken as h � 10 nm, b � h,
and L � 20 h. Also, the MLSP of the metal and ceramic phases is taken as lm � 2 h/3 and lc � 3 lm /4. All the
above-mentioned material and geometrical parameters are kept unchanged throughout the forthcoming results,
except other values are determined. Figure 5 shows the dependency of the distances indicating the location of
the physical neutral axis (en and rn) on the thickness and length gradient indices of the nanobeam.

The influence of the thickness and length gradient indices on the variation of the maximum normalized
dynamic deflection (dynamicmagnification factor) at the center of the simply supportedBDFGAl/Si nanobeam
versus the dimensionless velocity of the moving load is illustrated in Figs. 6 and 7, respectively. To clearly
explore the nonclassical effects due to the small-scale size, the present results are predicted based on the
classical “CL” formulation when l � 0 and τ s � μs � λs � ρs � 0, couple stress “CS” formulation in the
absence of the surface effect (τ s � μs � λs � ρs � 0), surface energy “SE” formulation when the couple
stress (microstructure) effect is ignored (l � 0), and full-nonclassical “CSSE” formulation which incorporates
the simultaneous effects of microstructure and the surface energy.

FromFigs. 6 and 7, it is depicted that themaximumnormalized dynamic deflection in the entire time history
both increases and decreases, it then increases to reach the peak value when the moving load velocity reaches
a certain value, and then after the maximum normalized dynamic deflection gradually decreases as the moving
load velocity increases [113]. The velocity at which the maximum normalized dynamic deflection attains its
peak value is referred to as the critical velocity of the BDFG beam [114]. At lower moving load velocities, the



On the dynamic response of bi-directional functionally graded nanobeams 3305

(a) (b) (c) (d)

Fig. 6 Variation of the maximum normalized dynamic deflectionwmax (L/2, t) for a BDFG beamwith velocity at different values
of kz (kx � 0.5)

(a) (b) (c) (d)

Fig. 7 Variation of the maximum normalized dynamic deflectionwmax (L/2, t) for a BDFG beamwith velocity at different values
of kx (kz � 0.5)

repeated increase and decrease of the maximum normalized dynamic deflection is due to the beam oscillations.
Regardless of the velocity and the gradient indices, incorporating the nonclassical effects significantly reduces
the predictedmaximum normalized dynamic deflection. The highest maximum normalized dynamic deflection
is associated with the classical elasticity-based formulation, followed with SE, CS, and CSSE formulations,
which is due to the stiffness-hardening effect because of the couple stress and surface energy.A stiffer nanobeam
resists a moving load better than a soft one. Generally, the trends of the maximum normalized dynamic
deflection-dimensionless moving velocity curves are independent of the gradient indices and the nonclassical
formulations.

Peak values of the maximum normalized dynamic deflections (w p) and their corresponding absolute and
dimensionless critical velocities (vp and v p, respectively) are provided in Table 3 at various values of the
gradient indices of the BDFG nanobeam and different formulations. It can also be discerned from Table 3
and Figs. 6 and 7 that increasing the gradation indices in thickness or length direction, kz or kx, respectively,
shows a considerable increase in the maximum normalized dynamic deflections, which is observed for CL, CS,
SE, and CSSE formulations. This is due to the fact that increasing kz and/or kx increases the volume fraction
of metal constituent, and thus the effective rigidity of the beam decreases. Additionally, the influence of the
gradient index in the length direction (kx ) on the dynamic response is much larger than that in the thickness
direction (kz). It is also depicted that the influence of the gradient indices is more pronounced when their values
are low. Keeping kx � 0.5, increasing kz from 0.0 to 1, shows an increase in w p by about 30.66, 17.78, 23.31,
and 15.72%, and a decrease in vp by 14.32, 10.06, 12.60, and 9.98% for CL, CS, SE, and CSSE formulations,
respectively, while increasing kz from 2 to 10 under the same conditions results in increasing w p by about
16.13, 11.74, 11.37, and 10.15% and reducing vp by 7.47, 6.56, 5.71, and 5.62% for CL, CS, SE, and CSSE
formulations, respectively. On the other hand, increasing kx from 0.0 to 1, while keeping kz � 0.5, increases
w p by 30.49, 16.311, 23.39, and 14.59% and reduces vp by 16.32, 10.17, 9.43, and 10.88%, while increasing
kx from 2 to 10 under the same conditions increases w p by 16.36, 12.63, 10.97, and 10.73% and reduces vp
by 7.12, 5.39, 5.08, and 5.52% for CL, CS, SE, and CSSE formulations, respectively.

Furthermore, the results presented in Table 3 and Figs. 6 and 7 reveal that there is a considerable influence
of the nonclassical microstructure and surface energy on the dynamic response of BDFG nanobeams. For the
BDFG nanobeam under investigation, the highest and lowest nonclassical effects are associated with the CSSE
and SE formulations, respectively. The maximum normalized dynamic deflections predicted using CS, SE, and
CSSE formulations are, respectively, 0.395, 0.751, and 0.35 times that predicted using CL formulation when
kx � 0.5 and kz � 1, and are, respectively, 0.382, 0.742, 0.338 when kx � 1 and kz � 0.5. Employing classical
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Table 3 Comparisons of the peaks of maximum normalized deflection at mid-spanw p of the simply supported BDFG nanobeam
and corresponding velocities at different gradation indices using various formulations

kx kz Classical elasticity-based
formulation (CL)

Couple stress-based
formulation (CS)

Surface energy-based
formulation (SE)

Couple stress-surface
energy-based formulation
(CSSE)

w p v p vp w p v p vp w p v p vp w p v p vp

0.5 0.0 0.7874 0.6000 245.4754 0.3453 0.6120 377.5568 0.6263 0.6080 269.9033 0.3111 0.5910 372.6303
0.25 0.8875 0.6020 229.5772 0.3683 0.6120 361.8032 0.6897 0.6110 254.8930 0.3298 0.5920 357.4308
0.5 0.9525 0.6030 220.4571 0.3848 0.6120 351.5030 0.7285 0.6100 245.8731 0.3429 0.5910 347.3973
1.0 1.0288 0.6030 210.3128 0.4067 0.6130 339.5827 0.7723 0.6080 235.9033 0.3600 0.5900 335.4288
2.0 1.1003 0.6040 201.9492 0.4303 0.6130 327.3499 0.8117 0.6080 228.0356 0.3782 0.5890 323.7702
10.0 1.2778 0.6100 186.8696 0.4808 0.6130 305.8685 0.9040 0.6130 215.0128 0.4166 0.5910 305.5893

0.0 0.5 0.8335 0.6180 244.5200 0.3574 0.6160 372.1133 0.6540 0.5840 251.8909 0.3207 0.6020 371.7068
0.25 0.7889 0.5950 240.7090 0.3503 0.6110 370.3795 0.6288 0.6140 268.6095 0.3147 0.5880 363.3613
0.5 0.9525 0.6030 220.4571 0.3848 0.6120 351.5030 0.7285 0.6100 245.8731 0.3429 0.5910 347.3973
1.0 1.0876 0.6030 204.6176 0.4157 0.6100 334.2554 0.8070 0.6010 228.1357 0.3675 0.5890 331.2782
2.0 1.2520 0.6080 190.6508 0.4570 0.6060 313.9429 0.8960 0.5980 213.4154 0.3998 0.5900 315.0682
10.0 1.4568 0.6180 177.0744 0.5147 0.6170 297.0249 0.9943 0.6080 202.5700 0.4427 0.5960 297.6802

Fig. 8 Variation of the maximum normalized dynamic deflection at mid-span with gradient indices at v � 0.1(a) CL (b) CS
(c) SE, and (d) CSSE formulation

Fig. 9 Variation of the maximum normalized dynamic deflection at mid-span with gradient indices at v � 0.6 (a) CL (b) CS
(c) SE, and (d) CSSE formulation

elasticity-based formulation yields a considerable underestimation of the critical velocity vp. However, the
impact of surface energy and couple stress on the dynamic response increases by increasing the bi-directional
gradient indices. Also, the effect of the thickness gradient index on the contribution of surface energy and/or
couple stress is slightly larger than that of the length gradient index.

For examining the mutual effect of the thickness and length gradient indices on the dynamic response of
a BDFG nanobeam under moving load in more detail, the maximum normalized dynamic deflection wmax
as a function of the gradation indices kx and kz is shown in Figs. 8, 9, and10 for three different dimension-
less moving load velocities, v � 0.1, 0.6, and 0.8, respectively. It is seen that as the gradient indices kx
and/or kz increase, wmax increases, regardless of the velocity of moving load and the formulation type. When
kx � kz � 0, the beam is made of purely ceramic “silicon”, and thus the beam attains its lowest dynamic
deflection, while the highest dynamic deflection is reached when kx � kz � 10 as the beam is almost pure
metal. Based on the results in Figs. 6, 7, 8, 9, and 10, it can be extracted that the dynamic response of a BDFG
nanobeam can be controlled by the selection of the gradient indices.



On the dynamic response of bi-directional functionally graded nanobeams 3307

Fig. 10 Variation of the maximum normalized dynamic deflection at mid-span with gradient indices at v � 0.8 (a) CL (b) CS
(c) SE, and (d) CSSE formulation

The influences of the bi-directional gradient indices kz and kx on the time history of the normalized dynamic
deflection at the nanobeam center w(L/2, t) are depicted in Figs. 11 and 12, respectively, for three different
values of the moving load dimensionless velocity v as well as different formulations. Table 4 records the
numerical values of the dimensionless central deflection of a simply supported BDFG nanobeam for different
values of the gradation indices and dimensionless velocities of the acting moving load. It is found that the
gradient indices, moving load velocity, and the employed formulation have a significant role in the dynamic
behavior ofBDFGnanobeams.Thegradation indices have a considerable influenceon the amplitudeof dynamic
deflection, but they slightly affect the curve shapes of the time histories, regardless of the adopted formulation.
It is indicated that the moving load velocity has a significant impact on the dynamic deflection response, and
low velocities of the travelling load increase the number of vibration cycles of a BDFG nanobeam, which is
attributed to the low ratio of the moving load velocity to the critical velocity.

Figure 13 demonstrates the variations of the normalized dynamic deflection at the center of a simply
supported BDFG nanobeam versus the dimensionless velocity of acting moving load and dimensionless time
for kx � kz � 1. Various formulations are presented to show the influence of microstructure and surface energy
on the predicted dynamic deflection. It is observed that the inclusion of couple stress and/or surface energy
considerably decreases the predicted dynamic deflection during the time interval regardless of the moving load
velocity. EmployingCSSE formulation gives the smallest normalized dynamic deflection, whereas the classical
formulation gives the largest one. For the different formulations, it is depicted that a faster moving load, i.e.,
higher moving velocity, takes less traveling time, and thus the BDFG nanobeam exhibits low fluctuations, and
these fluctuations are almost not obvious the dimensionless velocity approaches 0.6.

The relation between the maximum normalized dynamic deflection at the mid-span of a BDFG nanobeam
and the dimensionless velocity ofmoving load is shown in Fig. 14 at different values of the excitation frequency
ratio, i.e., r� � � f /ω1, of 0.1, 0.2, and 0.4. The gradation indices are fixed at kx=kz=1. For the classical and
nonclassical formulations, it is obvious that while the dimensionless velocity increases, the trends of the
dynamic deflection versus the dimensionless time are not influenced for different values of the excitation
frequency ratio. Also, as the excitation frequency ratio increases, the peak value of the maximum normalized
dynamic deflection and its corresponding dimensionless velocity are remarkably increased. Figure 15 presents
the variation of the maximum normalized dynamic deflection with the excitation frequency for different
gradient indices of a BDFG nanobeam employing various formulations. The dimensionless moving velocity
is kept constant at v� 0.2. It is noticed that the maximum dynamic deflection reaches its peak value at some
value of the excitation frequency, which is the fundamental frequency of the BDFG nanobeam. It is noted that
the fundamental frequency of the BDFG nanobeam reduces by increasing the gradation indices kx and kz . On
the other hand, increasing the gradation indices yields a remarkable increase in the predicted peak values of
the deflection curves, for both classical and nonclassical formulations. Inclusion of the microstructure and/or
surface energy effects significantly reduces the maximum dynamic deflection and increases the fundamental
frequency.

The required time for themoving load to reach the right end of the nanobeam, i.e., xp � L , is t∗ � π/(vω1),
and the corresponding load becomes P(t∗) � P0sin(πr�/v), where r�/v represents the dimensionless time
taken by the moving load to move across the entire nanobeam, Zhang and Liu [103]. In this regard, consider a
BDFG nanobeamwith kx � 1 and kz � 1 and subjected to a moving load with a dimensionless moving velocity
of v � 0.2. The time-history of the normalized dynamic deflection at the mid-span of the nanobeam is provided
in Figs. 16 and 17 for, respectively, r� ≤ 0.2 and r� ≥ 0.2. When r� ≤ 0.2, it is depicted from Fig. 16 that
lower values of the excitation frequency ratios lead to lower values of the amplitudes of the dynamic deflections
at the mid-span of the BDFG nanobeam. On the other hand, when r� > 0.2, the resonance phenomenon is
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(a) (b) (c)

Fig. 11 Variation of the dimensionless deflection at mid-span over time for a BDFG beam based on different models and different
kz (kx � 0.5) for (a) v � 0.1, (b) v � 0.4, and (c) v � 0.8
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(a) (b) (c)

Fig. 12 Variation of the dimensionless deflection at mid-span over time for a BDFG beam based on different models and different
kx (kz � 0.5) for (a) v � 0.1, (b) v � 0.4, and (c) v � 0.8
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Fig. 13 Variation of the maximum normalized dynamic deflections at the center of the beam versus time at different velocities
of the moving load at kz � 1, kx � 1

(a) (b)

(c) (d)

Fig. 14 Variation of the maximum normalized dynamic deflections at the center of the beam versus dimensionless velocity of
the moving load at different excitation frequencies and kz � 1, kx � 1 (r� � �f/ω1)

observed when the fundamental frequency of the considered BDFG nanobeam equals the excitation frequency
of the applied moving load, i.e., r� � � f /ω1 � 1. Therefore, the normalized mid-span dynamic deflection
reaches it largest value in the resonance case. As the excitation frequency ratio increases more than 1, i.e.,
the fundamental frequency of the beam is lower than the excitation frequency of moving load, the periodic
load decreases, and consequently, the amplitude of the dynamic deflection significantly decreases. When the
excitation frequency ratio approaches 3, the periodic load is about zero, and thus, the dynamic deflection is
almost vanishing.
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(a) (b)

(c) (d)

Fig.15 Variation of maximum normalized deflection at mid-span versus the excitation frequency (moving load frequency) at
different values of the gradient indices (v � 0.2)

Fig. 16 Variation of the maximum normalized dynamic deflections at the center of the beam versus time at different frequencies
of the moving load at kz � 1, kx � 1 (r� � � f /ω1 ≤ 0.2, v � 0.2)

6 Conclusions

In the presentwork, the dynamic response of bi-directional FGnanobeams acted upon by amoving concentrated
harmonic load is investigated. A new nonclassical beam model is developed in the framework of higher-order
shear deformation beam theory in conjunction with the modified couple stress theory and the Gurtin–Murdoch
surface elasticity theory. The proposed model accounts for the bi-directional gradation of the material length
scale parameter to capture the microstructure effect as well as the bi-directional gradation of the surface
residual stress, two surface lamé constants, and the surface mass density to include the surface energy effect.
Introducing the physical neutral plane concept, the equations ofmotion are derived using Lagrange’s equations.
In the solution procedure, the trigonometric Ritz method is employed, and the dynamic response in the time
domain is obtained by Newmark method. An extensive numerical parametric study is performed to examine
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Fig. 17 Variation of the maximum normalized dynamic deflections at the center of the beam versus time at different frequencies
of the moving load at kz � 1, kx � 1 (r� � � f /ω1 ≥ 0.2, v � 0.2)

the influence of some key parameters such as the gradation indices in thickness and length directions, moving
load velocity, and the excitation frequency on the dynamic response of a simply supported BDFG nanobeam
using the four different formulations. Some important conclusions can be summarized as follows:

• The dynamic deflection employing the nonclassical formulations is considerably smaller than that predicted
by the classical formulation, regardless of the gradient indices, due to the stiffening induced by surface
energy.

• The normalized dynamic deflection and the maximum deflection are significantly increased as the gradation
indices increase, whereas the corresponding velocity is considerably decreased.

• Incorporating the nonclassical surface energy and/or microstructure effects reduces the influence of the
gradient indices.

• The influence of the gradient index in thickness direction on the dynamic response is slightly lower than
that in the length direction.

• As the velocity of moving load increases, the predicted normalized maximum dynamic deflection increases
first and then decreases as the velocity becomes larger than its critical value.

• Increasing the velocity of the applied moving load reduces the number of the dynamic vibration cycles,
whereas the number of the vibration cycles is almost unaffected by the gradient indices and the nonclassical
contribution.

• The predicted dimensionless mid-span deflection of a BDFG nanobeam value is increased as the excitation
frequency increases and reaches its peak value as the fundamental frequency of a BDFG nanobeam equals
the excitation frequency.
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