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Abstract In the present contribution, we develop a mixed finite element method capable of the coupled multi-
field simulation of a viscous fluid actuated by a piezoelectric resonator. Several challenges are met with in
this setting, among which are the necessity of correct interface coupling, near incompressibility of the fluid,
adverse geometric dimensions of flat piezoelectric transducers and different length scales of shear and pressure
wave. Assuming small deformations and velocities, we present a mixed variational formulation with consistent
interface coupling conditions in (mechanic) frequency domain. Both fluid and piezoelectric solid domain are
discretized using Tangential-Displacement Normal-Normal-Stress elements. These elements model not only
the deformation, but add an independent tensor-valued stress approximation. The method has been rigorously
proven to be free from shear locking for flat prismatic or hexahedral elements. Thus, modeling of the flat
geometry of piezoelectric resonators as well as resolution of the fastly decaying shear wave are facilitated.
To circumvent the problem of volume locking due to the near incompressibility of the fluid, an additional
independent pressure field is introduced. We present computational results indicating the capability of the
method.

1 Introduction

The methods discussed here are exemplarily applied to the analysis of a so-called thickness shear mode
resonator, which is essentially a piezoelectric quartz disk (typically with a diameter in the 1cm range and a
thickness of a few hundred microns), which is provided with electrodes on both faces of the disk such that,
due to the piezoelectric effect, an applied AC voltage excites mechanical shear vibrations, which, at certain
frequencies, excite resonant thickness shear modes in the disk. The shear (in-plane) excitation is achieved
by using a properly cut crystal featuring the required orientation of the piezoelectric tensor to facilitate this
excitation. The in-planemovement at the surface is particularly attractive for the application of such devices for
sensing mass deposition on the faces of the disk when immersed in liquid environments, since, for low-viscous
fluids, the in-planemotion virtually does not excite acousticwaves in the fluid such that the characteristics of the
device are hardly affected by the liquid [11]. Themass deposition can be stimulated by attaching interface layers
attracting particular species (molecules) in the fluid. The sensitivity of the resonator’s resonance frequency
to mass depositions leads to the name quartz crystal microbalance [31]. On the other hand, if the fluid is
viscous, the resonator is affected by the surrounding fluid by virtue of viscous fluid entrainment leading to
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the excitation of attenuated shear waves in the fluid, which can be used to sense the viscosity of the liquid as
it affects the resonance frequency as well as the Q-factor of the resonance. The effect can be evaluated using
a simple 1D-model [16], which is justified by the fact that the diameter of the disk is comparatively large to
the characteristic length dimensions involved with the viscous entrainment, particularly the penetration depth
of the shear wave. The non-uniform distribution of the in-plane vibration amplitude across the surface leads
to spurious excitation of pressure waves in compressible fluids, which is often negligible. Even though the
amplitude of these spurious waves is generally small, these effects can become important if resonances by
means of reflections in the environment occur which is possible since these waves, albeit small in amplitude,
are much less attenuated than the aforementioned shear waves. These effects have been analyzed using semi-
numerical methods, see, e.g., [3,15]; the method itself is, e.g., described in [10,37]. The modeling using finite
element approaches has been applied (see, e.g., [9]) but, to our knowledge, has not yet been reported with
respect to spurious pressure wave excitation since, due to the very different length dimensions associated with
the problem (typical numbers disk size ∼ 10 mm, penetration depth shear wave ∼ 1 µm, penetration depth
pressure waves > 10 mm), a very large number of elements would be required to mesh the entire region
of interest with sufficient accuracy. The method presented in the following resolves these issues making the
problem accessible also for a finite element-based approach.

Within this contribution, we propose an efficient simulation strategy for the coupled problem of a viscous
fluid under piezoelectric actuation. Small velocities within the fluid domain as well as negligibility of elec-
trodynamic effects at the frequencies of interest are assumed throughout this publication. Still, a number of
difficulties are met. Among them are not only the necessity of multi-physics coupling through the domain
interface, but also the highly anisotropic geometry ratio of the actuator, the near incompressibility of the fluid,
and the different length scales of shear and pressure waves. Both the anisotropic geometry of the thin piezo-
electric actuators and the necessity to resolve the rapidly decaying shear wave near the actuator surface make
finite element discretization with flat, prismatic or hexahedral elements advisable. However, it is well known
that conventional finite element methods fail as the element aspect ratio approaches the necessary value of
1:1000. Shear locking leads to an overestimation of the bending energy, thereby prohibiting certain deforma-
tions. Additionally, the near incompressibility of the fluid needs to be considered when choosing finite element
approximations for the fluid domain.

Mixed finite element methods have long been developed as a superior choice in the discretization of prob-
lems involving adversematerial or geometry features. It is well known, however, that a careful design following
mathematical analysis is necessary to secure stable behavior of the method. Displacement-pressure elements
for the Stokes problem alleviating volume locking in the incompressible limit have, e.g., been introduced
by Taylor and Hood [36] or Arnold, Brezzi and Fortin [2]. Gopalakrishnan et al. [7] and recently Lederer
[13] developed different mixed formulations for solving the Stokes problem. Both introduce the pressure as
independent variable and solve for the flow potential. Certain mixed methods for linear elastic or piezoelec-
tric solids have also, at least empirically, been shown to deliver adequate results as the element aspect ratio
decreases. We cite hybrid stress elements as introduced by Sze and co-workers [34,35], and elements based
on multi-field formulations as described by Klinkel and Wagner [12] or Ortigosa and Gil [24]. The smoothed
finite element method (SFEM) is another hybrid technique applied in the context of smart material simulation,
see [14,23] and the overview article [41].

Pechstein and Schöberl [25] introduced a mixed finite element method of arbitrary interpolation order
for linear elasticity. The Tangential-Displacement Normal-Normal-Stress (TDNNS) method uses tangential
displacements and normal components of the stress vector as degrees of freedom. The method has been shown
to be free of shear locking effects [26], which makes it especially well suited for the discretization of thin
layered structures as appearing in integrated piezoelectric actuators [17,18,27].

General applicability of the TDNNS method for nearly incompressible materials has been analyzed rigor-
ously in [33]. There, adding a consistent stabilization term is suggested for triangular and tetrahedral elements.
More recently, Neunteufel [21] proposed a different approach for the geometrically nonlinear case, where
additional unknowns resembling pressure and change of volume are discretized. In this contribution, we pro-
pose to use displacements, stresses, and a scalar pressure field as independent unknowns. This leads to a
mixed formulation with traits from the mixed TDNNS as well as displacement-pressure formulations for the
Stokes problem. A hybridization technique allows to eliminate all stress, and pressure unknowns by static
condensation. The resulting stiffness matrix is—in the linear elastic regime—symmetric positive definite.

This contribution is organized as follows: In Sect. 2, the governing partial differential equations and
constitutive laws for fluid andpiezoelectric solid domain are collected.Variational formulations in the frequency
domain are developed, and interface and boundary conditions are discussed. Section 3 presents the finite
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elements proposed for the two domains.Hybridization and other implementational issues are discussed. Finally,
we present computational results for a viscous fluid under actuation from a circular piezoelectric transducer
in Sect. 4.

2 Theory

The focus of this work is to develop a mixed finite element formulation for viscous fluids and piezoelectric
solids in the acoustic regime, such that subsequent coupling of the two physical domains through their common
interface is facilitated. In the sequel, the partial differential equations governing the (acoustic) flow in viscous
fluids as well as equations for piezoelectric solids in the linear regime are summarized. Furthermore, we devise
interface conditions for their mutual coupling.

In the sequel, we assume Ω ⊂ R
3 to be the domain of interest, which contains in part the piezoelectric

solid, in part the viscous fluid. We denote this spatial splitting by Ω = Ωp ∪ Ωv with Ωp ∩ Ωv = ∅, using
Ωp for the piezoelectric solid and Ωv for the domain of the viscous fluid. We define their common interface
by Γi = ∂Ωp ∩ ∂Ωv .

2.1 Balance equations for viscous fluids

We are interested in the velocity field v in a general compressible and viscous fluid in the domain Ωv with
boundaries Γv = ∂Ωv . The conservation of mass in fluids is given by

∂ρ

∂t
+ div(ρv) = 0 (1)

with ρ denoting the density of mass. The conservation of momentum reads

ρ
∂v
∂t

+ ρ(v grad)v = ρk + divT, (2)

with the body force per unit mass k and the Cauchy stress tensor T. As we focus on acoustic effects only, it is
justified to assume the velocity v to be a small perturbation around a vanishing hydrodynamic velocity. As a
consequence, we identify spatial and material points, which enables the definition of a displacement vector u.
Velocity and displacement are related via derivation by time,

v = ∂u
∂t

. (3)

Under this assumption of small velocities, the convective terms in (2) can be neglected, which leads to the
linearized mechanical balance equation

ρ
∂v
∂t

= f + divT, (4)

with acting forces per unit volume f = ρk. According to Filippi et al. [6], we introduce the static pressure p
as well as the viscosity stress tensor σ and rewrite the Cauchy stress tensor

T = σ − pI, (5)

with I denoting the unit tensor. The constitutive equations for Newtonian fluids connect the strain rate tensor
Dv = 1

2 (∇v + ∇vT ) with the viscous stress tensor

σ = λB tr(Dv) + 2μDv =: Cv : Dv, (6)

with μ the (first) viscosity coefficient and λB the second viscosity coefficient. In analogy to the constitutive
equations for linear elastic solids, we implicitly defined the tensor of viscosity Cv . Often, the constitutive
equations are cited using the bulk viscosity μB = λB + 2/3μ as second material parameter,

σ = μB tr(Dv) + 2μ dev(Dv). (7)
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Note, that as tr(σ ) �= 0 the viscosity stress tensor is not introduced as a deviatoric tensor, which furthermore
implies tr(T) �= −3p .

The constitutive equation for the pressure is introduced via the speed of sound c [32,39],

c2 =
(

∂p

∂ρ

)
s
, (8)

where the subscript ( )s denotes adiabatic changes of state. The compressibility modulus Ks is defined via the
Newton–Laplace relation

c = √
Ks/ρ. (9)

In acoustic flows, pressure and density may be assumed as infinitesimal perturbations pe and ρe of constant,
static values of state p0 and ρ0,

ρ =ρ0 + ρe, |ρe| 	 |ρ0|, (10)

p =p0 + pe, |pe| 	 |p0|. (11)

In the examples, we have T · n = 0 on some parts of the boundary. This necessarily implies p0 = 0. Inserting
these assumptions into (8) leads in combination with (9) to the relation

pe = Ks

ρ0
ρe. (12)

We substitute the assumption of small-density perturbations (10) and small velocities in the equation of mass
balance (1) and find

∂ρe

∂t
+ div(ρ0v) = 0. (13)

Integration by time on both sides together with (12) leads to the constitutive equation for the pressure

pe = −Ks div u. (14)

At this point, we mention that a linear relation between dilatation div u and pressure p may also be assumed a
priority for barometric fluids as it is done, e.g., in [42]. Summing up, the constitutive equations for the Cauchy
stress tensor now read

T = Ks div u I + Cv : Dv. (15)

2.2 Balance equations for piezoelectric solids

Below, we summarize balance and constitutive equations for piezoelectric solids. For a detailed introduction,
we refer the interested reader to themonograph [40]. LetΩp denote the domain associatedwith the piezoelectric
solid. In addition to the displacement field u, we are interested in computing the electric field E. We assume
to stay in the linear regime of small deformations and electric fields, such that we may use Voigt’s theory of
linear piezoelasticity [38].

If each part of Ωp is simply connected, Faraday’s law in the electrostatic regime ensures that the electric
field is a gradient field, connected to the electric potential φ via E = −∇φ. Its work conjugate is the dielectric
displacement D. Moreover, due to the assumption of small deformations, it is justified to use the linearized
strain tensor ε given by

ε = 1

2
(∇u + ∇uT ) (16)

as work conjugate of the total stress tensor T. Voigt’s theory of linear piezoelasticity postulates a linear
relationship between mechanical stresses T and electric field E as well as strain ε and dielectric displacement
D, which is usually cited in the form
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ε = SE : T + dT · E,

D = d : T + εT · E.
(17)

Above,SE denotes themechanical compliance tensormeasured under constant electric field, εT is the dielectric
permittivity tensor at constant stress, and d is the piezoelectric tensor which describes the electromechanical
coupling.

In correspondence with our notations in the fluid domain, we denote external body loads by f . Concerning
electric loads, we assume that the interior of the non-conducting piezoelectric body is devoid of free charges.
Under these assumptions, the mechanical balance equation in solids and Gauss’ law of zero charges read in
differential form

ρ
∂2u
∂t2

− divT = f, − divD = 0. (18)

Together, (17) and (18) yield a system of partial differential equations to be satisfiedwithin the piezoelectric
domain Ωp.

2.3 Harmonic excitation

We consider time-harmonic processes with excitation signals of general form,

g(x, t) = Re
{
ḡ(x)e jωt

}
. (19)

Here, ḡ depends only on the spatial coordinate x, ω is the angular frequency, and j = √−1 is used to denote
the imaginary unit. A linear partial differential equation thus allows for a time-harmonic displacement ansatz

u(x, t) = Re
{
ū(x)e jωt

}
. (20)

Having simplicity of notation in mind, we will omit this exact notation in the following, writing, e.g., u instead
of ū for the time-harmonic displacement field. The velocity is given by v = jωu. The strain rate tensor Dv is
connected to the linearized strain tensor in the same manner, as Dv = ε̇ = jωε.

We are interested in computing the displacement, respectively, velocity field in the fluid as well as the
piezoelectric solid part. The electric potential is considered as unknown field in the piezoelectric solidΩp only.
Thereby we neglect all effects of the electric field within the viscous fluid or the surrounding air. Moreover,
within the fluid domain Ωv pressure perturbations pe are of interest. Given the static density ρ0, density
perturbations ρe can then be evaluated by (12). To simplify notation, we will omit all indices and use p = pe
to denote the pressure perturbation and ρ = ρ0 for the static density.

Inserting the time-harmonic ansatz (20) into (4) and (15) the balance and constitutive equation in the fluid
domain Ωv read

−ρω2u − div(−pI + σ ) = f,
−p − Ks div(u) = 0,

−σ + jωCv : ε = 0,

⎫⎪⎬
⎪⎭ in Ωv. (21)

A more general derivation of a formulation for harmonically excited viscoelastic materials can be found
in [8, p.188ff]. In the sequel, the pressure p and the viscous stresses σ will be used as independent variables
in the numerical discretization.

For the piezoelectric solid domain Ωp, the following system of partial differential equations for unknown
displacement u, electric potential φ, and total stresses T is obtained,

−ρω2u − div(T) = f,

ε − SE : T + dT · ∇φ = 0,

− div(d : T − εT · ∇φ) = 0,

⎫⎪⎬
⎪⎭ in Ωp. (22)
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2.4 Boundary and interface conditions

In addition to the partial differential equations (21), boundary conditions on Γ = ∂Ω as well as interface
conditions on the common interface Γi of piezoelectric solid and fluid have to be defined. For the sake of
immediate readability, we introduce only the most basic cases below, such as zero displacement conditions or
external forces. More advanced settings including absorbing boundary conditions are discussed in Sect. 4.1.2.

We first consider the boundary of the viscous fluid Γ ∩ ∂Ωv . To model zero surface velocities v = 0 on the
boundary part Γv,u, the displacement u is prescribed as zero. Then, this condition coincides with the standard
condition on clamped solid surfaces Γp,u ⊂ Γ ∩ ∂Ω , such that

u = 0 on Γu = Γv,u ∪ Γp,u. (23)

Surface tractions and pressures t0 on piezoelectric as well as fluid domain boundaries are prescribed via

T · n = t0 on ΓT = Γv,T ∪ Γp,T. (24)

Note that this includes free boundaries by setting t0 = 0. Last, on the common interface Γi , continuity of
displacement, respectively, velocity and surface stresses has to be assumed,

u|Ωv = u|Ωp and (T|Ωv) · nv + (T|Ωp ) · np = 0 on Γi . (25)

Here we used nv and np as the outer unit normals of Ωv and Ωp, respectively. On the common interface, we
have nv = −np.

On the boundary of piezoelectric domains, ∂Ωp, additionally electrical boundary conditions are given. On
a non-vanishing part of the boundary Γφ , the electric potential is prescribed,

φ = φ0 on Γφ. (26)

This condition models an electrode with given applied potential. On the remaining boundary, ΓD = ∂Ωp\Γφ ,
surface charges ρe

0 are given

D · n = ρe
0 on ΓD. (27)

This includes the case of insulated boundaries when setting ρe
0 = 0 and is used as a boundary condition toward

the surrounding air.

3 Discretization with mixed finite elements

In this Section, we briefly introduce the Tangential-displacement normal-normal-stress (TDNNS) finite ele-
ment method for linear elasticity, to follow up with a formulation for nearly incompressible materials introduc-
ing an independent variable for the pressure. Finally, the extension of TDNNS method to linear piezoelectric
materials is summarized. For more detailed descriptions and analyses, we refer to the works of Pechstein et
al. [25,26,28] for the linear elastic case. Piezoelectric problems are treated in [17,27].

As a prerequisite, we introduce some notation on normal and tangential components of vector and tensor
fields. On a (boundary) surface with (outer) unit normal vector n, a vector field a can be split into a normal
component an = a ·n and a tangential component at = a− ann. Tensor fields B such as the stress field have a
well-defined surface vector bn on any (boundary) surface, which is obtained by multiplication with the normal
vector, bn = B · n. This surface vector can again be decomposed into its normal component bnn = (n · B) · n
and its tangential component bnt = bn − bnnn.

Let T = {T } be a finite element mesh subdividing the domain of interest Ω into finite elements of
tetrahedral, prismatic or hexahedral form. Furthermore, the finite element mesh T = Tv ∪ Tp shall respect
the subdivision into a viscous fluid and piezoelectric solid part. The outer unit normal on element or domain
boundaries shall be denoted by n without any index if the domain is clear from the context.
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3.1 The TDNNS method for linear elastic solids

The TDNNS finite element method for linear elastic solids is a mixed finite element method with independent
approximations for displacements u and stresses T. It is based on a generalized form of Reissner’s principle
(see (29)), but uses the tangential displacement ut and the normal component of the normal stress vector tnn
as degrees of freedom. Accordingly these quantities are continuous across element interfaces. Note, that the
normal displacement un is discontinuous, and gaps may arise between the elements.

Tangentially continuous elements were first introduced by Nédélec [19,20] in the context of finite element
methods for Maxwell’s equations. Within the TDNNS method, it is proposed to use these elements originally
designed for the vector potential of the magnetic flux density to represent the displacement. For the stresses,
tensor-valued elements with normal-normal continuity were presented in [17,25,26]. To follow the deductions
below, a detailed knowledge of implementational issues surrounding these choices is not mandatory, we refer
the interested reader to the contributions cited above and also [28] for further stability results.

The mixed finite element method is based on the following Reissner-type variational formulation: find u
and T piecewise polynomial on the finite element mesh T satisfying continuity conditions:

ut and tnn are continuous at element interfaces, (28)

and the essential boundary conditions ut = 0 on Γu and tnn = t0,n on ΓT, respectively, such that

−
∫

Ω

T : S : δT dΩ + 〈ε(u), δT〉 + 〈ε(δu),T〉 =
∫

Ω

f · δu dΩ +
∫

ΓT

tnt · δut dΓ, (29)

for all admissible virtual displacements δu and virtual stresses δT. Note that, in the above context, admissible
virtual displacements and stresses satisfy the respective continuity conditions (28) and also the homogeneous
essential boundary conditions, i.e., δut = 0 on Γu and δtnn = 0 on ΓT. For the exact choices of polynomial
ansatz functions, we refer to [17,25,26] for the various element types.

As a consequence of the discontinuous displacement field, the strain only exists in distributional sense.
While the elastic work pair is usually defined in the sense of the Lebesgue integral

∫
Ω

ε(u) : T dΩ for
weakly differential displacements, the duality product 〈ε(u),T〉 has to be considered. This duality product is
well-defined in infinite-dimensional Sobolev spaces as well as for finite element functions [28]. For piecewise
smooth finite element functions, T and u satisfying (28) the duality product can be evaluated by

〈ε(u),T〉 =
∑
T∈T

( ∫
T
T : ε(u) dΩ −

∫
∂T

tnnun dΓ
)

(30)

=
∑
T∈T

(
−

∫
T
divT · u dΩ +

∫
∂T

tnt · ut dΓ
)

= −〈divT,u〉. (31)

The equivalence of (30) and (31) can be shown by integration by parts on each element. For more detailed
explanations as well as for inhomogeneous boundary conditions, we refer to [25,26,28].

In [22,33], a hybridization technique is proposed and analyzed for the geometrically linear and nonlinear
case, respectively. It has been shown that the proposed hybridization improves the condition of the assembled
stiffness matrix, and (for linear elastic problems after static condensation of the stresses) leads to a symmetric
positive definitive system matrix. In this hybridization approach, the normal–normal continuity of the stress
tensor is broken and imposed by Lagrangian multipliers defined on the element interfaces. These Lagrangian
multipliers resemble the normal displacementun as is detailed below. If theLagrangianmultipliers are chosen of
the same polynomial order as the normal-normal component of the stress tensor, the original and the hybridized
system are equivalent. As the stresses are then purely local not explicitly satisfying the inter-element continuity
constraint (28), these unknowns can be eliminated element by element in a static condensation procedure.

The Lagrangian multiplier λ is a vector valued finite element function defined uniquely on the element
(inter-)faces pointing into the normal direction (λ × n = 0). The according finite element space can be
implemented by using a facet space equipped with a normal vector [4,21,22]. The hybridized variational
problem reads: find u, T, and λ, with u and λ satisfying the essential boundary conditions ut = 0 and λn = 0
on Γu such that
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−
∫

Ω

T : S : δT dΩ + 〈ε(u), δT〉 + 〈ε(δu),T〉 +
∑
T∈T

∫
∂T

λn δtnn dΓ

+
∑
T∈T

∫
∂T

δλn tnn dΓ =
∫

Ω

f · δu dΩ +
∫

ΓT

(t0,t · δut + t0,n δλn) dΓ (32)

for all admissible virtual displacements δu, admissible δλ, and all δT. The continuity constraint (28) on δT is
dropped in this formulation. Also all stress boundary conditions on ΓT are now natural boundary conditions
appearing as virtual work of external forces. Note that only the normal component of λn = λ · n enters into
the variational formulation.

We provide a short justification of the above variational Eq. (32). Considering the virtual work of the
stresses δT, after reordering the element-wise integrals of the duality product 〈ε(u), δT〉 given in (30), we
obtain

∑
T∈T

(∫
T
(−T : S + ε(u)) : δT dΩ −

∫
∂T

(un − λn)δtnn dΓ

)
= 0. (33)

We thereby recover the constitutive equation T : S = ε in weak form. Normal displacement un and the
Lagrangian multiplier component λn are identified.

Reordering and summing up the remaining terms in the variational formulation (32), this time using the
second line (31) to express the virtual work of elastic forces, leads to

∑
T∈T

(
−

∫
T
(divT + f) · δu dΩ +

∫
∂T

(tnt · δut + tnn δλn) dΓ

)

=
∫

ΓT

(t0,t · δut + t0,n δλn) dΓ.

(34)

Thus, equilibrium is recovered in weak sense. The (continuous) virtual tangential displacement δut acts as
a Lagrangian multiplier for continuity or boundary values of tnt , while δλn ensures continuity or boundary
conditions of tnn exactly.

The discussed hybridization technique will be crucial for the following deductions. Finally we want to
mention that Pian’s method of assumed stresses [29] can be seen as a similar approach as the TDNNS method
in combination with hybridization.

3.2 TDNNS for nearly incompressible fluids

In this Section, a finite element formulation for harmonically excited nearly incompressible fluids is derived,
where the pressure and the viscosity stress tensor are treated as independent variables. In order to get a
variational formulation, the set of Eq. (21) for viscous fluids is rewritten in the form

− ρω2u − div(−pI + σ ) = f, (35)

− p

Ks
− div(u) = 0, (36)

ε − 1

jω
Sv : σ = 0, (37)

with Sv = (Cv)−1. In analogy to the discussed hybridization technique, the normal continuity of the total stress
vector tnn = σnn − p and the boundary condition tnn = σnn − p = t0,n on ΓT are imposed by Lagrangian
multipliers,

∑
T∈Tv

∫
∂T

(σnn − p) δλn dΓ =
∫

ΓT

t0,n δλn dΓ. (38)
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Multiplying the constitutive equation for the pressure (36) by a piecewise smooth (polynomial) but discon-
tinuous virtual pressure and integrating over Ωv yields

−
∫

Ω

1

Ks
pδp dΩ −

∑
T∈Tv

∫
T
div u δp dΩ = 0. (39)

Element-wise integration by parts and replacing un by λn leads to

−
∫

Ω

1

Ks
pδp dΩ +

∑
T∈Tv

⎛
⎜⎝

∫
T
u · grad δp dΩ −

∫
∂T

un︸︷︷︸
=λn

δp dΓ

⎞
⎟⎠ = 0. (40)

Next, we pay attention to the balance Eq. (35). Multiplication by an admissible virtual displacement δu
satisfying (28) and using the algebraic identity divT = − grad p+div σ as well as the duality product identity
(30)–(31) gives

−
∫

Ω

ρω2u · δu dΩ + 〈ε(δu), σ 〉 +
∑
T∈Tv

∫
T
grad p · δu dΩ =

∫
Ω

f · δu dΩ +
∫

ΓT

t0,t · δut dΓ. (41)

Last, the constitutive equation for the viscosity stress tensor (37) ismultiplied by a virtual viscosity stress δσ
which is piecewise smooth (polynomial) but not satisfying any continuity assumptions or boundary conditions.
In analogy to (33), the following variational equation is obtained:

∑
T∈Tv

(∫
T
( jω−1σ : Sv + ε(u)) : δσ dΩ −

∫
∂T

(un − λn)δσnn dΓ

)
= 0. (42)

Summing up Eqs. (38), (40), (41) and (42) and reordering terms, we arrive at the following structurally
symmetric variational problem: find u, σ , p, and λ satisfying the essential boundary conditions ut = 0 and
λn = 0 on Γu, respectively, such that

−
∫

Ω

ρω2u · δu dΩ +
∫

Ω

jω−1σ : Sv : δσ dΩ + 〈ε(δu), σ 〉 + 〈ε(u), δσ 〉

−
∫

Ω

1

Ks
pδp dΩ +

∑
T∈Tv

∫
T
(grad p · δu + grad δp · u) dΩ

+
∑
T∈Tv

∫
∂T

(
(σnn − p)δλn + (δσnn − δp)λn

)
dΓ

=
∫

Ω

f · δu dΩ +
∫

ΓT

(t0,t · δut + t0,n δλn) dΓ (43)

for all admissible virtual quantities δu, δσ , δp, and δλ. By admissible,wemean that δu is tangentially continuous
as in (28), δλ is unique and pointing in normal direction on each element interface, and δut = 0, δλn = 0 on
Γu. The virtual stress quantities δσ and δp do not satisfy any continuity or boundary conditions.

3.3 TDNNS for linear piezoelectric materials

In this Section, we briefly summarize the derivation of a mixed variational formulation for piezoelectric
materials, which is shown in detail in [17,27].

Multiplying Eq. (22), with a virtual displacement δu, Eq. (22) with a virtual stress δT and Eq. (22) with a
virtual electric potential δφ, and integrating overΩp, a variational formulation is obtained. Standard continuous
elements (e.g., nodal elements) are chosen for the electric potential. After stress hybridization, the following
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problem is obtained: find u, T, λ, and φ satisfying the essential boundary conditions ut = 0, λn = 0 on Γu
and φ = φ0 on Γφ such that

−
∫

Ω

ω2u · δu dΩ −
∫

Ω

(SE : T − dT · ∇φ) : δT dΩ + 〈ε(u), δT〉 + 〈ε(δu),T〉

+
∫

Ω

(d : T − εσ · ∇φ) · ∇δφ dΩ +
∑
T∈Tp

∫
∂T

(
tnn δλn + δtnn λn

)
dΓ

=
∫

Ω

f · δu dΩ +
∫

ΓT

(t0,t · δut + t0,n δλn) dΓ,

(44)

for all admissible virtual quantities δu, δλ, δT, and δφ. Here, we mean by admissible that δu satisfies the
tangential continuity assumption (28), δλ is unique on element interfaces pointing in normal direction, on the
clamped boundary δut = 0, δλn = 0 on Γu, and the δφ is continuous with δφ = 0 on Γφ . There are no
boundary or inter-element continuity constraints assumed on δT.

4 Examples

This Section is dedicated to the presentation of computational results. We present results from two different
computations concerning the problem of viscosity measurements by piezoelectric actuation. To this end, a
piezoelectric circular AT-quartz resonator is applied to the surface of the fluid of interest and actuated in shear
mode. The resonance frequency of these quartz actuators is slightly reduced due to liquid loading. The decline
of the resonance frequency is a measure for the viscosity coefficient. In our numerical results, we aim at
computing the frequency response of the resonator when applied to fluids of different viscosity.

Within the first example, a simplified setting is considered, where the quartz resonator is modeled via the
boundary condition. For this case, analytic solutions obtained by Beigelbeck and Jakoby [3] are available. We
compare our results to their solution. In the second example, the piezoelectric resonator is modeled by a finite
element discretization, and the two computational domains (piezoelectric solid and viscous fluid) are coupled
as described above. The frequency response for fluids of different viscosity is computed. All computations are
carried out in the framework of the open-source software package Netgen/NGSolve [1]. This package provides
all required finite elements. By a python interface, different finite elements can be linked, and variational
equations can be entered symbolically.

4.1 Comparison with analytic results

In this first example, the fluid domain Ωv
∞ = {(x, y, z) ∈ R

3 : z < 0} is assumed the infinite half-space. To
model the behavior of a piezoelectric resonator with circular electrodes of radius R, the tangential displacement
is prescribed on the fluid’s top surface. The displacement in x-direction is assumed to be Gaussian, while there
is no displacement in y-direction. Due to the non-uniform displacement at the fluid boundary both shear and
pressure waves are excited.

Beigelbeck and Jakoby [3] presented an analytical solution for the according two-dimensional problem,
solving for the amplitudes of the acoustic pressure wave and the shear wave. While the pressure wave, and
accordingly the deformation component uz travel the fluid nearly undamped, the shear wave is highly damped.
The penetration depth κ of the shear deformation is related to the viscosity, the angular frequency (ω = 2π f ),
and the density via

κ =
√
2μ

ωρ
. (45)

Along the z-axis (x = 0, y = 0. z ≤ 0), the shear displacement is analytically given by

ux,near = u0e
(1+ j)z/κ . (46)

In [3], a penetration depth of κ = 0.23 µm is reported in water at a frequency of f = 6 MHz. We aim at
reproducing these results in a 3D finite element computation.
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Fig. 1 Example 1: Geometric setup for the finite element problem (left), prescribed displacement along x-axis (right)

Fig. 2 Example 1: Finite element mesh consisting of prismatic elements gained from unstructured triangular mesh sweep

4.1.1 Geometric setup

A sketch of the geometric setup is shown in Fig. 1. At the upper boundary of the fluid (z = 0), the displacement
is prescribed as pointing in x-direction with its absolute value following the two-dimensional Gaussian,

u0 = exu0e−2(x/R)2e−2(y/R)2 . (47)

The displacement along the x-axis (y = 0) is visualized in Fig. 1. The radius of the resonator is set to
R = 3 mm, which is a typical value for AT-quartz patches. For our computations u0 = 1 µm is used.
Following the reference, in the sequel all results will be presented dimensionless.

In contrast to the reference solution, the finite element computations are carried out in a bounded domain
Ωv . We choose Ωv = {(x, y, z) : √

x2 + y2 < r∞, −h < z < 0}, setting the width r∞ = 7.5 mm and height
h = 2.471 mm = 10λ corresponding to ten wavelengths of the excited pressure wave. The following material
parameters of water are taken from [3]: density ρ = 998.2 kg m−3, speed of sound c = 1483 ms−1; and
dynamic viscosity μ = 1 mPas. The compressibility modulus is evaluated via (9) Ks = 2195 Nmm−2. The
symmetric nature of the problem allows for reduction of the geometry by half, and accordingly a reduction of
degrees of freedom. On the plane of symmetry y = 0, the symmetric boundary condition uy = 0, tx = tz = 0
is imposed. The vertical outer face of the cylinder (r = r∞) as well as the bottom surface are assumed to
satisfy an absorbing boundary condition for p with vanishing viscous stress σ · n = 0, see al Sect. 4.1.2.
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Fig. 3 Example 1: Near field of shear deformation ux evaluated at plane of symmetry y = 0

Fig. 4 Example 1: Near field of transverse displacement |uz | evaluated at plane of symmetry y = 0

We use a layered mesh of prismatic elements for the finite element analysis. To resolve the onset of the
displacement wave and the damped behavior of the shear displacement near the actuated surface (z = 0), three
layers of thickness 0.2 µm, 0.4 µm, and 0.6 µm are introduced at the top of the geometry. The remaining
fluid body is discretized by 30 equal-sized slabs of prismatic elements. Thus, we use approximately three
elements per pressure wave length. On a half-circle with radius R located at the significant support of the
actuating boundary condition, the in-plane mesh size is set to 1.2 mm, whereas toward the boundaries the
mesh size increases up to 3 mm. The mesh is provided in Fig. 2. Note that for the used mesh parameters, the
length-to-height ratio of the elements is up to 1000:1 near the top surface. The final mesh consists of 2046
prismatic elements. We use finite elements of polynomial order k = 2 on the described finite element mesh.
For this choice, we count 122,535 coupling degrees of freedom.
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Fig. 5 Example 1: Near field of pressure |p| evaluated at plane of symmetry y = 0

Fig. 6 Example 1: Far field of pressure p evaluated at plane of symmetry y = 0

4.1.2 Absorbing boundary conditions

As the acoustic waves travel the fluid nearly undamped, reflections on the boundary have to be avoided in the
finite element computation. Therefore, we impose an absorbing (or non-reflecting) boundary condition on the
bottom surface of the geometry Γabc. For inviscid fluids, or if the viscous stress tensor vanishes (σ = 0), the
acoustic balance equations read

−ρω2u = − grad p, p = −Ks div u. (48.1,2)

In our problem, we assume the viscous stress to vanish far from the upper boundary. Substituting the dis-
placement into the Eq. (48.2) and using the relation (9), the wave equation for the (acoustic) pressure is found
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Fig. 7 Example 1: Far field of transverse displacement uz evaluated at plane of symmetry y = 0

as

ω2

c2
p = −Δp. (48)

For this equation, absorbing boundary conditions are given by [5,30]

jω

c
p + ∂p

∂n
= 0, (49)

with ∂p
∂n = (∇ p) ·n. Using the relation ∇ p = ρω2u from (48.1,2) and the Lagrangian multiplier λ resembling

the normal displacement, we reformulate

p = jρωcun = jρωcλn. (50)

This absorbing boundary condition (50) can be embedded in the standard way into our variational formulation
(43). It results in adding the following boundary integral to the left-hand side of (43):∫

Γabc

jωcρλnδλndΓ. (51)

4.1.3 Results

The results obtained for the finite element problem are presented in Figs. 3, 4, 5, 6, 7. Pressure p as well as shear
deformation ux and transverse displacement uz are evaluated at the plane of symmetry (y = 0). In Figs. 3,
4, 5, near-field results for z ≥ −1 µm are shown: recall that at the boundary (z = 0) the shear deformation
ux is prescribed as a Gaussian with maximum value u0. As shown in Fig. 3, it decreases rapidly and nearly
vanishes within a distance of 1 µm. These results correspond to the reported penetration depth of 0.23 µm.
The transverse displacement uz is—according to the boundary condition—zero at the top surface (z = 0),
but shows a steep gradient toward the nearest local maximum, see Fig. 4. The near field of the pressure p is
virtually constant, compare Fig. 5.

Far field results for uz and p are shown on a different length scale for z ≥ −3λ with λ = c
f = 0.247 mm

the wave length. For the pressure wave, a decay length of 2.37 m is reported in [3]. For the given geometry,
this results in nearly undamped waves, as it can be seen in Fig. 6 for the pressure and Fig. 7 for the transversal
displacement uz . While here the plots are shown for a distance of three wavelengths (3λ), the calculation
is carried out on a thickness of the fluid of ten wavelengths (10λ). We observe that, as expected, maximal
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Fig. 8 Example 1: Comparison of theoretical and numerical results evaluated at line x = 0, y = 0

Table 1 Elastic ([C] = GPa), piezoelectric ([e] = mC/mm2), dielectric ([ε] = CV−1m) material parameters and density
([ρ] = kg/mm3) for AT-Quartz [40]

CE
11 = 86.74 CE

34 = 9.92 e11 = 171 ε11 = 39.21 × 10−12

CE
12 = −8.25 CE

44 = 38.61 e12 = −152 ε22 = 39.8 × 10−12

CE
13 = 27.15 CE

55 = 68.81 e13 = −18.7 ε23 = 0.86 × 10−12

CE
14 = −3.66 CE

56 = 2.53 e14 = 67 ε11 = 40.42 × 10−12

CE
22 = 129.77 CE

66 = 29.01 e25 = 108

CE
23 = −7.42 e26 = −95

CE
24 = 5.7 e35 = −76.1

CE
33 = 102.83 e36 = 67 ρ = 2649 × 10−9

Fig. 9 Example 2: Finite element mesh consisting of prismatic elements gained from unstructured triangular mesh sweep

vertical displacements uz and pressure p occurs in the region where the change in the prescribed horizontal
displacement u0,x is maximal. For the Gaussian as depicted in Fig. 1, maxima are attained at x = ±R/2. For
better comparability, positions x = ±R = ±3 mm and x = ±R/2 = ±1.5 mm are indicated in the plots.
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Table 2 Example 2: Eigenfrequencies for the piezoelectric actuator under open circuit (oc) and closed circuit (cc) conditions

Mode Mode shape foc in Hz fcc in Hz

f1 9,344,043 934,1514

f2 934,5598 934,5524

f3 934,6515 934,6589

f4 934,9987 934,9786

f5 935,1411 935,1262

f6 935,2388 935,1910

Fig. 10 Example 2: Frequency response (displacement uelx ) of piezoelectric actuator, fluids of different viscosity and unloaded
actuator

4.2 AT-Quartz in viscous fluid

The next example is an extension of the previous one. A circular piezoelectric AT-quartz patch resonator is
submerged in viscous fluid. The patch radius is r∞ = 7.5 mm, and two circular electrodes of radius R = 3 mm
are positioned at the patch center. The patch thickness is assumed as h p = 0.2 mm. The patch is clamped
around its circumference. Due to the smallness of the electrodes in comparison with the patch radius, it is
sufficient to model the fluid within the (infinite) cylinder of radius r∞. Moreover, we use the symmetric nature
of the problem, such that only half of the patch in thickness direction and the fluid below the patch are modeled.
Thereby, we introduce the symmetric boundary Γsym . Last, the infinite cylinder is truncated at h = 1 mm, and
an absorbing boundary condition is prescribed on the according artificial boundary Γabs . A schematic view
is provided in Fig. 9. We evaluate the frequency response for fluids of different viscosity. The material data
taken from [40] are summarized in Table 1.
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Fig. 11 Example 2: Frequency response (admittance Y ) of piezoelectric actuator, fluids of different viscosity and unloaded
actuator

An electric potential difference of 2V is applied to the electrodes. In the simulation, we assume that the
potential is gauged such that it vanishes on the plane of symmetry, i.e., φ = 0 on Γsym . The remaining, non-
electroded boundaries of the patch actuator are assumed free of charges (D ·n = 0). The actuator is assumed to
be clamped around its circumference. For a shear actuator, the symmetry condition implies that u = 0 on Γsym



1984 M. Meindlhumer et al.

as well. Additionally, we assume that there are no displacements at radius r∞ for the fluid, while absorbing
boundary conditions are imposed on Γabs as described in Sect. 4.1.2.

We discretize the whole computational domain by a layered finite element mesh stemming from an unstruc-
tured triangular in-plane mesh. The maximum in-plane mesh size within the radius of actuation is chosen as
1.2 mm and grows up to 3 mm toward the fluid domain boundary. With respect to the thickness direction, the
piezoelectric patch is discretized using two equal-sized layers of prismatic elements. Two layers of elements
are introduced in the uppermost 1.5 µm of the fluid domain, whereas the remaining domain is divided into 20
slabs of equal thickness. This results in a finite element mesh consisting of 2162 elements.We use second-order
displacement, stress and pressure elements, as well as third-order elements for the electric potential. In total,
we count 130,633 coupling degrees of freedom.

In Table 2, we provide the eigenfrequencies of the unloaded, clamped actuator. Open-circuit and closed-
circuit simulations are compared. We observe several additional eigenfrequencies near the intended shear
mode at f1. Next, we carry out frequency sweeps for the resonator both when unloaded and submerged in
fluids of different viscosity. As results, the average of the absolute value of the shear displacement at the
bottom electrode and the admittance of the piezoelectric patch are evaluated in a frequency range around the
resonance frequency of the unloaded actuator. The calculations are carried out for four different values of
viscosity (0.05 mPas, 0.5 mPas, 1mPas, 3 mPas). The density as well as the speed of sound are kept constant,
using the values from our first example (ρ = 998.2 kgm−3, c = 1483 ms−1). The average displacement uelx
on the electrode is evaluated via

uelx = 1

Ael

∫
Γel

|ux | dΓ, (52)

with Ael = R2π denoting the area of the electrode. The admittance Y is evaluated via the electric current and
the applied potential difference φ = 2V,

Y = jω

φ

∫
Γel

D · n dΓ. (53)

The results are shown in Fig. 10 for the displacement uelx and in Fig. 11 for the admittance Y . Both curves
show a decline of the resonance frequency for higher values of the viscosity coefficient and higher damping.
The change of the resonance frequency is used in sensing applications as ameasure for the viscosity coefficient.

5 Conclusions

We presented a mixed finite element method suitable for the coupled discretization of nearly incompressible
viscous fluids and piezoelectric actuators. Due to geometric dimensions of the piezoelectric patch, as well as the
rapidly decaying nature of the shear waves, a discretization using elements with high aspect ratio is advisable
in solving the problem. TDNNS elements have been known to be free from shear locking on flat prismatic or
hexahedral elements. Tomake elements of high aspect ratio robust when approaching the incompressible limit,
we proposed an enrichment by additional degrees of freedom for the pressure. A variational formulation for the
hybridized system including independent viscosity stress tensor and pressure was derived. The performance
of the presented method was shown in two examples, including the frequency response of a liquid-loaded
AT-quartz resonator.
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