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Abstract In this paper, the absolute nodal coordinate formulation (ANCF) is applied to simulate the magnetic
shape memory effect. Using the absolute nodal coordinate formulation makes it possible to describe com-
plicated or large deformation cases. The nonlinear bidirectional coupling terms between the mechanical and
magnetic field are taken into account in the analysis of the single-crystalline Ni-Mn-Ga sample. A two-loop
iteration procedure with variable steps is implemented to predict the magnetic-field-induced strain (MFIS)
in the specimen under a changing external magnetic field and a constant auxiliary compression. In addition,
the proposed approach is used to track the superelastic behavior of the magnetic shape memory alloy when
subjected to a constant magnetic field. The approach effectively describes the hysteresis and superelastic phe-
nomenon of the shape memory effect. The solution is compared here with solutions obtained using classical
linear and quadratic quadrilateral elements. The deviation observed in the solution is discussed, and its cause
is further clarified from a two-domain pure magnetostatic analysis of a permanent magnet. It is found that the
accurate solution of such problems is associated with discontinuity of the normal component of the magnetic
potential gradient across the domain interface. Special measures must be taken to make the absolute nodal
coordinate formulation element compatible with the discontinuity. A mixed FEs strategy, which adopts ANCF
FE in the displacement field solver and classical FE in the magnetic field solver, is proposed as an alternative
option to rectify the problem, which is verified by predicting the MFIS and the dynamic mechanical response
of a sample under cyclic compression.

1 Introduction

The magnetic shape memory effect (MSME) refers to the change in the physical shape of a magnetic material
in the presence of amoderatemagnetic field [28]. Amagnetic shapememory alloy (MSMA) is a promising new
smart material with certain prominent characteristics that include large magnetic-field-induced strain (MFIS)
[23,25], high fatigue life, and ultra-fast actuation response [24]. Different aspects of the MSMAmaterial have
already been studied including transformation temperature [9], saturation magnetization, magnetic anisotropy
energy [26], and the structure of magnetic domains [15]. Early experimental studies help reveal the underlying
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mechanisms behind the MSME phenomenon based on which different modeling methods have been proposed
to predict the behavior of the MSMA. Existing modeling methods comprise the constrained theory [7], the
statistical approach [9], the phase-field method [17], and others. Many models are constructed based on ther-
modynamics [11]. Among these, the models that get most attention use the variational principle [14,30] or the
finite element method (FEM) because of their straightforward implementation procedures. In the finite element
framework, an iterative numerical method has been proposed to obtain the displacement and magnetization of
the specimen [31]. In Wang and Steinmann’s work, several internal state variables are introduced to represent
the micro-status of the specimen. Another approach that does not use numerical iteration was inspired by the
Karush–Kuhn–Tucker conditions. It treats the internal state variables as an additional set of degrees of freedom
and integrates the corresponding evolution laws into the finite-element-based equilibrium equations [1,5].

The above existing numerical analyses of the magnetic shape memory effect focus mainly on small defor-
mation cases and even ignore the influence of the elastic deformation on the demagnetization field [5,31].
However, the MSMAs are known for their ability to develop large MFIS (up to 12% in single-crystalline
MSMA with seven-layered orthorhombic martensite structure) [25]. Therefore, studying the behaviors of
MSMA undergoing large deformation and with complicated deformation modes is practically important. How
the specimen behavior is influenced by these conditions cannot be ignored. Additionally, research works on
the numerical dynamic analysis of single-crystalline Ni-Mn-Ga are still rare [29]. Some works ignore the
inertial effect to study the dynamic response [10,16] and do not integrate the equation of motion into the
solving procedure. In a very recent paper [8], Fan and Wang pioneered the work on numerical analysis of
dynamic mechanical response of a single-crystalline Ni-Mn-Ga sample by solving the equation of motion with
the classical FE. Compared with the classical FE, the absolute nodal coordinate formulation (ANCF) offers a
promising approach capable of accounting for large deformation and large reference motions and brings its
inherent advantages to the future complicated dynamic analysis of MSMA.

Using the components of the deformation gradient as the nodal coordinates, the absolute nodal coordinate
formulation imposes no restrictions on the amount of rotation or deformation within the finite element. Due to
the simplicity and its consistency with strain and stress measures from general continuum mechanics [4], the
absolute nodal coordinate formulation has been widely used in various applications especially for problems
with geometrical and material nonlinearities [19,20,34,35]. Additionally, the ANCF has been verified as a
powerful tool for multibody dynamic analysis. Since the kinematic description of ANCF is based on the global
coordinate system, the ANCF method can act as a straightforward bridge to integrating the MSME simulation
into a general multibody dynamic analysis, which is necessary for future different application scenarios of
possible slender MSMA actuator/sensor.

The objective of the paper is to develop an approach to simulating the behaviors of the magnetic shape
memory alloy subjected to large deformation. To achieve this, a general large-rotation and large-deformation
finite element formulation, i.e., the absolute nodal coordinate formulation is employed. Considering the bidi-
rectional coupling effects between the mechanical and magnetic fields, a numerical procedure is presented
comprising the mechanical FE solver, the magnetic FE solver, and the internal state variable evolution solver.
The approach can qualitatively describe the full generation process of the magnetic-field-induced strain and
capture the special features of the magnetic shape memory effect including hysteresis and the superelastic
effect. The deviation between the result given by ANCF FE and classical FEs is further analyzed using a pure
magnetostatic case. It is found that the gradient discontinuity issue on the interface need be overcome for the
ANCF FE in the two-domain MSME simulation to obtain a more accurate solution. To fix the problem, a
mixed FEs strategy, which adopts ANCF FE to solve the displacement field and classical FE for the magnetic
field, is proposed.

The remainder of the paper is organized as follows: In Sect. 2, the microstate description of the MSMA
specimen is briefly introduced. Section 3 constructs the ANCF finite element. The corresponding equilibrium
equations based on the variational principle and the equation of motion is established. Subsequently, a numer-
ical analysis framework is established to estimate the behavior of the MSMA based on adopting the newly
constructed ANCF element as the approach to solve the displacement and themagnetic field. Section 4 presents
several typical examples to verify the method. Meanwhile, the limitations of the ANCF method in MSME
analysis are investigated, and a modification of the approach that is free of those limitations is proposed. With
the modified approach, the dynamic mechanical response of a sample under cyclic compression is simulated.
And finally, Sect. 5 offers the authors’ conclusions.
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(b) The micro-structure of the MSMA [31]

Fig. 1 Experiment process and the microstructure of the magnetic shape memory alloy

2 Microstate description of the magnetic shape memory effect

The magnetic shape memory effect (MSME) is caused by martensite variant reorientation and domain trans-
formation at room temperature. Ever since Ullakko et al. [28] revealed theMFIS in 1996, the single-crystalline
Ni-Mn-Ga alloy has been extensively studied. In the single-crystalline Ni-Mn-Ga alloys, three martensite
structures are observed: five-layered modulated (5M) approximately tetragonal martensite with c/a< 1 and
maximum theoretical strain of about 6%, seven-layered modulated (7M) orthorhombic martensite with maxi-
mum theoretical strain of about 12%, andnon-modulated (NM) tetragonalmartensitewith c/a>1withmaximum
theoretical strain of about 20%. No considerable magnetic shape memory effect has been reported in the last
structure [27,36]. Compared with a 7M structure specimen, the samples in the 5M structure exist in a border
range [36] and demonstrate best performance for practical application [22]. Therefore, a bulkMSMA specimen
with 5M structure was studied in this work.

To get an evidentMSME process, a compression assist is usually applied. A typical experimental procedure
or the stress-assisted magnetic-field-induced strain generation procedure is depicted in Fig. 1a. After “train-
ing” under a cyclic and large mechanical stress, a single-crystalline Ni-Mn-Ga specimen in the 5M (5-layer
modulated) structure exhibits a single variant state with the magnetic easy axis, i.e., the short c-axis, aligned
with the external loading [15]. As shown in Fig. 1a, under the external magnetic field Ha and the assisted
compression tA, variant one begins to transform to variant two with the c-axis generally aligning with the
magnetic field direction. With increasing the external magnetic field strength, variant two grows at the expense
of the stress-favored variant one with simultaneous domain wall movement until the specimen evolves to the
single variant and single domain state. Macroscopically, the specimen extends as a result of the internal variant
reorientation, the rotation of the magnetization vector, and/or domain wall movement. Consequently, the final
maximum induced strain is around 1 − c/a ≈ 0.06 [15].

In this study, a simple assumption based on the experiment [15] and adopted byWang and Steinman [30,31]
is used to describe the generation of MFIS. The corresponding micro-configuration of a two-variant 5M Ni-
Mn-Ga sample is shown in Fig. 1b. The variants form distributed bands that are separated by twin interfaces.
In each variant region, two kinds of magnetic domains are separated by 180◦ domain walls. In each magnetic
domain, the magnetization vector aligns with either the positive or negative direction of the corresponding
easy axis with saturation magnitude Ms . The external magnetic field will induce the movement of the magnetic
domain walls in variant one and the rotation of the magnetization vectors in variant two as shown in Fig. 1b.
Correspondingly, internal state variables α and θ are introduced to represent the magnetic domain volume
fraction in variant one and magnetization vector rotation in variant two, respectively. In summary, only three
internal state parameters, i.e., the variant two volume fraction ξ2, the magnetization vector rotation θ , and the
magnetic domain volume fraction α are capable of fully describing the internal state of the specimen as shown
in Fig. 1b. Accordingly, the elastic moduli tensor, the effective magnetization vector, and the total strain are
dependent on these three parameters. The elastic moduli tensor can be written as [31]

C = (1 − ξ2)C1 + ξ2C2 (1)
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where C1 and C2 are the elastic moduli tensor of variant one and variant two, respectively. The tensor can be
written in Voigt notation form as

C1 =

⎡
⎢⎢⎢⎢⎢⎣

κ2 κ3 κ3 0 0 0
κ1 κ4 0 0 0

κ1 0 0 0
κ5 0 0

sym. κ6 0
κ5

⎤
⎥⎥⎥⎥⎥⎦
C2 =

⎡
⎢⎢⎢⎢⎢⎣

κ1 κ3 κ4 0 0 0
κ2 κ3 0 0 0

κ2 0 0 0
κ5 0 0

sym. κ5 0
κ6

⎤
⎥⎥⎥⎥⎥⎦

(2)

where κi , i = 1, 2...6 are the moduli constants. Driven by the the magnetic domain wall motion, the rotation
of the magnetization vector, and variant reorientation, the effective magnetization vector M̄ is expressed using
the corresponding three internal state parameters as

M̄ = Ms [(1 − ξ2) sin θ + ξ2 (2α − 1)] e2 (3)

where e2 is the unit direction vector of the external magnetic field measured in the current configuration. With
the transformation from variant one to variant two, the transformation strain ξ2ε

tr appears. As a result, the total
strain is written as

ε = εel + ξ2ε
tr (4)

where εel is the Green–Lagrange strain tensor. It is written as follows:

εel = 1

2

(
FTF − I

) = 1

2

(
rT,Xr,X − I

)
(5)

whereF = r,X is the deformation gradient tensor, r is the position vector in the current deformed configuration,
X is the material coordinate in the initial reference configuration, and the subscript following a comma denotes
partial differentiation with respect to that variable. In Eq. (4), the maximum transformation strain tensor εtr

can be written in Voigt notation form as follows:

εtrv = [−ε1 ε2 0 0 0 0]T (6)

where ε1 and ε2 represent the maximum transformation strains along the principle axes. According to the
microstructure and the lattice dimensions of variant one and two, the induced strain in z direction does not
appear during the variant transformation as shown in Fig. 1a. Therefore, it is reasonable to apply the plane
strain assumption to simplify the simulation. In the plane strain case, the elastic moduli tensor in Voigt notation
C1 and C2 degenerates to

C1 =
⎡
⎣

κ2 κ3 0
κ1 0

sym. κ5

⎤
⎦ , C2 =

⎡
⎣

κ1 κ3 0
κ2 0

sym. κ5

⎤
⎦ . (7)

The elastic and maximum transformation strain in Voigt notation degenerate to

εelv = 1
2

[
rT,Xr,X − 1 rT,Y r,Y − 1 2rT,Xr,Y

]T
εtrv = [−ε1 ε2 0

]T
}

. (8)

3 ANCF element construction and numerical analysis method

This Section briefly introduces the variational principle approach for the MSME problem, which leads to
the FEM solution of the displacement and magnetic field. Then, the planar ANCF FE employing both the
displacement and magnetic field degrees of freedom is constructed. Finally, a modified numerical simulation
framework that integrates the ANCF FE solver and the internal state parameter evolution solver [30,31] is
presented.
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3.1 Variational principle approach

The governing partial differential equations and the evolution laws of the internal variables can be derived by
calculating the variation of the total energy functional. The functional formulation presented in [31] is briefly
introduced. The total energy functional of the whole magneto-mechanical system is

G (r, ψ, ξ2, θ, α;X) = Uel +Uan +Uze +Usta +Umix +Uml +Udis (9)

where ψ is the scalar magnetic potential, Uel is the elastic potential energy, Uan is the magneto-crystalline
anisotropy energy, Uze is the Zeeman energy, Usta is the magnetostatic energy, Umix is the mixture energy,
Uml is the potential energy of the external mechanical load, and Udis is the total energy dissipation. All the
terms are expressed under the Lagrangian description with respect to the reference configuration. In Eq. (9),
the elastic potential energy Uel can be written as:

Uel =
∫

�r

ρrφ (X, ξ2) dV (10)

where �r is the specimen region, ρr is the mass density in the reference configuration, and φ is the elastic
energy density. The magneto-crystalline anisotropy energy Uan is written as:

Uan =
∫

�r

(1 − ξ2) ρr Kusin
2θdV (11)

where Ku is the anisotropy constant. The Zeeman energy, or the external field energy Uze is:

Uze =
∫

�r

−μ0ρrM̄ · HadV (12)

where μ0 is the magnetic permeability of free space and Ha is the external magnetic field. The magnetostatic
energy of the demagnetization field Usta can be written as:

Usta =
∫

�r

−μ0ρrM̄ · HddV +
∫
R3

−μ0

2
JHd · HddV (13)

where R3 is the analyzed whole space including the specimen domain �r and the surrounding space domain
�

′
r , Hd = −F−T∇ψ is the demagnetization field induced by the magnetization of the MSMA specimen

measured in the current configuration, and J=det(F), i.e., the determinant of the deformation gradient tensor.
According to the divergence theory and the Gauss’s law for magnetism, the magnetostatic energy can also be
written in the following form [30]:

Usta =
∫

�r

−μ0

2
ρrM̄ · HddV . (14)

The mixture energy due to the interactions of different martensite variants and magnetic domains Umix is
written as follows:

Umix =
∫

�r

ρr f
ξ (ξ2) dV +

∫
�r

ρr

[
(1 − ξ2) f α

(
1

2

)
+ ξ2 f

α (α)

]
dV (15)

where f ξ (ξ2) and f α (α) are the energy densities arising from the mixture of the two variants and the
interactions of the different magnetic domains in each variant region. The potential energy of mechanical
loading Uml is:

Uml = −
∫

∂�r

tA · rd A (16)

where tA is the external compression applied per unit referential area and ∂�r is the boundary, on which the
compression is applied. Besides the above energy quantities, to capture the hysteresis phenomena observed
in the experiments, the dissipation effect during the variant transformation process should be considered. The
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total energy dissipation Udis during the forward and reverse transformation processes can be written in the
following form:

Udis = ±
∫

�r

∫ ξ2

ξ02

ρr D
± (τ ) dτdV (17)

where ξ02 and ξ2 are the initial and final volume fractions of variant two in the specimen. Accordingly, ξ02 ≤ ξ2

applies for the forward transformation and ξ02 ≥ ξ2 for the reverse transformation. D± are positive functions
called the dissipative resistances (“+” and “−” represent the forward and reverse transformation, respectively).
By adding up the energy quantities together, the total energy functional for the magneto-mechanical system
is:

G (r, ψ, ξ2, α, θ;X) =
∫

�r

(1 − ξ2) ρr

[
Kusin

2θ + f α

(
1

2

)]
dV

+
∫

�r

ρrφ (X, ξ2)dV +
∫

�r

ρr f
ξ (ξ2) dV +

∫
�r

ρrξ2 f
α (α) dV

+
∫

�r

−μ0ρrM̄ · HadV +
∫

�r

−μ0ρrM · HddV

+
∫
R3

−μ0

2
JHd · HddV ±

∫
�r

∫ ξ2

ξ02

ρr D
± (τ ) dτdV −

∫
∂�r

tA · rd A.

(18)

In the energy functional, the independent variables are the position vector r, the scalar magnetic potential
ψ , and the three internal state variables ξ2, θ , and α. Specifically, in the FEM implementation, r and ψ are
interpolated using the nodal vectors eu , eψ of the corresponding element, and the internal state variables ξ2,
θ , and α are directly calculated on the Gauss integration points of each element.

The governing equations of the system are obtained by calculating the variations of G with respect to the
independent variables r, ψ , and the internal state variables [30] as shown in the following:

δψG =
∫

�r

μ0ρrM̄ · F−T∇ (δψ) dV −
∫

�r+�
′
r

μ0 J∇ψ(FTF)−1 · ∇ (δψ) dV = 0, (19)

δrG =
∫

�r

ρr

(
∂φ

∂r
δr
)
dV + δrUsta −

∫
∂�r

tA · δrd A = 0, (20)

δξ2G =
∫

�r

ρr

[
∂φ (X, ξ2)

∂ξ2
+ ∂ f ξ (ξ2)

∂ξ2
+ f α (α) − f α

(
1

2

)
− Kusin

2θ

]
δξ2dV

−
∫

�r

μ0ρr Ms (2α − 1 − sin θ) Htotδξ2dV ±
∫

�r

ρr D
± (ξ2)δξ2dV ≥ 0, (21)

δθG =
∫

�r

(1 − ξ2) (2Ku sin θ − μ0MsHtot) δ (sin θ)dV ≥ 0, (22)

δαG =
∫

�r

ξ2

[
∂ f α (α)

∂α
− 2μ0MsHtot

]
δαdV ≥ 0 (23)

where Htot = Ha + Hdy , Ha = Ha · e2, and Hdy = Hd · e2 are the components of the external and the
demagnetization field in the external magnetic field direction. The inequalities as shown in Eqs. (21–23) are
obtained based on thermodynamics [13]. Magnetostatic energy in the form of Eq. (14) is used in the variation
of the total energy functional with respect to r. The governing equations indicate that the magnetic field and
the displacement field are implicitly related via the internal state evolution of the MSMA. In addition, the
influence of the deformation on the magnetic field explicitly goes into Hd = −F−T∇ψ via the deformation
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gradient tensor F, and the magnetic field influences the deformation via the variation of the magnetostatic
energy as shown in Eq. (14). These two explicit coupling terms are ignored in [31] but considered in this work.

The variational principle is a very general approach in formulating the constitutive models of the multi-
physics problems such as the piezoelectric effect. Under the framework of variational principle, similar equa-
tions can be obtained in the piezoelectric effect [2,18]. However, there are essential differences between
MSME and piezoelectric effect analysis. As shown in Sect. 2, the MSME involves with changes to the micro-
crystallographic structure. Correspondingly, several internal variables are introduced to describe the evolution
of the micro-structure in the numerical simulation. The state of the MSMA specimen should be determined
iteratively via equations obtained fromEqs. (21–23) since the internal variables depend on the current magnetic
and displacement field. Thus, there must be an iterative state evolution solver in the MSME analysis proce-
dure. As a result, most MSME simulations in the literature are quasi-static analyses [1,3,5,33]. By contrast,
the numerical analysis of the piezoelectric effect is not associated with the micro-crystallographic structure.
So there is no additional iterative solver besides the displacement and electric field solver in the piezoelectric
effect analysis procedure [18].

3.2 ANCF element construction

As mentioned in Sect. 2, the classical MSME experiment as shown in Fig. 1a can be analyzed as a planar
issue since there is no transformation strain along the z axis. For such planar rectangular domain, the planar
quadrilateral element is the most appropriate element for the analysis [1,5]. Therefore, the planar quadrilateral
element proposed by Olshevskiy et al. [21] is used in the analysis. For the magnetic field analysis, the scalar
magnetic potential ψ is adopted as the basic variable, and the corresponding gradients ψ,x , ψ,y are also used
as the nodal DOFs under the framework of the ANCF method, where x and y are the element coordinates
in the straight configuration. By doing so, the ANCF method is checked in the MSME analysis by directly
generalizing the original mechanical-element to a magneto-mechanical element. The schematic diagram of
the element is shown in Fig. 2,

As shown in Fig. 2, 12 variables, i.e., eψ
i = [ψi , ψi,x , ψi,y]T at node i, i=1,2,3,4, are used for the

interpolation of the magnetic potential. Selecting the bases for the 12-term interpolation based on the Pas-
cal triangle, a natural option is the same basis as that used in the displacement field interpolation, i.e.,
{1, x, y, x2, xy, y2, x3, x2y, xy2, y3}. Accordingly, the same shape functions si , i = 1, 2, ..., 12 are obtained
for the magnetic potential interpolation. The shape function matrix is shown as follows:

S (ξ, η) = [
s1I s2I ... s12I

]
(24)

where ξ = x/ l and η = y/w are the local normalized coordinates in the straight configuration, and 0 ≤ ξ, η ≤
1, and l and w are the element length and width in the straight configuration. The detailed expression of the
shape functions si , i = 1, 2, ..., 12 is shown in Appendix A. In the shape function matrices of the displacement
field and magnetic field element, the identity matrix I ∈ R3×3 and I ∈ R1×1 in Eq. (24), respectively. The
position and magnetic potential at an arbitrary point are interpolated using the nodal vectors as r = Seu and
ψ = Seψ . The corresponding nodal vectors are

eu = [
euT1 euT3 euT3 euT4

]T

eψ =
[
eψT
1 eψT

2 eψT
3 eψT

4

]T
⎫⎬
⎭ (25)

where eui =
[
rTi rTi,x rTi,y

]T
and eψ

i = [
ψi , ψi,x , ψi,y

]T
, i = 1, 2, 3, 4. The deformation gradient with

respect to the initial reference configuration is obtained as

F = ∂r
∂x

(
∂X
∂x

)−1

(26)

where x = [x, y]T are the element coordinates in the straight configuration, and the mapping matrix between
the initial reference configuration and the straight configuration is denoted as J0. Denoting the initial nodal
vector of an element as eu0, J0 at the point with the local normalized coordinates ξ and η can be obtained as

J0 = ∂X
∂x

=
[
1

l

∂S(ξ, η)

∂ξ
eu0

1

w

∂S(ξ, η)

∂η
eu0

]
. (27)
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Fig. 2 The generalized ANCF planar quadrilateral element

3.2.1 Magnetic FEM equilibrium equation

The scalar potentialψ and its gradientsψ,x , ψ,y are used as the nodal degrees of freedom. The demagnetization
field is Hd = −F−T∇ψ . Under the framework of FEM, the demagnetic field at an arbitrary point can be
obtained as

Hd = −F−T
[
S,x
S,y

]
eψ = −F−TBeψ (28)

where S,x and S,y are the derivatives of the shape function matrix S with respect to the material coordinate.
The dimension of the corresponding vectors and matrices is S, S,x , S,y ∈ R1×n , and B ∈ R2×n , where n
is the number of the nodal coordinates in an element, and for the adopted ANCF element n=12. Substituting
Eq. (24) into Eq. (19) results in the following equilibrium equation:

Kψeψ
sys. =

(
Kψ

�r
+ Kψ

�
′
r

)
eψ
sys. = Qψ

�r
(29)

where Kψ is the assembled system stiffness matrix consisting of two corresponding parts in the specimen
region �r , and the surrounding space region�

′
r , e

ψ
sys. is the assembled system nodal vector associated with the

magnetic potential, andQψ
�r

is the generalized force vector obtained in the specimen region. The corresponding
expressions in an element domain �elem are

Kψ
�elem

= μ0

∫
V
JBT(FTF

)−1
BdV

Qψ
�elem

= μ0ρr

∫
V
BTF−1M̄dV

⎫⎪⎪⎬
⎪⎪⎭

. (30)

3.2.2 Mechanical FEM equilibrium equation

Similar to the magnetic FE, the position field is interpolated as r = Seu . Recalling that ε = εel + ξ2ε
tr, the

equilibrium equation can be written as

Qs
sys. + Qtr

sys. + Qmag
sys. = Qext

sys. (31)

where Qs
sys. is the assembled system elastic force, Qtr

sys. is the assembled system force associated with the

martensite variant transformation, Qmag
sys. is the assembled magneto-mechanical coupling force derived from

the magnetostatic energy Usta as shown in Eq. (14), and Qext
sys. is the assembled system external generalized
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force. All the forces are defined in the specimen region, and the expressions of the internal forces on the
element level are as follows:

Qs
�elem

= ρr

∫
V

(
∂εelv
∂eu

)T

Cεelv dV

Qtr
�elem

= ρr

∫
V

ξ2

(
∂εelv
∂eu

)T

CεtrvdV

Qmag
�elem

= 1

2
ρμ0

∫
V

[
ψ,xSd − ψ,ySb
ψ,ySa − ψ,xSc

]T
M̄dV

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(32)

where the intermediate vectors Sa, Sb, Sc, and Sd are

Sa = S,X (1, :) Sb = S,X (2, :)
Sc = S,Y (1, :) Sd = S,Y (2, :)

}
(33)

where (i, :), i = 1,2 means the i th row of the derivative of the shape function matrix in the reference
configuration S,X or S,Y , which can be obtained by

S,X = [
J0(2, 2)S,x − J0(2, 1)S,y

]
/det(J0)

S,Y = [
J0(1, 1)S,y − J0(1, 2)S,x

]
/det(J0)

}
(34)

where J0(i, j) i, j = 1, 2 is the term at the i th row and j th column of the mapping matrix J0 as shown in
Eq. (27). The generalized nodal force of the external pressure on the element level is

Qext
�elem

= −
∫
A
STtAnAd A (35)

where nA is the unit outward normal vector of the end specimen surface, on which the compression with
magnitude of tA is applied. Unlike the equilibrium equation of the magnetic FEM solver as shown in Eq. (29),
the counterpart in the mechanical FEM solver Eq. (31) is nonlinear and solved via the Newton–Raphson
iteration.

3.2.3 Equation of motion

To predict the dynamic mechanical response of a sample, the equation of motion should be established. Based
on the principle of virtual work, the equation of motion on the element level can be written as

M�elem ë
u + Qs

�elem
+ Qtr

�elem
+ Qmag

�elem
= Qext

�elem
(36)

whereM�elem is the element mass matrix, and ëu is the second time derivative of the nodal vector eu associated
with the position field. For the ANCF element, the element mass matrix is

M�elem = ρr

∫
V
STSdV . (37)

Clearly, the mass matrix remains constant in the integration loop of the equation of motion, which is calculated
only once beforehand bringing computational merit. In this work, the equation of motion (37) is solved via an
implicit integration generalized-α method [6].
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3.3 Framework of numerical solution

Besides the displacement and magnetic field solution obtained from the FEM solver presented in Sect. 3.2,
the internal state variables p = {ξ2, θ, α} need to be determined as the input variables for the FEM solver.
To some extent, the internal state variables act as the bridge that connects displacement and magnetic field.
Therefore, the numerical solution procedure must integrate the sub-solver of the internal state variables p into
the procedure.

Considering the natural constraint −1 ≤ sin θ ≤ 1, the evolution law of sin θ can be determined by
recalling Eq. (22),

sin θ =

⎧⎪⎨
⎪⎩
1 Fθ (Ha, ψ) > 1
Fθ −1 ≤ Fθ (Ha, ψ) ≤ 1
−1 Fθ (Ha, ψ) < −1

, (38)

where Fθ (Ha, ψ) = μ0Ms
2Ku

(
Ha + Hdy

)
. Based on the physical interpretation of the domain volume fraction

α, 0 ≤ α ≤ 1. Recalling Eq. (23) and substituting f α (α) = 2μ0MsHα
cri (α − 1/2)2 [30] results in

α =

⎧⎪⎨
⎪⎩
1 Fα > 1
Fα 0 ≤ Fα ≤ 1
0 Fα < 0

(39)

where Fα = [
1 + (

Ha + Hdy
)
/Hα

cri

]
/2, and Hα

cri is a critical magnetic field value. Equation (40) can be
written based on Eq. (21) and the physical constraint 0 ≤ ξ2 ≤ 1 as

ξ2 =

⎧⎪⎨
⎪⎩

1 ξ2
∗ > 1

ξ2
∗ ∃ξ2

∗ ∈ [0, 1] F±
ξ2

∣∣∣
ξ2=ξ2

∗ = 0

0 ξ2
∗ < 0

(40)

where ξ2
∗ is the solution of F±

ξ2
= ρr (±D± − πξ2) = 0. The dissipative resistances D± (ξ2) and intermediate

function πξ (r, ψ, ξ2, θ, α) are defined as

ρr D
+ (ξ2) = A1ξ2 + B1 ρr D

− (ξ2) = A2ξ2 + B2ρr

ρr f
ξ (ξ2) = Bξ2 (1 − ξ2) ρr f

α (α) = 2μ0MsH
α
cri

(
α − 1

2

)2

ρrπ
ξ = −

[
∂φ

∂ξ2
+ ∂ f ξ (ξ2)

∂ξ2
+ f α (α) − f α

(
1

2

)

−Kusin
2θ − μ0Ms

(
Ha + Hdy

)
(2α − 1 − sin θ)

]

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(41)

where Ai , Bi , i = 1, 2 and B are constants in the dissipative resistances and mixture energy density. By
substituting Eq. (41) into F±

ξ2
= ρr

(±D± − πξ
)
, it is possible to write F±

ξ2
into a quadratic equation,

F±
ξ2

= a∗ξ22 + b±ξ2 + c±, (42)

where the coefficients are

a∗ = 3

2
εtrTv C21εtrv

b± = 2εtrTv C21εelv + εelTv C1εtrv ± c±
1

c± = 1

2
εelTv C21εelv + εtrTv C1εelv ± c±

2 + c3

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(43)
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where C21 = C2 − C1, c±
1 and c±

2 are four constants associated with D±, and c3 (ψ, θ, α) is an intermediate
variable independent of ξ2. The signs in front of c±

1 and c±
2 are “+” and “-”, respectively, for the forward and

reverse transformation process. Their expressions are

c+
1 = A1 − 2B c−

1 = A2 + 2B

c+
2 = B1 + B c−

2 = B2 − B

c3 = 2μ0MsH
α
cri (α − 1/2)2 − Kusin

2θ

− μ0Ms
(
Ha + Hdy

)
(2α − 1 − sin θ)

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

Normally, there are two roots for the quadratic equation (40) evolution law. Here, due to the equality of ε1 and
ε2, the quadratic equation (42) degenerates to a linear equation by substituting Eqs. (7) and (8) into Eq. (43).
As a result, ξ2 can be uniquely determined by Eq. (40).

Figure 3a shows the flow chart of the modified two-loop numerical simulation procedure based on [31,32].
The procedure comprises three solvers, i.e., themechanical FE solver, themagnetic FE solver, and the evolution
solver of the internal state variables. These solvers solve the corresponding partial differential equations to,
respectively, obtain the displacement, the scalar magnetic potential, and the internal state variables of the
specimen. Because the convergence speed and the computational cost for each numerical solver is different,
the procedure is divided into two loops. Solving the displacement field is set as the outer loop,while themagnetic
potential ψ and the internal state variables p = {ξ2 , θ , α} are calculated in the internal loop. The iterative
procedure keeps calculating and updating the state of the specimen until the residual is smaller than the specified
tolerance. In the outer loop, the residual in the axial strain is adopted. To improve efficiency, a linear predictor
is adopted to determine the initial value of each step based on the converged values obtained in the previous two
steps. Specifically, the initial value of the variables in the next step is predicted as S(1)

0 = (1+λ)S(0) −λS(−1),
where S is the collection of the unknown variables to be determined. The subscript “0” indicates the initial
value, the subscript ”1” indicates the value that has been updated after the solution in the corresponding solver,
the superscripts “1”, “0” and “-1” denote the next, current, and previous step, and λ is the ratio between
the current and the previous step. Based on the static analysis, the dynamic analysis flow chart is shown in
Fig. 3b. The compression is set as the time-dependent variable to introduce the algorithm. In each time step,
the equation of motion is firstly solved, and the position DOFs r(0)

1 are calculated by the integrator loop with

the mechanical FE solver. Then, the magnetic field and internal variables are solved associated with r(0)
1 . The

obtained r(0)
1 , ψ

(0)
1 , and p(0)

1 are passed to the next outer loop step if the strain difference between the current
step and the last step in the inner loop is smaller than the tolerance.

4 Numerical examples

Numerical examples are presented in this Section to assess the performance of the proposed element with
respect to the comparison with the classical FE. Firstly, two typical behaviors of the MSMA are simulated: the
specimen under a changing magnetic field and the specimen undergoing various compressions. Accordingly,
two key features of the MSME, i.e., the memory effect and the superelastic effect, are simulated. Then, a
permanent magnet with the surrounding space is analyzed to further check the accuracy of the ANCF element
in the pure magnetostatic analysis. Finally, the dynamic mechanical response of the MSMA specimen under
a time-dependent compression is simulated.

4.1 Simulation of the magnetic shape memory effect

Figure 1a illustrates the typical experiment that examines magnetic-field-induced strain generation under
auxiliary compression. This situation is simulated to verify the new element and the presented numerical
procedure. Themagnetic field problem is essentially unbounded. To simulate the problem under the framework
of the FEM, a simple truncation technique is adopted with a ten-fold larger space surrounding the specimen.
As shown in Fig 4a, the scalar magnetic potential on the boundary of the surrounding space is set to zero [31].
With regard to the mechanical constraints, nodes on the middle plane of the specimen are restricted along the
x direction, and the position of the center node is fixed such that the rigid motion mode is removed to avoid a
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Fig. 3 Flow chart of the numerical procedure to simulate the magnetic shape memory effect

(a) (b)

Fig. 4 Analysis model of the specimen with the surrounding space

singularity in the static displacement analysis. The specimen adopted in [31] is analyzed in this Section. The
dimensions of the specimen domain �r and the surrounding space domain �

′
r are

�r : 10 × 5 × 5 mm �
′
r : 100 × 50 × 50 mm.

To induce the magnetic shape memory effect, auxiliary compression of magnitude tA is applied along the x
axis, and an external magnetic field Ha is applied along the positive y axis direction. Exploiting symmetry,
only a quarter model is adopted. Correspondingly, the boundary conditions of the magnetic and displacement
field change as shown in Fig. 4b. For the magnetic field, a zero scalar magnetic potential constraint is applied
on the horizontal antisymmetric edge. The normal component of the potential gradient is set to zero on the
symmetric edge nodes. For the displacement field, an additional constraint is applied at the y position on the
horizontal antisymmetric edge nodes.

The specimen is meshed using the FE with both eu and eψ as nodal vectors. The surrounding space is
modeled by the FE with only eψ as nodal vectors. Internal state variables are directly calculated on the Gauss
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Fig. 5 Schematic diagram of meshing strategy

integration points of each element. Besides the constructed ANCF FE, classical FEs including the linear and
8-node quadrilateral FE are also adopted to simulate the MSME process.

The single-crystalline Ni-Mn-Ga alloy in the 5M structure martensite state is analyzed, and the constitutive
matrix is shown in Eq. (7). The material parameters adopted in the literature [31] are

κ1 = 1.70 × 1011 N/m2 κ2 = 1.50 × 1011 N/m2

κ3 = κ4 = 1.52 × 1011 N/m2 κ5 = κ6 = 0.43 × 1011 N/m2

ρr = 8.3 × 103 Kg/m3 ρr Ms = 5.64 × 105 A/m

ρr Ku = 1.772 × 105 Kg/[m · s2] ε1 = ε2 = 0.06

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

Other parameters associated with the magnetization, the anisotropy energy, the mixture energy, and the dissi-
pative resistances are [31]

Hα
cri = 1.0 × 104 A/m c+

1 = 3.115 × 103 N/m2

c−
1 = −1.046 × 104 N/m2 c+

2 = 6.324 × 104 N/m2

c−
2 = 5.070 × 104 N/m2

⎫⎪⎬
⎪⎭

.

Themeshing schematic diagram of the specimen and the surrounding space are shown in Fig. 5. The converged
results obtained with n1 = n3 = 16 and n2 = 8 are presented in the following Sections.

4.1.1 Magnetic-field-induced strain at a constant compression level

A specimen under a constant compression and various magnetic field strengths is analyzed quasi-statically by
gradually increasing or decreasing the appliedmagnetic field. The externalmagnetic fieldHa = 1×106e2 A/m,
and the initial step size is set as 2 × 104 A/m. Both the forward and the reverse process are simulated.
Compression tA = 1.0 MPa is applied along the x axis on the specimen. Figure 6 shows the average magnetic-
field-induced strain and the effective magnetization magnitude.

The numerical model effectively describes MSME hysteresis behavior. A full forward and reverse marten-
site variant reorientation process is obtained under the compression tA = 1.0MPa. As shown in Fig. 6, different
data points on the ANCF curve marked using arrows are numbered from 1 to 6 for the sake of description.
Table 1 lists the internal state parameters and macro-variables in the corresponding configurations.

In the initial configuration 1, the specimen exhibits the single variant and domain state. Applying the
external field, the specimen is magnetized via the rotation of the magnetization vector. At the beginning, the
magnetization is not strong enough to initiate the variant reorientation. With the increase in the external field
strength and the subsequent rise in magnetization, variant two appears in configuration 2. After configuration 2,
as shown in Fig. 6b, the increase in the magnetization becomes faster due to both magnetization vector rotation
and variant reorientation in this stage. Later, the variant two volume fraction reaches nearly 1 in configuration 3.
Then, the rotation of the magnetization vector keeps increasing and nearly goes to 90◦ in the final configuration
4. Consequently, the specimen is fully magnetized, and the induced strain nearly reaches its maximum value
of 0.06. Then, at the beginning stage of the reverse process, e.g., in configuration 5, the magnetization vector in
variant one rotates back towards the compression direction, but the induced strain remains mostly unchanged.
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(a) Field-strain curve (b) Field-magnetization curve

Fig. 6 Field-strain and field-magnetization curves under compression tA=1.0 MPa

Table 1 The state of the specimen in the intermediate configurations under compression tA = 1 MPa

No. μ0Hy(T) εxx M/Ms ξ2 sinθ

1 0.00 0.00% 0.000 0.000 0.000
2 0.58 0.01% 0.454 0.004 0.452
3 0.96 5.80% 0.984 0.967 0.507
4 1.26 5.99% 1.000 1.000 0.959
5 0.68 5.94% 0.981 0.991 0.086
6 0.30 2.64% 0.441 0.441 0.040

After the field decreases to a critical value, strain begins decreasing. In the next configuration 6, variant one
recovers to 56% and the effective magnetization becomes 0.44Ms due to the further decrease in the external
field strength.With the removal of the external field, variant one almost totally recovers. As a result, the induced
strain and the magnetization vanish. The different paths in the forward and reverse process clearly show the
hysteresis response of the induced strain and magnetization.

To get a further interpretation on the evolution of the internal state of the specimen, the distribution of
the magnitude of the effective magnetization M̄ and the variant two under two intermediate magnetic field
strengths Ha = 5.0× 105 and 7.0× 105 A/m is plotted in Figs. 7 and 8. As shown in Fig. 7, the distribution of
magnetization is not uniform. Specifically, the maximum magnitude appears on the edges while the minimum
magnetization is found in the center region. This is consistent with the illustration in [31]. Correspondingly,
a nonuniform distribution of variant two is also observed in Fig. 8 before variant reorientation is complete.
As a result, a non-homogeneous deformation mode appears regardless of the uniform uni-axial loading. In
detail, little shrink appears on the vertical edge. This is because the elastic moduli tensor becomes different
in various regions of the specimen due to the induced different internal state variables or the internal micro-
states in different local regions. However, this non-homogeneous phenomenon disappears with the increase
in the magnetic field strength since the internal state variables reach their “saturation” value and are uniform
throughout the specimen domain. This intermediate non-homogeneous phenomenon is not observed in the
solution given by the linear FE due to its limited ability to describe non-uniform strain in an element.

4.1.2 The superelastic response of the MSMA subjected to a constant magnetic field

In this Section, the stress–strain response of the specimen under a constant external magnetic field is investi-
gated. The superelastic effect under a constant magnetic field is another special feature of the magnetic shape
memory alloy. The specimen is studied initially in the single variant two state. Under compression, variant two
transforms to variant one. Consequently, the MSMA exhibits a superelastic response, where a small increase
in compression induces a significant increase in strain. In contrast to the MFIS simulation in Sect. 4.1.1, the
induced strain is negative here. Under the field of μ0Ha = 1.0 T, compression is generally applied from 0
and 5 MPa in a quasi-static process. Figure 9 shows the stress–strain curve. The ANCF element effectively
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Fig. 7 Distribution of the effective magnetization magnitude under compression tA=1.0 MPa (ANCF solution)

Fig. 8 Distribution of the variant two volume fraction ξ2 under compression tA=1.0 MPa (ANCF solution)

Fig. 9 The stress–strain curves of the MSMA sample calculated at μ0Ha = 1.0 T

describes the superelastic behavior of the MSMA. However, similar to the comparison in Sect. 4.1.1, the result
given by ANCF FE slightly deviates from those given by classical FEs.

In summary, the introduced ANCF element is capable of simulating the special behavior of the MSMA
and following the full process of the generation of MFIS. However, the ANCF element results do not fully
agree with the results obtained from the two classical FEs as shown in Figs. 6 and 9. To explore the cause for
this deviation, the new element is examined in a pure magnetostatic analysis in the following Section.

4.2 Magnetostatic analysis of a permanent magnet

A pure magnetostatic analysis as shown in Fig. 10 is performed using the ANCF element in this Section. The
magnetic field inside a bulk permanent magnet domain �r and the surrounding space �

′
r are analyzed. The
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(a) (b)

Fig. 10 Permanent magnet model with continuity and boundary conditions

Table 2 Boundary conditions (BCs) of the quarter model

Condition Dirichlet Neumann Load Constraint
BCs

B · n = 0 – �5 : ψ,y = 0 – –
�4 : ψ,x = 0

symmetry – �6 : ψ,x = 0 – –
antisymmetry �3 : ψ = 0 – – –
�H� × n = 0 – – – �1 : ψ+

,x = ψ−
,x

�2 : ψ+
,y = ψ−

,y
�B� · n = 0 – – Q –

dimensions of the �r and �
′
r are the same with the model in Sect. 4.1. MagnetizationM is 750 A/m along the

positive y axis.
For this magnetostatic problem without free current, the Maxwell equations degenerate to ∇ · B = 0 due

to the use of the scalar magnetic potential ψ and the relationH = −∇ψ , where B is the magnetic flux density.
The constitutive relations in the magnet and surrounding space domain are

B = μ0(H + M) in �r

B = μ0H in �
′
r

}
. (44)

As shown in Fig. 10a, the interface continuity conditions between two domains are

�B� · nd = 0

�H� × nd = 0

}
(45)

where �·� indicates the jump between the variable value on the two interface sides, and nd is the normal
vector of the interface directing from �r to �

′
r . In other words, the normal component of B and the tangential

component of H are continuous on the interface. In the framework of the variational principle, such interface
continuity conditions enter into the FE formulation as the nodal loads on the interface �r ∩ �

′
r as shown in

Eq. (B.6) in the detailed derivation in Appendix B. Besides the interface continuity conditions, the magnetic
insulation condition B · n = 0 is applied on the boundaries in this analysis, where n is the outward normal
vector on the boundary ∂�

′
r . As was the case for the analysis in Sect. 4.1, only a quarter model is analyzed

as shown in Fig. 10b. All the conditions on the boundaries �3 ∼ �6 and the interface �1 ∼ �2 in the specific
model are shown in Fig. 10b and Table 2.

Among the whole conditions, all the Neumann conditions automatically hold under the framework of the
variational principle method or the finite element method as shown in Appendix B. The equality constraints of
the scalar potential and the tangential gradient are automatically satisfied by assigning a unique value on the
interface nodes using FEM as shown in Appendix C. The remaining continuity condition �B� · n = 0 leads
to the nodal load on the interface Q = ∫

�d
(−M · nd)STd�d , where �d is the interface. In summary, the only
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Fig. 11 Distribution of Hy in the permanent magnet model

boundary condition that needs to be explicitly applied is the Dirichlet condition on �3. The model is analyzed
using the classical linear quadrilateral element, the classical 8-node quadratic quadrilateral element, and the
proposed ANCF magnetic quadrilateral element. The result provided by the commercial software COMSOL
is used as the reference. In the element implementation, it is important to notice the difference between ANCF
FE and the classical FE. Using magnetic potential gradients as additional nodal degrees of freedom, the ANCF
element brings a disadvantage, i.e., extra explicit constraints on the nodal gradients should be applied to be
consistent with the Neumann boundary conditions (BCs) on �4 ∼ �6 in the ANCF element implementation.
The distribution of the component of the magnetic field H along the y axis is shown in Fig. 11. To get a clear
look into the interface, the local region 0.02× 0.01 m2 is presented in Fig. 11. A unique range is employed in
all the Figures for the sake of comparison.

It is clear that the magnetic field calculated by the classical elements agrees well with that obtained by
COMSOL, while the ANCF element cannot give a close result. This is because the ANCF element introduces
gradients as nodal degrees of freedom, which implies that all the gradient components of ψ on the nodes are
manually assigned to be equal on the two interface sides. These explicit equality constraints on the interface
nodes largely change the local distribution of the normal gradient on the interface though the ANCF element
cannot lead to a continuous normal gradient at the non-node side points (the proof is presented in Appendix C).
However, based on the different constitutive relations as shown in Eq. (44) in two domains and the continuity
conditions as shown in Eq. (45), in this specific analysis there is a jump in the y axis component of the
magnetic field theH on the horizontal interface �1. Looking into the value of Hy on interface node A as shown
in Fig. 10b, the classical linear and 8-node quadrilateral elements give a jump of 725 A/m and 750.3 A/m on
the domain interface, respectively. These are close to the theoretical value 750 A/m. According to the above
analysis, the jump in Hy on interface �1 should be explicitly guaranteed on the nodes in the ANCF analysis.
To handle the normal gradient gap issue, two equivalent options are available. For the first option, an extra set
of nodes can be introduced on the interface. In the meantime, the constraints setting the magnetic potential and
the tangential gradient of the two sets of nodes to be equal are applied. As a result, only the normal magnetic
potential gradients of the second set of nodes are independent DOFs. Alternatively, rather than the extra set of
nodes, another set of independent normal gradients on the interface nodes can be directly introduced. Either of
them will bring a new set of independent gradients to the system. Due to the straightforward implementation,
the first procedure is adopted in this paper to release the implicit full equality constraints on the magnetic
potential gradients of the interface nodes in the original model. By doing so, the ANCF analysis is expected
to be improved. Figure 12 shows the obtained distribution of Hy .
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Fig. 12 Distribution of Hy obtained by the ANCF element with additional set of interface nodes

(a) Field-strain curve (b) Field-magnetization curve

Fig. 13 Field-strain and field-magnetization curves under compression tA=1.0 MPa

Apparently, the solution is improved, and the jump in Hy on the interface is captured. However, the obtained
gap value �Hy� = 803 A/m on point A is still farther from the reference solution than values obtained using
classical finite elements. This is because the jump constraint on Hy is not exactly applied at the interface.

In summary, the cause for the deviation of the ANCF element solution is rooted in the direct adoption of
magnetic potential gradients as FE nodal coordinates. This brings an added and evenmore complicated explicit
constraint on the gradients to handle the natural BCs and interface gradient discontinuity. By contrast, in the
case of the classical FE, such conditions are implicitly satisfied in the framework of variational principle.

In conclusion, both the classical linear and 8-node quadratic quadrilateral element can give a close result to
that obtained by COMSOL. Nevertheless, the ANCF formulation is not recommended in the magnetic analysis
with two or more different medium domains if no special operations are taken to handle the domain interface
continuity conditions. The reasons are as follows. Firstly, an extra set of nodes or additional corresponding
gradient DOFs need be introduced to capture the “jump” of the corresponding magnetic field component on
the domain interface. Additionally, complicated constraints need to be explicitly applied on the interface nodes
to guarantee the continuity conditions on the domain interface. To exactly describe the interface continuity
condition, the gap value on the corresponding field component must be obtained in advance, which is virtually
impossible in problems without analytical solutions. Therefore, the ANCF FE must be improved for the two-
domain MSME analysis. As an alternative, using the ANCF FE for the deformation analysis but the classical
FE for the magnetic field analysis can be a good option. From the perspective of interpolation, the displacement
is described using the cubic 12-term interpolation while the magnetic potential is interpolated with lower order
bases without gradients as interpolation conditions. Figure 13 shows the MSME simulation results obtained
using mixed FEs, i.e., ANCF FE and linear FE.

Apparently, the mixed FEs strategy works well since it gives very close results to those obtained by the
classical FE while keeping all potential benefits of the ANCF approach in the mechanical analysis involving
large deformation. Additionally, the simulation time of the mixed FEs strategy is less than half (around 45%)
that of the original ANCF simulation. Themixed FEs strategy provides an attractive way to integrate the ANCF
method in the MSME analysis of the complicated specimen with large deformation.
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Fig. 14 Dynamic simulation of MSMA sample

4.3 Dynamic mechanical response of MSMA specimen

In this Section, the dynamic mechanical response of the MSMA specimen under a constant magnetic field and
a high-frequency cyclic compression is simulated via the mixed FEs strategy. The same specimen as employed
in Sect. 4.1 is adopted. Referring to [8,16], a linearly varying compression is used as the mechanical impact.
As shown in Fig. 14a, the magnitude of the compression is 5 MPa, and the period is 0.02 s. The magnetic field
is μ0Ha = 1.0 T, which guarantees a full superelastic loop for the studied sample as shown in Fig. 9. As was
the case in Sect. 4.1.2, the specimen is initially in the single variant two state. The generalized-α integrator
with a numerical damping is used for the solution of the equation of motion. The mechanical response of the
sample is shown in Fig. 14b.

As shown in Fig. 14b, the mechanical response of the MSMA sample consists of 6 stages. FromA to B, the
sample exhibits elastic axial contraction under the effect of compression tA. With the increase in compression,
the transformation from variant 2 to variant 1 begins at point B, and the macro-axial strain jumps to the
maximum induced strain 0.06 at point C. The increase in compression only leads to a tiny elastic growth in
the axial strain. Corresponding to the peak value of 5 MPa at 0.01 s, the axial strain reaches the maximum at
point D. Similarly, as compression drops, the sample demonstrates elastic behavior in segment DE and FG
and decreases sharply from E to F as a result of the variant transformation. During the simulation, there is
vibration on the strain at point C and F due to the inertial effect. This cannot be seen in the quasi-static analysis
[10]. As was the case in [8], a switch-like response of the axial strain is obtained. The validity of the proposed
approach is verified.

As a summary of the numerical examples Section, a clarification is made as follows. This work tries to
check the possibility of applying the ANCF method to the MSME analysis not just to propose a new magneto-
mechanical element. As a first step, the ANCF method is implemented for both mechanical and magnetic
field via a magneto-mechanical ANCF element. It is demonstrated that the approach can well capture the
key behaviors of MSME. Meanwhile, the limitations of this approach are highlighted, which come from
the magnetic part of the analysis. As a measure for overcoming those difficulties, a mixed FEs strategy is
proposed, in which ANCF is only used in the mechanical part, and the magnetic equations are solved using
classical FEs. This approach keeps inherent advantages of ANCF in the mechanical part but is free from the
limitations mentioned above in the magnetic part of the analysis. This mixed approach has also an advantage
in computational time with respect to the approach when ANCF is used in both mechanical and magnetic parts
of the analysis.

5 Conclusions

This paper explores a possible way to simulate the magnetic shape memory effect with large deformation
based on the absolute nodal coordinate formulation. The surrounding space is accounted for, and the nonlinear
bidirectional coupling terms between the magnetic field and the mechanical field are considered. The newly



1960 T. Wang et al.

constructed ANCF magneto-mechanical element is capable of describing the full generation process of the
magnetic-field-induced strain and capturing the special features of themagnetic shapememory effect including
field-strain/magnetization hysteresis and the superelastic effect. The difference between the results obtained
using the ANCF element and the classical element is discussed, and the cause for the deviation is analyzed
using a pure two-domain magnetostatic problem. The conclusion is drawn that the ANCF element should be
used carefully with appropriate constraints for the two-domain MSME simulation such that the corresponding
gradient discontinuity on the interface is suitably satisfied. A mixed FEs strategy, which adopts ANCF FE
in the displacement field solver and classical FE in the magnetic field solver, is proposed as an alternative
option to fix the problem. The mixed FEs approach shows high agreement with the classical FE on tracking
the generation of MFIS in the sample under a varying magnetic field. Additionally, the method predicts the
dynamic response of the MSMA sample under a cyclic compression. With relatively low computational cost,
the mixed FEs approach can be an attractive way to integrate the ANCF method in the MSME analysis of a
complicated specimen with large deformation. Future work will focus on the handling of the gradient jump
issues in the two-domain magnetic shape memory effect simulation.
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Appendix A. Shape functions of the ANCF element

The shape functions si , i = 1, 2, ..., 12 of the ANCF planar quadratic element [21] are

s1 = (η − 1)(ξ − 1)(−2η2 + η − 2ξ2 + ξ + 1)
s2 = −lξ(η − 1)(ξ − 1)2

s3 = −wη(η − 1)2(ξ − 1)
s4 = −ξ(η − 1)(−2η2 + η − 2ξ2 + 3ξ)

s5 = −lξ2(η − 1)(ξ − 1)
s6 = wηξ(η − 1)2

s7 = −ηξ(2η2 − 3η + 2ξ2 − 3ξ + 1)
s8 = lηξ2(ξ − 1)
s9 = wη2ξ(η − 1)
s10 = −η(ξ − 1)(−2η2 + 3η − 2ξ2 + ξ)

s11 = lηξ(ξ − 1)2

s12 = −wη2(η − 1)(ξ − 1)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

where ξ = x/ l, η = y/w are the local normalized coordinates in the straight configuration, and 0 ≤ ξ, η ≤ 1,
and l and w are the element length and width in the straight configuration.

http://creativecommons.org/licenses/by/4.0/


Numerical analysis of MSME based on ANCF 1961

Fig. 15 General two-dimensional magnetostatic model

Appendix B. Variational principle of a general two-domain magnetostatic problem

To get a clear understanding on the boundary conditions and the interface continuity conditions, the variational
principle of a general two-domain magnetostatic problem is presented here. The problem is shown in Fig. 15.
One can assume that�1 is a permanent magnet domain with a constant magnetizationM and�2 is a free space
domain. Therefore, the constitutive relations are shown in Eq. (44). Recalling the illustration in Sect. 4.2, the
governing differential equation is

∇ · B = ∇ · H = − ∂

∂x

(
∂ψ

∂x

)
− ∂

∂y

(
∂ψ

∂y

)
= 0. (B.1)

It should be noted that Eq. (B.1) is derived based on the constant magnetization assumption and holds on the
whole domain. Without loss of generality, the boundary conditions are

ψ = p on �1(
∂ψ

∂x
x̂ + ∂ψ

∂y
ŷ
)

· n + γψ = q on �2

⎫⎬
⎭ (B.2)

where x̂ and ŷ are the unit direction vectors of the axes, and n is the unit outward normal vector on boundary
�2. The first and second term are classified into the Dirichlet BC and the natural BC, respectively. The natural
BCs can be implicitly satisfied in the framework of variational principle as shown in the following formulation.
Specifically, in the case of γ = 0 and q = 0, the second term degenerates to the magnetic insulation condition.
Besides the BCs as shown in Eq. (B.2), the interface conditions as shown in Eq. (45) should be satisfied.
Recalling the constitutive relations Eq. (44), the first term in Eq. (45) is

[(
∂ψ+

∂x
x̂ + ∂ψ+

∂y
ŷ
)

−
(

∂ψ−

∂x
x̂ + ∂ψ−

∂y
ŷ
)]

· nd = M · nd on �d (B.3)

where ψ+ and ψ− are the potentials on the two sides of the interface, and nd is the interface normal vector
directing from �1 to �2. The second term in Eq. (45) can be satisfied automatically in the framework of FEM.
The two-domain magnetostatic problem can be fully described by Eqs. (B.1–B.3). The equivalent variational
formulation is

δF(ψ) = 0

ψ = p on �1

}
(B.4)

where the functional expression is

F(ψ) = 1

2

∫∫
�

[(
∂ψ

∂x

)2

+
(

∂ψ

∂y

)2
]
d�

+
∫

�2

(γ

2
ψ2 − qψ

)
d� +

∫
�d

(−M · nd) ψd�.

(B.5)
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The FEM equilibrium equation can be obtained based on Eqs. (B.4) and (B.5). In the specific permanent
magnet case as shown in Sect. 4.2, γ = q = 0, and the equilibrium equation on the element level is

∫
�elem

(
ST,xS,x + ST,yS,y

)
d�eψ =

∫
�d

(M · nd)STd�. (B.6)

The proof between Eq. (B.4) and the PDE description Eqs. (B.1–B.3) is presented as follows. Taking the first
variation of F(ψ) with respect to ψ , one obtains

δF =
∫∫

�1

[(
∂ψ

∂x

)(
∂δψ

∂x

)
+
(

∂ψ

∂y

)(
∂δψ

∂y

)]
d�

+
∫∫

�2

[(
∂ψ

∂x

)(
∂δψ

∂x

)
+
(

∂ψ

∂y

)(
∂δψ

∂y

)]
d�

∫
�2

(γψ − q) δψd� +
∫

�d

(−M · nd) δψd�.

(B.7)

Based on the partial integration rules,

(
∂ψ

∂x

)(
∂δψ

∂x

)
= ∂

∂x

(
∂ψ

∂x
δψ

)
− ∂

∂x

(
∂ψ

∂x

)
δψ

(
∂ψ

∂y

)(
∂δψ

∂y

)
= ∂

∂y

(
∂ψ

∂y
δψ

)
− ∂

∂y

(
∂ψ

∂y

)
δψ

⎫⎪⎪⎬
⎪⎪⎭

,

and the divergence theorem,

∫∫
�

(
∂U

∂x
+ ∂V

∂y

)
d� =

∮
�

(
U x̂ + V ŷ

) · nd�,

Eq. (B.7) can be written as

δF =
∫∫

�1

[
− ∂

∂x

(
∂ψ

∂x

)
− ∂

∂y

(
∂ψ

∂y

)]
δψd� +

∫∫
�2

[
− ∂

∂x

(
∂ψ

∂x

)
− ∂

∂y

(
∂ψ

∂y

)]
δψd�

+
∮

∂�1

[(
∂ψ

∂x
x̂ + ∂ψ

∂y
ŷ
)
n̂
]

δψd� +
∮

∂�2

[(
∂ψ

∂x
x̂ + ∂ψ

∂y
ŷ
)
n̂
]

δψd�

+
∫

�d

(−M · nd ) δψd� +
∫

�2

(γψ − q) δψd�

(B.8)

where ∂�1 = �1 + �+
d and ∂�2 = �2 + �−

d are the full boundaries of domain �1 and �2. Noting that ψ is
constant on �1, and therefore the spatial gradient vanishes, Eq. (B.8) can be simplified to

δF =
∫∫

�

[
− ∂

∂x

(
∂ψ

∂x

)
− ∂

∂y

(
∂ψ

∂y

)]
δψd�

+
∫

�d

[(
∂ψ+

∂x
x̂ + ∂ψ+

∂y
ŷ
)
n̂+
d +

(
∂ψ−

∂x
x̂ + ∂ψ−

∂y
ŷ
)
n̂−
d − M · nd

]
δψd�

+
∫

�2

[(
∂ψ

∂x
x̂ + ∂ψ

∂y
ŷ
)
n̂ + γψ − q

]
δψd�

(B.9)

where nd = n+
d and n−

d are the outward normal vectors of �1 and �2 on the interface. Accounting for
n+
d = −n−

d and the arbitrariness of δψ , the equivalence between Eq. (B.4) and the PDE description Eqs. (B.1–
B.3) is presented.
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Fig. 16 The generalized ANCF planar quadrilateral element

Appendix C. Tangential gradient continuity proof for the ANCF element

The tangential gradient continuity on the interface between the two adjacent elements is verified as follows. As
shown inFig. 16, four arbitrary points are picked to check their tangential gradient along the corresponding edge.
Substituting the normalized coordinates (ξ, η) into the shape function matrix, the corresponding tangential
gradients are obtained as Eq. C.1,

ψ A
,x = f1(ψ1 − ψ2) + f2ψ1,x + f3ψ2,x

ψ B
,y = f4(ψ2 − ψ3) + f5ψ2,y + f6ψ3,y

ψC
,x = f1(ψ4 − ψ3) + f2ψ4,x + f3ψ3,x

ψD
,y = f4(ψ1 − ψ4) + f5ψ1,y + f6ψ4,y

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

, (C.1)

where the intermediate coefficients are

f1 = 6ξ(ξ − 1)

l
, f2 = 3ξ2 − 4ξ + 1, f3 = ξ(3ξ − 2)

f4 = 6η(η − 1)

w
, f5 = 3η2 − 4η + 1, f6 = η(3η − 2)

⎫⎪⎬
⎪⎭

.

Apparently, as shown in the above equations, the tangential gradient on the element edge depends only on
the coordinates of the related two nodes. In other words, the tangential gradient is continuous between the
two adjacent elements. Therefore, the tangential gradient continuity as shown in the second term of Eq. (45)
is proved. This tangential gradient continuity cannot be exactly guaranteed and proved by the classical FEs.
However, it turns out that the obtained tangential gradients on the two sides along the element edge are quite
close and the influence is small. To clarify the source of the problem in ANCF analysis, the normal gradient
continuity is also checked for the ANCF element as Eq. (C.2),

ψ A
,y = f7(ψ2 − ψ1 + ψ4 − ψ3) + (1 − ξ)ψ1,y + ξψ2,y + f8

[
(ξ − 1)(ψ4,x − ψ1,x ) + ξ(ψ3,x − ψ2,x )

]

ψ B
,x = f9(ψ2 − ψ1 + ψ4 − ψ3) + (1 − η)ψ2,x + ηψ3,x + f10

[
(η − 1)(ψ2,y − ψ1,y) + η(ψ3,y − ψ4,y)

]

ψC
,y = f7(ψ2 − ψ1 + ψ4 − ψ3) + (1 − ξ)ψ4,y + ξψ3,y + f8

[
(ξ − 1)(ψ4,x − ψ1,x ) + ξ(ψ3,x − ψ2,x )

]

ψD
,x = f9(ψ2 − ψ1 + ψ4 − ψ3) + (1 − η)ψ1,x + ηψ4,x + f10

[
(η − 1)(ψ2,y − ψ1,y) + η(ψ3,y − ψ4,y)

]

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

,

(C.2)

where the intermediate functions fi , i = 7, 8, 9, 10 are given as follows:

f7 = 1

w
ξ(2ξ2 − 3ξ + 1), f8 = l

w
ξ(ξ − 1)

f9 = 1

l
η(2η2 − 3η + 1), f10 = w

l
η(η − 1)

⎫⎪⎬
⎪⎭

.
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Clearly, the normal gradient of the magnetic potential on the element edge depends not only on the DOFs
of the related two nodes but also the DOFs of the other two nodes. In other words, the normal gradient is
not continuous between the two adjacent elements by default. Therefore, the element is not a C1-continuous
element. As similar statement can also be found in [12]. Since the ANCF element cannot lead to a continuous
normal gradient of the magnetic potential at the arbitrary non-node point on the element side, the derivation
of the ANCF analysis result essentially comes from the use of gradients as DOFs at the nodes.
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