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Abstract The linear stability of a piezo-electro-mechanical (PEM) system subject to a follower force is here
discussed. The mechanical subsystem is constituted by a linear visco-elastic cantilever beam, loaded by a
follower force at the free end. It suffers from the Hopf bifurcation, whose critical load is strongly affected by
damping, according to the well-known Ziegler’s paradox. On the other hand, the electrical subsystem consists
of a distributed array of piezoelectric patches attached to the beam and connected to a properly designed second-
order analog circuit, aiming at possibly enhancing the stability of the PEM system. The partial differential
equations of motion of the PEM system are discretized by the Galerkin method. Linear stability analysis is
then carried out by numerically solving the associated eigenvalue problem, for different significant values of
the electrical parameters. A suitable perturbation method is also adopted to detect the role of the electrical
parameters and discuss the effectiveness of the controller.

1 Introduction

The use of piezoelectricmaterials has experienced a great increase in different fields of engineering applications
[1–11]. In particular, several studies have been performed in the structural vibration mitigation context, e.g.
[12–18], where distributed networks of piezoelectric devices have been adopted to propose alternative control
approaches.

It has to be observed that most of the distributed piezoelectric-based control approaches have been formu-
lated by enforcing the ‘principle of similarity’ [19–29], which is based on the concept that vibration mitigation
can be successfully achieved when the controller resembles the behavior of the primary structure. Of course,
this principle descends from more conventional, though successful, control strategies of mechanical nature:
the tuned mass damper (TMD) [30–43] and the nonlinear energy sink (NES) [44–50].

However, while several efforts have beenmade in the literature to enhance the response of non-autonomous
(i.e., externally excited) systems, the vibration control of structures, subject to non-conservative forces (e.g.,
follower forces) has not been yet extensively addressed. However, it has to be remarked that problems involv-
ing follower forces have triggered in the literature a controversial debate [51–53]. In particular, several works
investigated the existence in the real-world applications of follower actions; some relevant examples in engi-
neering applications can be found: (a) in aerospace [54–56]; (b) in vehicle brakes [57,58], and in flexible
pipes conveying a flowing fluid [59–66]. On the other hand, also experimental works have been performed to
reproduce follower forces in order to demonstrate their existence and the theoretically derived findings, see
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e.g. [54,67,68]. Therefore, the development of suitable control strategies for this class of systems represents
nowadays an interesting and challenging problem.

Another important remarkable aspect is that the above-mentioned mechanical systems, that are represen-
tative of real structures, e.g., aircrafts, wings, rocket motors, flexible pipes, suffer from Hopf bifurcation,
triggered by follower forces; this bifurcation may occur in the presence of a very well-known and interesting,
damping destabilization phenomenon. This is referred in the literature to as the Ziegler’s paradox [69–79], i.e.,
a detrimental effect of damping that causes a finite reduction of the Hopf critical load of a slightly damped
system, with respect to that of the undamped one.

Recently, several studies have been performed on the stability of systems loaded by follower forces with
the specific purpose of enhancing the Hopf critical load [29,80–85]. In particular, it was discussed in [29]
that similar piezoelectric controllers are actually detrimental in the case of autonomous systems, since the
piezoelectric secondary systemdoubles the pair of the critical eigenvalues (which are on the imaginary axis) and
the gyroscopic coupling splits them, generally causing instability. On the other hand, non-similar piezoelectric
controllers were studied in [82] in the case of discrete autonomous systems, and it was also shown that they
can enhance the linear stability as well as induce positive effects in the post-critical response [83,84] of the
Ziegler’s column [71], also when nonlinear damping is considered [85]. The beneficial/detrimental effects of
non-similar piezoelectric controllers on the linear stability of continuous autonomous systemswere investigated
in [86], by adopting the zero-order network and zero-order dissipation (Z , Z) controller type driven from [28]
and in [87] by adopting the second-order network and second-order dissipation (S, S) controller type, which
in what follows will be referred to as "rod-like electric controller".

In this work, the linear stability of a piezo-electro-mechanical (PEM) system, constituted by the visco-
elastic Beck’s beam [70,75,78,79], i.e., a cantilever beam loaded at its free end by a follower force and here
referred to as the primary structure, and by the rod-like controller, i.e., the secondary structure, coupled to the
beam via distributed piezoelectric patches, is studied. The beam suffers from the Ziegler’s paradox, but the
presence of the controller aims to enhance its stability. In addition to what was analyzed in [87], in this paper the
focus is to deeply investigate how the mechanical and electrical eigenvalue spectra interact and, accordingly,
how the controller is able to modify the beam response, thus possibly increasing the overall PEM stability.
The main objective of this work is thus not actually the real design of the optimal control system, but it is to
understand how the electrical parameters affect the PEM system stability. The partial differential equations
governing the motion of the PEM system were derived in [87], and here, the associated eigenvalue problem is
numerically solved after discretization by the Galerkin weighted residual approach. Moreover, a perturbation
approach (first developed in [82]) is here suitably adapted to study the sensitivity of the PEM system to the
electrical parameters. Finally, qualitative and quantitative interpretations of the interaction between primary
and secondary subsystems are given for some case studies, through a projection of the modes of the coupled
system onto the basis of those of the uncoupled one.

The paper is organized as follows. In Sect. 2, the PEM system equations of motion are presented. In Sect.
3, the control strategy is defined, and in Sect. 4 the perturbation approach for the sensitivity analysis of the
eigenvalues is briefly recalled. In Sect. 5, preliminary numerical results are presented, while in Sect. 6 an
extensive discussion on the PEM system linear stability is performed. In Sect. 7, the concluding remarks are
summarized. Finally, two appendices, containing details on the discretization of the equations of motion and
on the perturbation approach, respectively, close the paper.

2 The piezo-electro-mechanical model

The piezo-electro-mechanical system here analyzed is the same as described in [87], to which the reader is
referred to. The mechanical subsystem is a linear visco-elastic Euler–Bernoulli cantilever beam subject to a
follower force at its free end. This represents the system that has to be controlled, i.e., its stability has to be
enhanced for what concerns the Hopf bifurcation undergoing when the applied load exceeds the critical value.
To this end, a piezoelectrical subsystem is coupled to the mechanical one, aiming to subtract and dissipate
energy from it. This is possible thanks to the piezoelectric nature of the adopted controller. The schematic of the
PEM system is represented in Fig. 1. The beam has length �, cross-section inertia I , and mass per unit-length
ρ. The material obeys the Kelvin–Voigt visco-elastic law with an elastic modulus E and an internal damping
coefficient η; moreover, external damping, as due to the interaction with the surrounding environment, is also
modeled via a distributed layer of transversal external dashpots of viscous constant c.

The controller is composed by piezoelectric devices uniformly distributed along the beam, as sketched
in Fig. 1. They are shunted to the electrical circuit represented by the light blue E.C. box, whose specific
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Fig. 1 Piezoelectric-controlled visco-elastic Beck’s beam

configuration was derived in [28] and adopted in [87] for similar controlling purposes: it is referred to as the
rod-like controller, since the spatial derivatives of the damping- and stiffness-like terms in the flux-linkage
equation resemble that of the rod, i.e., a linear elastic beam undergoing only axial displacements. According
to the definition given in [28], the piezoelectric devices, shunted to the electrical circuit, are idealized as an
array of infinite in-parallel RCL elements; in particular, the circuit is characterized by a linear density of
piezoelectric capacitance C , of inductance L , and of resistances R, rR , while has a piezoelectric coefficient
Eem , that actually provides the coupling between the electrical and mechanical subsystems.

The partial-differential equations of motion, governing the linear dynamics of the PEM system [87], are
discretized by a Galerkin approach, and in non-dimensional form, they read (see “Appendix A” for details):

Mm q̈m + Bm q̇m + Kmqm + 2μHqm − γGT q̇e = 0,
νeMeq̈e + Beq̇e + κeKeqe + γGq̇m = 0

(1)

where the dot denotes differentiation with respect to the non-dimensional time t ; qm,qe are the vectors
collecting the modal coordinates of the mechanical and electrical subsystem, respectively; Mθ , Kθ (with
θ = m, e) are the mass and stiffness matrices of the mechanical and electrical subsystem, respectively, H is
the external action matrix, andG is the matrix associated with the gyroscopic nature of the electro-mechanical
coupling. On the other hand, the damping operators are Bθ = αθKθ + βθMθ (θ = m, e), where αθ and
βθ (θ = m, e) represent the non-dimensional internal and external (mechanical and electrical) damping
coefficients, respectively; νe and κe are here referred to as the non-dimensional electrical mass and stiffness,
respectively. Finally, γ is the coupling parameter, and μ is the magnitude of the non-conservative force. All
the coefficients are defined in “Appendix A.”

3 The control strategy

The linear stability of the PEM system is addressed by solving the eigenvalue problem associated with Eq. (1):
the eigenvalues are actually a function of the electro-mechanical parameters, i.e., (μ, αm, βm, γ, νe, κe, βe, αe),
and the aim is to investigate how the capability of the rod-like controller affects the PEM behavior. By letting
qm = eλtum and qe = eλtue, the following eigenvalue problem associated with Eq. (1) is obtained:

(λ2Mm + λBm + Km + 2μH)um − λγGTue = 0,

(λ2νeMe + λBe + κeKe)ue + λγGum = 0.
(2)

When γ = 0 and the load μ increases from zero, the uncontrolled system encounters a Hopf bifurcation, i.e.,
the first eigenvalue, namely the one with the lowest frequency, crosses from the left the imaginary axis of the
complex plane, ωd , μd being the critical frequency and the corresponding critical load, respectively (subscript
d means ‘damped’).

When γ is larger than zero, a complex (and possibly beneficial in terms of stability) interaction between
the mechanical and electrical subsystems occurs. Remarkably, and according to what discussed in [29,86], the
electro-mechanical coupling γ is assumed to be small, i.e., γ << 1, to meet common practical applications
requirements. However, as it was shown in [87], to significantly improve the controller performance, γ should
be the largest possible, within the situation of moderately largely coupled systems. However, when γ is
sufficiently small, the behavior of the PEM system can be synthesized as follows.

• The uncontrolled beam loses the stability at its critical load μd and thus oscillates at the corresponding
frequency ωd .
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• The gyroscopic coupling brings the mechanical response into the controller equation as a forcing term with
frequency equal to ωd : the controller starts oscillating as well.

• Again the gyroscopic coupling returns the controller response back to the beam: its response is then
modified.

Therefore, it is important to remark that the magnitude of the electrical response and thus its contribution
to the overall stability of the PEM system depends on the coupling and on the electrical parameters. If they
are correctly designed, the controller may enhance significantly the beam response. To achieve this goal, it
is expected that the energy exchange between mechanical and electrical subsystems is maximized when the
electrical frequency is close to ωd , thus giving rise to a so-called resonant controller, the SRC . However, as
discussed in [29,86], this may not be necessarily the best control approach, in fact non-resonant controllers,
SN RC ,maybemore effective in awider range of the electric parameter space. In particular, it has beenobserved
in [86] that the best performance is obtained when the controller has small νe, κe, and is away from resonance,
and, in addition, when the electrical frequency is smaller than ωd . This aspect has also been confirmed when
the controller has not only a single frequency (see [86]), but it becomes a multi (or infinite)-degree of freedom
system (see [87]), as in the case at hand, where the controller is characterized by a multi-modal response whose
(electrical) undamped natural frequencies are defined, thanks to the rod analogy, as:

ωe,k = π

2
(2k − 1)

√
κe

νe
with k = 1, 2, . . . (3)

Finally, it is worth noticing that the eigenvalue problem associated with the PDEs (A.1) may be also directly
attacked by BVP solvers. However, in this work, a Ritz–Galerkin discretization approach of the equations of
motion (A.1) has been preferred since, even if less accurate when compared to former solvers, it allows a more
straightforward comprehension of the role played by each mode of the uncoupled subsystems on the whole
PEM stability.

4 Sensitivity analysis

To investigate the role of the electrical parameters for both the resonant and non-resonant controllers, a
sensitivity analysis based on a perturbation approach is carried out. The procedure is driven from the literature
[82] (to which the reader is referred to) and here is briefly recalled (see also “Appendix B” for details).

When 0 < γ << 1, the eigenvalue governing the PEM system stability can be sought as a perturbation
of the critical eigenvalue at the Hopf bifurcation, which, due to the smallness of the coupling, is that of the
mechanical subsystem, namely λ0 = iωd . However, because two different control strategies are adopted, two
separate perturbation schemes need to be defined, since for the SN RC the critical eigenvalue is simple, while
for the SRC it is defective [82].

4.1 SRC

The small positive scaling parameter 0 < ε ≤ 1 (to be reabsorbed at the end of the procedure) is introduced to
rescale the electrical parameters as follows: γ → εγ , νe → ενe, κe → εκe, βe → ε3/2βe, and αe → ε3/2αe. It
is remarked that, here κe and νe are fixed to enforce the resonance condition and thus tune a specific controller
frequency (remember Eq. (3)) such that ωe,k = ωd . Therefore, λ0 = iωd is a double (defective) eigenvalue
for the uncoupled PEM system. Accordingly, a Newton–Puiseux series is adopted:

μ = μ0 + ε1/2μ1/2 + εμ1 + O (
ε3/2

)
,

λ = λ0 + ε1/2λ1/2 + ελ1 + O (
ε3/2

)
,

um = um,0 + ε1/2um,1/2 + εum,1 + O (
ε3/2

)
,

ue = ue,0 + ε1/2ue,1/2 + εue,1 + O (
ε3/2

)
(4)

where λk , um,k , ue,k (k = 1/2, 1, 3/2, . . . ) are the eigenvalue sensitivities evaluated atμ0 = μd , i.e., the Hopf
critical load of the mechanical subsystem. It is worth noting that not only the eigenpairs, but even the load has
been expanded around the critical value of the uncontrolled system. Thus, the value of μ, which renders the
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controlled systemmarginally stable, is determined as an expansion fromμ0. It is found that the sensitivity λ1/2
governs the stability of the PEM system whose expression is derived from the solvability condition enforced
at the ε-order problem, and it is the solution of the following second-order algebraic equation:

λ21/2 + c1λ1/2 + c0 = 0 (5)

where the coefficients c0, c1 are defined in “Appendix B.” The latter equation admits two distinct roots λ±
1/2 =

λ±
1/2

(
μ1/2, νe, βe, αe, γ

)
that do not explicitly depend on κe, since the ratio κe/νe has been fixed to enforce

the resonance condition.
It is concluded that the PEM system endowed with the SRC controller is asymptotically stable when

Re
(
λ±
1/2

)
< 0. The boundary of the stability domain is thus defined byRe

(
λ±
1/2

)
= 0, which, in a geometrical

perspective, is a hyper-surface in the 5-D parameter space
(
μ1/2, νe, βe, αe, γ

)
.

4.2 SNRC

The same rescaling of the electrical parameters of the SRC is taken, except for the electrical damping coeffi-
cients, that is: βe → εβe and αe → εαe. Since λ0 is a simple eigenvalue for the uncoupled PEM system, the
following Mc Laurin series expansion is adopted:

μ = μ0 + εμ1 + O (
ε2

)
,

λ = λ0 + ελ1 + O (
ε2

)
,

um = um,0 + εum,1 + O (
ε2

)
,

ue = ue,0 + εue,1 + O (
ε2

)
.

(6)

Also in this case, the load μ is expanded around the critical value of the uncontrolled system μ0 = μd , and
the value μ1 represents the sensitivity of the PEM critical load due to the presence of the controller. Under
these assumptions, the perturbation algorithm is carried out, and the solvability conditions on the descending
ε-order problem furnishes the first eigenvalue sensitivity, namely

λ1 = −μ1νehmm + γ 2λ20gmm (νe, βe, αe, κe)

νe (2λ0mmm + bmm)
(7)

where gmm (νe, βe, αe, κe) := (v0m,0)
HGTS−1

e Gu0m,0 andSe,um , vm , hmm , bmm ,mmm are defined in “Appendix
B,” together with some details about the perturbation scheme.

It is concluded that the PEM system endowed with the SN RC controller is thus asymptotically stable when
Re (λ1) < 0. The boundary of the stability domain is identified by the equation Re (λ1) = 0 which, from a
geometrical point of view, represents a 6-D hyper-surface depending on the parameters (μ1, νe, βe, αe, κe, γ ).

5 Preliminary analysis on the controller frequency

In this Section, a preliminary sensitivity analysis on the PEM stability, with respect to the non-dimensional
electrical stiffness and coupling coefficient γ (keeping fixed the other electrical parameters), is carried out
with the purpose of exploring the effects of the resulting interaction between the spectra of eigenvalues of the
mechanical and electrical subsystems.

The beam parameters, here and in what follows, are taken as αm = 0.01 and βm = 0.1, which correspond
to a situation where the system suffers from a considerable detrimental effect due to the ‘Ziegler paradox’,
entailing that damping reduces 30% of the critical load, i.e., μd = 6.46 (being 10.02 that of the undamped
beam) and ωd = 5.92.

The eigenvalue problem Eq. (2) is solved by adopting Nm = Ne = 9 (see “Appendix A”), and the
stability diagrams, namely the diagrams of the region of the parameter-space which characterize the PEM
system stability, are obtained. These diagrams are represented in terms of percentage deviation of the load
μ from μd , namely �μ = 100(μ − μd)/μd . The eigenvalue problem is solved by varying two selected
electrical parameters, namely κe ∈ (0, 5] and �μ ∈ [−5, 30]%, and for selected values of γ , namely γ =
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Fig. 2 Stability diagram of the discretized PEM system in the (κe, �μ)-plane, when νe = 0.1, αe = 0, βe = 0.075, κe ∈ [0, 5],
and γ = 0.0125. Stable regions are in light blue, denoted by S. Unstable regions are in white, denoted by U . The dashed gray
lines indicate the values of κe at which the kth electrical frequency ωe,k equals ωd (color figure online)

0.125, 0.025, 0.05. In particular, κe is varied across a wide range (i.e., κe ∈ [0, 5]) such that resonance can take
place across the first nine electrical frequencies, i.e., ωe,k = ωd with k = 1 . . . , 9. While the other electrical
parameters are fixed at νe = 0.1, αe = 0, βe = 0.075.

When γ = 0.0125, it is sufficiently small such that the PEM system can be considered as weakly-coupled.
The results of the sensitivity analysis are illustrated in Fig. 2 where the stable regions of the stability

diagram (i.e., all the eigenvalues have negative real part in these regions of the parameter-space) are denoted
in blue, and the dashed lines identify the values of κe that correspond to the resonance condition ωe,k = ωd
of the k-th electrical mode. It is observed that, when the first electrical mode is tuned to the beam frequency
(ωe,1 = ωd ), the controller has a considerable detrimental effect since the system is stable for negative�μ. On
the other hand, when κe is larger, the controller effect is negligible (�μ � 0), while if κe is smaller significant
stable regions can be detected, i.e.,�μ > 0, entailing that the controller is beneficial. In particular, the stability
diagram exhibits multiple peaks when the resonance condition is attained on higher electrical modes, with the
largest increase of critical load when ωe,2 = ωd . It is then concluded that for small γ the best control strategy,
except for the resonance on the first electrical mode, corresponds to the SRC approach.

A second analysis is performed by increasing the coupling coefficient γ , so that the PEM system becomes
moderately coupled. Analogously to what was shown before, the results are reported in Fig. 3 for the values
of the coefficient: γ = 0.025 in Fig. 3a and γ = 0.05 in Fig. 3b.

Also in this case, the tuning of the first electrical mode to the the beam frequency reveals to have a strong
detrimental effect, and analogously if κe increases, the controller effect becomes negligible. On the other
hand, if κe decreases, again a large stable region at positive �μ appears showing multiple peaks for specific
values of κe. However, it must be noted that, contrarily to the previous case, the largest increments of �μ are
attained when the electrical system is not in resonance with the beam. In particular, when γ = 0.025 (see
Fig. 3a), the largest peak is reached when κe is slightly larger than that corresponding to ωe,2 = ωd , i.e., in
a nearly resonance condition. Whereas, when γ = 0.05 (see Fig. 3b), the largest peak is reached when κe is
considerably far from that corresponding to ωe,2 = ωd , as well as far from ωe,1 = ωd : the SN RC strategy
is then more effective. In addition, in both cases, the increase of critical load is considerably larger than that
obtained at smaller γ .

By summarizing, the preliminary analysis revealed that when γ is small SRC strategy is the best choice
for improving the PEM stability, while if γ is moderately large, SN RC strategy becomes more effective.

However, it is of interest to further shed light on the complex interaction taking place between the electrical
spectrum and the mechanical one, as the controller parameters vary. An attempt to discuss this aspect can be
made by carefully analyzing the stability diagrams shown in Fig. 3. Preliminarily, it is remarked that only the
first mode of the uncontrolled beam, i.e., that at lowest frequency, participates to the PEM stability, the higher
ones being passive, for the considered load values. On the other hand, more than one electrical mode is found
to be involved the PEM stability depending on the adopted “tuning,” i.e., on the choice of the electrical stiffness
κe: the lower κe, the higher the electrical mode possibly triggering instability. In addition, the stability of the
PEM system is strongly affected by the choice of the coupling parameter γ (having set αe, βe), in particular:
when γ is small (see Fig. 3a), a weak interaction between the spectra of the uncoupled subsystems manifests
itself, and the mode determining the Hopf bifurcation comes from the mechanical one (the background in the
Figure is denoted in white); on the other hand, when γ is larger (see Fig. 3b), a stronger spectra interaction
takes place, since the stability is governed by the mechanical subsystem for large κe (white background),
but as κe decreases the eigenvalue triggering the PEM instability comes from the electrical subsystem (light
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Fig. 3 Stability diagrams of the discretized PEM system in the (κe, �μ)-plane, when νe = 0.1, αe = 0, βe = 0.075, κe ∈ [0, 5],
and: a γ = 0.025; b γ = 0.05. Stable regions in light blue, denoted by S. Unstable regions in white, denoted by U . The dashed
gray lines indicate the values of κe at which the kth electrical frequency ωe,k equals ωd . The ranges of κe in which stability is
governed by the mechanical mode are indicated by the white background, those where stability is governed by the electrical
modes are denoted with a light gray background, and those where an interaction between them occurs is highlighted by a dark
gray background (color figure online)

gray background). It is worth to note that in some regions (see the dark gray area) an interaction between
the mechanical and electrical modes occurs for large κe, as well as for low κe between electrical modes (not
reported as gray scales region in the Figure). An in-depth discussion about this modal interaction will be given
in Sect. 6.3.

6 Numerical results

In this Section, further sensitivity analyses are carried out to understand the role played by the electrical
damping parameters. The linear stability analysis of the PEM system is here carried out via the previously
discussed perturbation approach, whose results are compared with those obtained by the numerical analysis
of the eigenvalue problem of the coupled PEM system.

6.1 Effects of the electrical damping

By exploiting the analytical expressions derived in Sect. 4, the sensitivity to the electrical damping is investi-
gated for both the controllers: the SRC (see Sect. 4.1) and the SN RC (see Sect. 4.2). These are endowed with
a source of electrical external, as well as internal damping represented by the parameters βe and αe, respec-
tively. The stability diagrams are derived by fixing the electrical stiffness in correspondence of the largest peak
appearing in Fig. 2 for the SRC and in Fig. 3a for the SN RC . The results are illustrated in Fig. 4, where the
stability boundary is represented by a surface in the (βe, αe, �μ)-space, the stable region being that below the
surface. Moreover, the other electrical parameters are chosen according to the results derived in the previous
Section, namely νe = 0.1 and γ = 0.0125, κe = 0.157 for the SRC (Fig. 4a), and γ = 0.025, κe = 0.177 for
the SN RC (Fig. 4b).

The obtained behavior is qualitatively similar for both the controllers: the increase of critical load is larger
when both βe, αe are small; in particular, it is observed that the controllers are effective when βe �= 0, αe = 0
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Fig. 4 Stability diagrams of the discretized PEM system in the (βe, αe, �μ) space when νe = 0.1 and: a γ = 0.0125 for the
resonant controller tuned on its second mode, namely ω2,e = ωd ; b γ = 0.025 and κe = 0.177 for the non-resonant controller
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Fig. 5 Stability diagrams of the discretized PEM system endowed with the SRC tuned on its second mode, namely ω2,e = ωd ,
when γ = 0.01, 0.0125, 0.15, νe = 0.1, represented: a in the (�μ, βe)-plane with αe = 0; b in the (�μ, αe)-plane with βe = 0.
The stable region is on the left of the blue lines for the PEM and on the left of the vertical axis (�μ = 0) for the uncontrolled
system (color figure online)

or βe = 0, αe �= 0. Thus, to improve the controller performance, the electrical external and internal damping
should act separately.

Then, slices of the surfaces shown in Fig. 4 are taken at the same κe, νe and slightly different γ , to further
emphasize the effect of the coupling and electrical damping parameters on the PEM stability. Results relevant to
the PEM endowed with the SRC are shown in Fig. 5, by taking νe = 0.1, κe = 0.157, γ = 0.01, 0.0125, 0.15;
the stability diagram is represented: in the (�μ, βe)-plane with αe = 0 (see Fig. 5a), and in the (�μ, αe)-plane
with βe = 0 (see Fig. 5a). Similarly, the results of the PEM endowed with the SN RC are shown in Fig. 6, by
taking νe = 0.1, κe = 0.177, γ = 0.02, 0.025, 0.03, in the (�μ, βe)-plane with αe = 0 (see Fig. 6a), and in
the (�μ, αe)-plane with βe = 0 (see Fig. 6b).

In both the cases, the behavior is qualitatively similar: when the electrical damping (analogously for βe
and αe) is close to zero, the controller effect is negligible, i.e., the system is stable at �μ � 0, then large
stable regions (at the right of the boundary) are obtained until an optimum value is found above which �μ
decreases. Here, the small increase of γ (close to the reference value) induces a shift of the stability boundaries
toward higher�μ, thus confirming that, in order to improve the control performance, higher electrical coupling
coefficients are preferred, but with the caveat that if γ is strongly enlarged, the control strategy should change
(remember Figs. 2, 3).

6.2 Analytical versus numerical results

Here, stability diagrams obtained via the perturbation approach are compared with those got by numerical
analyses, directly carried out on the eigenvalue problem. This analysis aims to check the validity of the
asymptotic approach and to confirm the qualitative findings previously discussed.
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Fig. 6 Stability diagrams of the discretized PEM system endowed with the SN RC , when γ = 0.02, 0.025, 0.03, νe = 0.1,
κe = 0.177, represented: a in the (�μ, βe)-plane with αe = 0; b in the (�μ, αe)-plane with βe = 0. The stable region is on the
left of the blue lines for the PEM and on the left of the vertical axis (�μ = 0) for the uncontrolled system (color figure online)
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Fig. 7 Stability diagrams of the discretized PEM system endowed with the resonant controller tuned on its second mode, namely
ω2,e = ωd , at γ = 0.0125, represented in the: a (�μ βe)-plane; b (�μ, αe)-plane. The PEM stable regions are represented by
the light blue regions (numerical solution) and by the area on the left of the blue lines (perturbation solution) (color figure online)

The first comparison is performed on the SRC (ω2,e = ωd ). The stability diagrams are determined by
taking νe = 0.1, κe = 0.157, γ = 0.0125, and they are shown: in the (�μ βe)-plane with αe = 0, in Fig.
7a; in the (�μ, αe)-plane with βe = 0, in Fig. 7b. It can be observed that the behavior is qualitatively well
captured by the asymptotic approach, though a discrepancy is quantitatively exhibited. This is due to the fact
that the range of βe, αe actually slightly exceeds the parameters scaling grounding the perturbation method,
introduced in Sect. 4. The ordering is respected in the insets of Fig. 7 that show a zoom in the region close
to the origin: a better agreement is reached when the damping value is below the cusp of the domain, above
which the ordering is violated (according to [82]).

An analogous comparison is performed at larger γ , thus entailing that the PEM is endowedwith the SN RC .
The results are illustrated with the same previous logic in Figs. 8 and 9. In Fig. 8, the stability diagrams are
determined by taking γ = 0.025, νe = 0.1, κe = 0.177 and are shown: in the (�μ βe)-plane with αe = 0
(Fig. 8a); in the (�μ, αe)-plane with βe = 0 (Fig. 8b). Contrarily to what was shown for the SRC , when
the coupling become stronger, the analytical results are affected by a considerable discrepancy that is clear in
terms of βe, while is less evident in terms of αe. On the other hand, by evaluating the stability diagrams after
a further increasing of gamma, namely γ = 0.05 and by taking νe = 0.1, κe = 0.2, a much more evident
loss of accuracy of the perturbation approach is detected (see Fig. 9), but this is not only due to the fact that
the electrical parameters are beyond the limit suggested by the ordering. In fact, it is expected that when the
PEM is moderately coupled, the system response cannot be assumed as a small perturbation of the response of
the beam alone. Thus, again confirming that the stronger the coupling is, the stronger the interaction between
the spectra of electrical and mechanical subsystems is, and, accordingly, the instability of the PEM system is
triggered by more than one mode (i.e., the first beam mode), and, in particular, that the electrical modes are
no more passive.
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Fig. 8 Stability diagrams of the discretized PEM system endowed with the non-resonant controller with νe = 0.1, γ = 0.025,
κe = 0.177 represented in the: a (�μ, βe)-plane with αe = 0; b (�μ, αe)-plane βe = 0. The PEM stable regions are represented
by the light blue regions (numerical solution) and by the area on the left of the blue lines (perturbation solution) (color figure
online)
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Fig. 9 Stability diagrams of the discretized PEM system endowed with the non-resonant controller with νe = 0.1,γ = 0.05,
κe = 0.2 represented in the: a (�μ, βe)-plane with αe = 0; b (�μ, αe)-plane with βe = 0. The PEM stable region is represented
by the light blue regions (numerical solution) and by the area on the left of the blue lines (perturbation solution) (color figure
online)
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Fig. 10 Critical mode shape evaluated on the stability domain boundary when νe = 0.1, κe = 0.2, αe = 0, γ = 0.05, and
βe = 0.03 at the corresponding critical load denoted by C j (see the black bullets in Fig. 8c): a max[v(s)] versus s; b max[ψ(s)]
versus s

To better emphasize these aspects, the solution of the discretized PEM system Eq. (1) (according to the
adopted Galerkin projection, see Eq. (A.3)) is evaluated on the stability boundary in the correspondence of the
black bullets placed in Figs. 8, 9 and denotedwithC j with j = 1, 2, 3. Since the results are qualitatively similar,
only those relevant to the case of Fig. 9 are here reported. The critical eigenfunctions v(s, t) and ψ(s, t) are
rebuilt after numerically solving the eigenvalue problem Eq. (2) for the above-mentioned parameters values.
In particular, they are normalized by taking v(1, t) = 1 and ψ(1, t) = 1, and their maximum amplitudes in
time are represented in Fig. 10, namely max

t
[v(s, t)] in Fig. 10a and max

t
[ψ(s, t)] in Fig. 10b.
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Fig. 11 Eigenvalues of the PEM system when νe = 0.1, κe = 0.2, αe = 0, γ = 0.05, and βe = 0.03: a Re(λ); b Im(λ)

It can be observed that the behavior of the mechanical subsystem qualitatively resembles the first mode
of the cantilever beam (see Fig. 10a), even though quantitatively the solutions in C1,C3 are fully overlapped,
while C2 is slightly different. On the other hand, the behavior of the electrical subsystem resembles the
second electrical mode (according to the choice of the parameters) in all the considered conditions; however,
a significant quantitative difference can be observed, suggesting a different role of the electrical mode in the
PEM stability.

6.3 Discussion

To further investigate the mechanical/electrical modal interaction on the stability of the PEM system, its
eigenvalues are numerically evaluated by solving the eigenvalue problem Eq. (2) over the full range of μ ∈
[0.95, 1.3]μd and for the same parameters of Fig. 9a. The real and imaginary part of λ are reported versus μ
in Fig. 11a, b, respectively. As shown in Fig. 11a, it is clear that there is more than one eigenvalue crossing
the horizontal axis, confirming the fact that the PEM instability can be triggered by two modes. The nature of
such modes is easily recognized by analyzing the results illustrated in Fig. 11b: the first eigenvalue attaining
the instability at a lower critical load (that corresponding to C1) is related to the first beam mode (ωm,1 � ωd )
and is the same determining the stability in C2. On the contrary, the stability in C3 is governed by the second
electrical mode ωe,2 > ωd (here κe = 0.2, remember Fig. 3b).

A better understanding of these findings merges when a projection of the modes of the coupled system
onto the basis of the eigenvectors of the uncoupled one is carried out. Indeed, the solution of Eq. (2) delivers
the eigenvalues and the corresponding eigenvectors, namely λ and um,ue, of the coupled PEM system. On
the other hand, the eigenvalue problem of the uncoupled mechanical and electrical subsystems (γ = 0) is
governed by:

(λ2Mm + λBm + Km + 2μH)u0m = 0,

(λ2νeMe + λBe + κeKe)u0e = 0
(8)

where u0m,u0e, are the eigenvectors of the uncoupled mechanical and electrical subsystems, respectively. Then,
the eigenvectors of the coupled PEM system are written as a linear combination of the eigenvectors of the
uncoupled subsystems, namely

um =
Nm∑
j=1

a ju0m, j , ue =
Ne∑
j=1

b ju0e, j (9)

where a j and b j are the (unknown) coefficients of the linear combination.
Projection of the eigenvectors of the coupled PEM system onto the basis of those of the uncoupled sub-

systems calls for the left eigenvalue problems associated with Eq. (1) with γ = 0, which read:

(λ2Mm + λBm + Km + 2μH)Hv0m = 0,

(λ2νeMe + λBe + κeKe)
Hv0e = 0

(10)

where the superscript ()H denotes the conjugate transpose and v0m, v0e are the left eigenvectors of the uncoupled
mechanical and electrical subsystems, respectively. Then, by premultiplying both members of Eq. (9) by the
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Fig. 12 Participation factors evaluated on the stability domain boundary when νe = 0.1, κe = 0.2, αe = 0, γ = 0.05, and
βe = 0.03 at the corresponding critical load denoted by C j (see the black bullets in Fig. 9a): a Re(ak); b Im(ak); c Re(bk); d
Im(bk)

k-th corresponding left eigenvector, the projection reads:

(v0m,k)
Hum =

Nm∑
j=1

a j (v0m,k)
Hu0m, j = ak(v0m,k)

Hu0m,k,

(v0e,k)
Hue =

Ne∑
j=1

b j (v0e,k)
Hu0e, j = bk(v0e,k)

Hu0e,k

(11)

where use of the orthogonality between the left and the right eigenvectors (the scalar product in the sum is zero
when k �= j) has been made; moreover, by adopting the normalization criterion (v0θ,k)

H ·u0θ,k = 1 (θ = m, e),
the ak, bk coefficients can be obtained according to the following expressions:

ak = (v0m,k)
Hum, bk = (v0e,k)

Hue. (12)

According to the latter definitions, ak , bk represent the participation factor of the k-th mode of the uncoupled
subsystem to the response of the coupled PEM system.

The evaluation of the ak, bk coefficients is performed on the points of the stability boundary denoted by
C j with j = 1, 2, 3 in Fig. 9. Since they are complex-valued coefficients, their real and imaginary parts are
separately illustrated, namely Re(ak) and Re(bk) are shown in Fig. 12a, c, respectively, whereas Im(ak) and
Im(bk) are reported in Fig. 12b, d, respectively. As expected, the larger modal participation factors are obtained
on the first beam mode, see Fig. 12a, b, meaning that the mechanical part of the PEM response, um , is mostly
influenced by the first beammode, though nonzero components of the second mode are also present. Similarly,
it is observed that the electrical part of the PEM system response, ue, is mostly driven by the second mode of
the controller, see Fig. 12c, d, with smaller but not negligible components of the first controller mode. This
confirms that the PEM stability cannot only be evaluated as a small perturbation of the first beam mode, since,
when γ is moderately large, more than one mode may trigger the system instability.

7 Conclusions

The stability of a piezo-electro-mechanical (PEM) system has been investigated in this paper. The system is
composed of a mechanical subsystem, i.e., a visco-elastic Beck’s beam, and a piezoelectric subsystem that is
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a rod-like controller. The beam suffers the detrimental effect of the Ziegler paradox on the Hopf bifurcation,
triggered by a follower force; thus, the PEM system behavior has been investigated to evaluate the capability
of the controller to improve its stability. The discretized equations of motion have been recalled from the
literature, and the eigenvalue problem has been solved numerically as well as via an analytical perturbation
approach based on the smallness of the coupling and electrical parameters. The sensitivity of the PEM system
to the main electrical parameters has been discussed, and the contribution of the electrical modes to the system
stability has been analyzed. The major outcomes are summarized below.

1. The most efficient control strategy depends on the magnitude of γ : if it is small, the SRC is more effective,
while when it increases, an SN RC strategy is preferable. However, the larger γ , the larger is the beneficial
effect of the controller in increasing the system Hopf critical load.

2. The electrical external and internal damping can be both beneficial, but should act separately to avoid
detrimental effects on the stability.

3. The perturbation approach gives a good agreement for weakly-coupled systems, while, as it is expected, it
loses accuracy when γ grows towardmoderately coupled systems. In that case only the numerical approach
is able to well represent the PEM behavior.

4. In moderately coupled PEM systems, the stability is governed by the interaction of multiple modes: the
first descends from the mechanical subsystem, while the other derives from the controller.

Further investigations may be performed on other types of controllers, i.e., different analog circuits, to
analyze their effect on the system stability. Moreover, another interesting aspect which deserves to be investi-
gated is the nonlinear response of the PEM system in the post-critical regime also in the presence of nonlinear
electrical damping.
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Appendix A: Discretization of the PEM system

The assembly of the cantilever beam and the so-defined rod-like controller constitutes the piezo-electro-
mechanical (PEM) system, whose governing equations of motions are derived in [87]. By introducing t̃ = ωt
as the non-dimensional time (with ω2 = E I/ρ�4), s̃ = s/� as the non-dimensional abscissa, ṽ(s̃, t̃) = v/v0
as the non-dimensional beam displacement, and ψ̃(s̃, t̃) = ψ/ψ0 as the non-dimensional flux-linkage (with
ψ0 = v0

√
ρ/C0), the non-dimensional form of the PEM equations can be expressed as follows:

v̈ + βm v̇ + αm v̇′′′′ + v′′′′ + 2μv′′ − γ ψ̇ ′′ = 0, (A.1.1)

νeψ̈ + βeψ̇ − αeψ̇
′′ − κeψ

′′ + γ v̇′′ = 0, (A.1.2)

vA = v′
A = ψA = 0, (A.1.3)

−v′′′
B − αm v̇′′′

B + γ ψ̇ ′
B = 0, (A.1.4)

v′′
B + αm v̇′′

B − γ ψ̇B = 0, (A.1.5)

http://creativecommons.org/licenses/by/4.0/
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κeψ
′
B + αeψ̇

′
B = 0, (A.1.6)

where the dot denotes differentiation with respect to the non-dimensional time t and the prime with respect to
the non-dimensional abscissa s. Accordingly, the non-dimensional parameters governing the PEM behavior
are defined as:

βm = c

ρω
, αm = ηI

ρω�4
, μ = F�2

2E I
, γ = ψ0Eem

v0ρω�2
, (A.2.1-4)

νe = C

C0
, κe = 1

LC0ω2�2
, βe = 1

RC0ω
, αe = 1

rRC0ω�2
. (A.2.5-8)

Equations (A.1. 1,2) represent the non-dimensional field equations, while Eqs. (A.1.3) and (A.1. 4–6) represent
the corresponding geometrical and mechanical boundary conditions at the ends A and B, respectively.

The PEM equations of motion can be straightforwardly turned into a discretized form, by adopting a
classical Galerkin projection approach. The beam transverse displacement v and the flux-linkage ψ are thus
expressed according to the following series:

v(s, t) =
Nm∑
k=1

φ
(m)
k (s)q(m)

k (t) = �T
m(s)qm(t),

ψ(s, t) =
Ne∑
k=1

φ
(e)
k (s)q(e)

k (t) = �T
e (s) qe(t),

(A.3)

where the subscripts m, e denote the terms relative to the mechanical and electrical subsystems, respectively.
The variables v and ψ are thus expressed as a linear combination of Nm and Ne terms, respectively, each
representing the product of the k-th shape functionφ

(θ)
k (s), collected in the vector�θ(s), and the corresponding

time-depending amplitude q(θ)
k (t), collected in the vector qθ (t), with θ = m, e.

In [87], a variational approach is adopted to the derive the discretized PEM model, and to obtain Eqs. (1),
the following operators are defined:

Mm =
∫ 1

0
�m�T

mds, Km =
∫ 1

0
�

′′
m�

′′T
m ds, , H =

∫ 1

0
�m�

′′T
m ds,

Me =
∫ 1

0
�e�

T
e ds, Ke =

∫ 1

0
�

′
e�

′T
e ds, GT =

∫ 1

0
�

′′
m�T

e ds.

(A.4)

In the latter, the shape functions adopted for v are chosen as the eigenfunctions of an unloaded undampedEuler–
Bernoulli beam undergoing flexural motion, while for ψ the analogy with the rod is recalled; consequently,
the eigenfunctions of an unloaded undamped rod undergoing axial motion are adopted.

Appendix B: Details on the perturbation sensitivity analysis

Details about the perturbation approach to the eigenvalue sensitivity analysis are given in the following. For
the complete formulation of the asymptotic procedure here recalled, the reader is referred to [82]. Besides
the different parameters scaling and the variable expansion, the leading-order problem possesses the same
structure in both the cases of SRC and SN RC , namely

ε0 :
[
Sm(λ0) 0
γ λ0
νe

G Se(λ0)

] (
um,0
ue,0

)
=

(
0
0

)
(B.5)

where

Sm(λ0) := λ20Mm + λ0Bm + Km + 2μ0H (B.6)

and:

Se(λ0) :=
{

λ20Me + κe
νe
Ke for the SRC

λ20Me + λ0
1
νe
Be + κe

νe
Ke for the SN RC.

(B.7)
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When themechanical and electrical subsystems are uncoupled (γ = 0), system (B.5) admits as right eigenvector
u0m : Smu0m = 0 and u0e : Seu0e = 0, respectively. Moreover, they admit as left eigenvectors v0m : SH

m v0m = 0
and v0e : SH

e v0e = 0 (where the superscript ()H denotes the conjugate transpose) that are normalized according
to (v0m)H · u0m = 1 and (v0e)

H · u0e = 1. Accordingly, the following coefficients, which are useful for the
analysis, can be defined:

mmm := (v0m)HMmu0m, mee := (u0e)
HMeu0e ,

bmm := (v0m)HBmu0m, bee := (u0e)
HBeu0e ,

gme := (v0m)HGTu0e , gem := (u0e)
HGu0m,

hmm := (v0m)HHu0m .

(B.8)

SRC

For the SRC the leading-order problem is expressed by Eq. (B.5), while the higher-order problems are defined
by the following hierarchy:

ε1/2 :
[
Sm(λ0) 0
γ λ0
νe

G Se(λ0)

] (
um,1/2
ue,1/2

)

= −
(

λ1/2 (2λ0Mm + Bm)um,0 + μ1/2Hum,0

λ1/2

(
2λ0Meue,0 + γ

νe
Gum,0

)
+ 1

νe
λ0Beum,0

)
,

ε :
[
Sm(λ0) 0
γ λ0
νe

G Se(λ0)

] (
um,1
um,1

)

= −
(

λ1 (2λ0Mm + Bm) um,0 + λ21/2Mmum,0

λ1

(
2λ0Meum,0 + γ

νe
Gum,0

)
+ λ21/2Meum,0

)

−
(−γ λ0GTue,0 + λ1/2 (2λ0Mm + Bm)um,1/2

2λ0λ1/2Meue,1/2 + γ
νe

λ1/2Gum,1/2

)

−
(

μ1Hum,0 + μ1/2Hum,1/2
1
νe

(
λ0Beue,1/2 + λ1/2Beue,0

))
.

(B.9)

In the leading-order problem, it is observed that, because of the enforced tuning, λ0 is a double eigenvalue,

since det [Sm (λ0)] = det [Se(λ0)] = 0; however, just one proper right eigenvector
{
0,u0e

}T
exists, with

u0e : Seu0e = 0, so that λ0 is defective. Similarly, there is just one proper left eigenvector,
{
v0m, 0

}T
. Therefore,

the leading-order solution is: (
um,0
ue,0

)
=

(
0
u0e

)
. (B.10)

By substituting expressions (B.10) into the ε1/2-order problem, it is found that its solution is

(
um,1/2
ue,1/2

)
=

(− 1
γ gem

(
2λ1/2νemee + bee

)
u0m

ûe,1/2

)
(B.11)

where ûe,1/2 is a particular solution to the singular problem:

Se(λ0)ûe,1/2 = λ0

gem

(
2λ1/2mee + bee

νe

)
Gu0m

− λ0

(
2λ1/2Me + Be

νe

)
u0e

(B.12)
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rendered unique by a suitable normalization. It should be remarked that, at this order, λ1/2 is still undetermined.
The solvability condition must instead be invoked at the ε-order problem, which finally determines λ1/2,
according to Eq. (5), where the involved coefficients are defined as:

c1 := μ1/2hmm

2λ0mmm + bmm
+ bee

2νemee
,

c0 :=γ 2λ0gemgme + μ1/2hmmbee
2νemee (2λ0mmm + bmm)

.

(B.13)

SNRC

For the SN RC , the leading-order problem takes again the expression given in Eq. (B.5), while the higher-order
problem reads:

ε1 :
[
Sm(λ0) 0
γ λ0
νe

G Se(λ0)

](
um,1
ue,1

)

=
(

γ λ0GTue,0 − λ1 (2λ0Mm + Bm)um,0 − μ1Hue,0
− γ

νe
λ1Gum,0 − λ1

(
2λ0Me + Be

νe

)
ue,0

)
.

(B.14)

In this case, λ0 is a simple eigenvalue, since det [Sm (λ0)] = 0 while det [Se(λ0)] �= 0; therefore, the leading-
order solution reads: (

um,0
ue,0

)
=

(
u0m

− γ λ0
νe

S−1
e Gu0m

)
. (B.15)

Although themechanical and electrical responses are of the sameorder, the electric oscillator behaves as passive,
driven by the mechanical one. By substituting expressions (B.15) into the ε-order problem and enforcing its
solvability the expression of λ1 given in Eq. (7) is obtained.
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