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Abstract This work deals with the analysis of the free vibration problem of elastic delaminated composite
beams. Theworkmainly consists of a model development and improvement stage based on the first-order shear
deformable beam theory. A general model is developed taking the bending-extensional coupling into account.
The specified problem is a built-in beamwith free end, and one of the novelties of this work is the consideration
of the fact that a built-in beam cannot be fixed rigidly in reality. Thus, a Winkler-type elastic foundation is
applied along the built-in length. The total potential energy and the governing equations of the delaminated and
intact parts of the beam are also captured. The problem is solved in two ways: analytically and numerically by
using the finite element method, respectively. Applying the developed models the natural frequencies, mode
shapes as well as the stress resultants are determined. The comparison of natural frequencies to those measured
experimentally shows that the built-in length resting onWinkler-type elastic foundation influences significantly
the agreement between model and experiment. In the final stage, the parametric excitation phenomenon taking
place in the delaminated part is analyzed using a local model and the harmonic balance method. The dynamic
buckling is characterized by some stability diagrams, and it is shown that the applied model is very sensitive
to the frequency leading to somewhat controversial critical amplitudes compared to measurements.

1 Introduction

One of the main drawbacks of structural composites is—apart from the numerous and obvious advantages—
that these materials are susceptible to delamination failure. The delamination or interlaminar fracture alters
significantly the dynamic properties of such structural elements. The free vibration analysis of delaminated
structures has been investigated since several decades in the literature. The earliest solutions were based on
the application of Euler–Bernoulli and Timoshenko beam theories [1–16].

For the free vibration characterization of delaminated beams, the free and constrained mode models were
introduced originally in [2]. The free mode model is based on the assumption of independent deflections of
the top and bottom subbeams of the delaminated part. This model was found to be physically inconsistent
providing interpenetration of the top and bottom subbeams into each other. The constrained mode model, on
the other hand, does not make any delamination opening possible during free vibration and leads to a certain
stiffening effect compared to the free mode model. In other words, higher stiffness leads to higher frequencies
provided that the mass is the same [17].

In the related field, Shen and Grady published an important paper performing vibration measurements
and numerical analysis on delaminated beams [18]. They also displayed the mode shapes and showed that
the vibration shape is asymmetric during one vibration period. This was obviously an important experimental
observation. Later, some more papers were published and the delamination opening was captured by different
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approximations [8,9,19]. In [20], nonlinear springs were placed between the crack faces of the top and bottom
subbeams. The delamination opening was controlled by the spring stiffness, although only some limit cases
were investigated effectively.

The current and recent literature offers large number of works carried out on delaminated composite and
sandwich beams under different circumstances.Many authors investigated the problemofmultiple delaminated
clamped and clamped–clamped beams [16,21–23]. In these papers, the first and second eigenshapes were
determined. In a series or articles [24–26], the contact between the delamination faces was modeled and it
was concluded that the frequencies decrease with the increase in delamination length. Other authors applied
higher-order model analysis [6,27]) and finite element models [28,29] assuming that the delamination opening
takes place because of the inertia forces. In [30], experimental results on natural frequency were presented
for cross-ply laminated beams using traditional models. In [31], the free vibration of delaminated beams
was analyzed considering fluid-structure interaction. The so-called dynamic stiffness method was applied
in [32,33] to delaminated composite beams. Moreover, in [34] a delaminated beam subjected to a follower
force was analyzed leading to an interesting engineering problem and results. Finally, but not least papers for
delamination detection are available as well, e.g.: [35,36]. For sandwich beams with partial delaminations and
debonding effect, some recent articles are available, too [37–40]. Models developed for delaminated beams
were also extended to plates and shells for the linear and nonlinear vibration analysis by the finite element
[41–44] and meshfree [45] methods.

Another important effect is the bending-stretching coupling on the natural frequencies of delaminated
beams. Shu and Fan [4] found that the flexural and longitudinal frequencies of Euler–Bernoulli beams are
far from each other; therefore, the coupling effect is negligible. Actually, in [20,28] the agreement with
the experimental results of Shen and Grady was found to be better by leaving the coupling effect out of
consideration. However, in [46] it was elaborated that the former agreement was likely just a fortune: the
Euler–Bernoulli theory is inaccurate for the description of the mentioned problem, and the longitudinal wave
is influenced by the cross-sectional rotations at the delamination tips. For an accuratemodel, both the transverse
shear effect and longitudinal wave motion are required to be accounted for and if so, then the agreement of the
model with the experimental results will be significantly better [46].

To the best of the authors’ knowledge, refs. [46,47] were the first publications discovering the existence
of parametric excitation during the free vibration of delaminated composite beams. The problem was treated
by the method of harmonic balance and the critical forces as well as critical amplitudes were determined
numerically and the latter experimentally. The critical force is the value of normal force in the delaminated
subbeams which is required to initiate the dynamic buckling during vibration. On the other hand, the critical
amplitude is the value of the vibration amplitude at the end of the built-in-free beam that is required to initiate
the buckling during the free vibration. These works were followed by a similar analysis of delaminated plates
performing free vibration [48]. Since then, several other papers were published; however, in these works the
parametric instability was investigated in the traditional way using the harmonic balance [49–51] and the so-
called multi-frequency method [17]. In this current work, the main aspect and more specifically the scientific
novelty is the application of Winkler elastic foundation, the built-in length is resting on. A general model is
developed based on the first-order shear deformable beam theory taking the bending-extension coupling into
account. Moreover, the parametric excitation the delaminated part is subjected to is analyzed more deeply than
before [47] and it is shown how sensitive the critical buckling force is to the natural frequency.

2 The boundary value problem—strong form

Figure 1 shows the model of a delaminated beam. The beam consists of five parts: (1) and (5) mean
the intact part, (3) represents the delaminated part based on the so-called free mode model [2]. Finally, (2)
and (4) capture the transition between the intact and delaminated parts of the beam, respectively. The latter
is distinctly interpreted from the analytical and finite element modeling points of view. From the analytical
viewpoint, regions (2) and (4) mean the continuity conditions between the (1)-(3) and (3)-(5) transitions. From
the viewpoint of FE modeling, the continuity between regions (1)-(3) and (3)-(5) is achieved by transition
elements (2) and (4), see later. The possible boundary conditions are also shown in Figure 1 and these are:
pinned end, built-in (or rigidly fixed) end, intact part resting on elastic (Winkler) foundation and the free end.
Any of these can be imposed at both ends of the beam. The related equations will be given later on. Region (0)
represents the built-in intact part resting on Winkler-type elastic foundation. It is noteworthy that continuity
conditions are required between regions (0)-(1) if the built-in length resting elastic foundation is involved;
however, these are straightforward conditions (see later).
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Fig. 1 Mechanical model of a delaminated beam with possible boundary conditions

Each part (1, 2, 3, 4, 5) is further sliced by the plane of the delamination meaning that there are two
subbeams in each region: a top (t) and a bottom (b) one, respectively. The kinematic continuity between the
top and bottom parts is discussed in the sequel. Each part of the beam is captured by the laminated first-order
shear deformable, or simply the Timoshenko beam theory [52]. The assumed displacement field of the model
can be written as

uδ(x, y
(δ), t) = u0 + u0δ (x, t) + θδ(x, t)y

(δ), (1)

where δ can take t or b for the top and bottom subbeams, respectively. Moreover, u0 is the global membrane
displacement, u0δ is the local (through-thickness) constant axial or membrane displacement, θδ is the rotation
of the cross section about axis z, as it is shown in Fig. 1. In the sequel, the different regions are discussed
separately. Figure 2 shows how the transition between regions (1, 2, 3) is established. In Fig. 2a, the two oblique
lines separate the intact (1) and delaminated (3) parts, these lines represent the longitudinal displacement
distributions and mean that the (1) and (3) portions are described by different mechanical models. These
models are connected through the transition(2) by imposing the required continuity conditions. The horizontal
lines of the delaminated part (3) are the delamination faces of the top and bottom subbeams. The separation
gap between the top and bottom delamination faces is zero. Figure 2b depicts the same transition; however, the
top and bottom parts are shown in exploded form. The top and bottom subbeams work perfectly together along
the intact part (1) (continuous in-plane displacement), in contrast the delaminated part (3) is discontinuous,
meaning that the displacement field of the top and bottom subbeams is independent of each other. The transition
between regions (3, 4, 5) is based on the same concept.

2.1 Intact part

Along the intact part, the deflection of the top and bottom beams is the same, i.e.: vt (x, t)=vb(x, t)=v(x, t).
The in-plane displacements of the top and bottom subbeams at the interface (delamination plane) are identical,
i.e., [47]:

ut |y(t)=−y(t)
R

= ub|y(b)=tb−y(b)
R

. (2)

The second condition against the in-plane displacements is the assignment of global membrane displacement,
u0 to the reference plane [47]:

yR

⎧
⎨

⎩

� tb : ub|y(b)=yR−y(b)
R

= u0,

� tb : ut |y(t)=−(y(t)
R −yR+tb)

= u0.
(3)

As it can be seen, two cases are included by Eq.(3): the first case is when the top beam is thinner than the
bottom one and obviously the global reference plane is within the bottom subbeam. The second case means
that the bottom beam is thinner than the top one and the reference plane is within the top subbeam. Using
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a b

Fig. 2 Reference planes and displacement parameters of the top and bottom subbeams of the intact (1) and delaminated (3) parts,
(a). Displacement continuity at transition (2) between the intact (1) and delaminated (3) parts, (b).

Eqs.(2, 3), it is possible to assign the relationship between the constant parts of in-plane displacements and
the rotations of the intact part in Eq. (1):

u0t = y(t)
R θt + (tb − yR)θb, u0b = −(yR − y(b)

R )θb. (4)

Combining Eqs. (1, 2, 3, 4), the displacement functions of the intact part become:

ut = u0 + y(t)
R θt + (tb − yR)θb + θt (x, t)y

(t), ub = u0 − (yR − y(b)
R )θb + θb y

(b). (5)

In accordance with the basic equations of linear elasticity [53], the normal strain and shear strain of the top
subbeam become:

εxt = du0
dx

+ y(t)
R

dθt

dx
+ (tb − yR)

dθb

dx
+ dθt

dx
y(t), γxyt = dv

dx
+ θt . (6)

Likewise, the strains for the bottom subbeam are:

εxb = du0
dx

− (yR − y(b)
R )

dθb

dx
+ dθb

dx
y(b), γxyb = dv

dx
+ θb. (7)

To derive the governing equations, we apply Hamilton’s principle [52,53]. Thus, we need the potential energy
and the kinetic energy of the system. The former is determined by the following equation:

U = 1

2

∑

δ=t,b

(∫

(V )

σi j (δ)εi j (δ)dV

)

= 1

2

∑

δ=t,b

( ∫

(V )

(
σx(δ)εx(δ) + τxy(δ)γxy(δ)

)
dV

)

, (8)

which is the sum of volumetric integrals for the top and bottom subbeams. Calculating the stresses using the
constitutive equation and carrying out the surface integral to the beam cross section, we have

U = 1

2

∑

δ=t,b

(∫

(L)

(
Nx(δ)ε

0
x(δ) + Mx(δ)ε

1
x(δ) + Qx(δ)γxy(δ)

)
dx

)

, (9)
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where L is the length, Nx is the normal force, Mx is the bending moment, Qx is the shear force, i.e., the stress
resultants, that are determined by [52,54]:

(
Nx
Mx

)

δ

=
(
A11 B11
B11 D11

)

δ

(
ε0xδ
ε1xδ

)

δ

, Qxδ = k A55δγxyδ, (10)

where A11, B11, D11 and A55 are the extensional, coupling, bending and shear stiffnesses computed based on
the lay-up of the beam and each is determined with respect to the local midplane of the actual subbeam:

(A11, B11, D11)δ =
∑

k=1..N

y(δ)
k+1∫

y(δ)
k

bE (k)
11 (1, y, y2)dy(δ), A55δ = k

∑

l=1..N

y(δ)
l+1∫

y(δ)
l

bG(l)
12dy

(δ), (11)

where E11 is the flexural, G12 is the shear modulus, b is the width and k = 5/6 is the shear correction factor
for rectangular cross section, respectively.

We continue with the determination of the kinetic energy of the beam. Similarly to the potential one, the
kinetic energy is calculated by summing the relevant expressions to the top and bottom subbeams:

T = 1

2

∑

δ=t,b

(∫

(V )

ρ(δ)u̇i(δ)u̇i(δ)dV

)

= 1

2

∑

δ=t,b

(∫

(V )

ρ
( ˙u0(δ)

2 + 2u̇0(δ)θ̇δ y
δ + (θ̇δ y

δ)2
)
dV

)

. (12)

Considering the fact that the density, ρ, may vary from layer-by-layer, after integrating Eq. (12) with respect
to the cross-sectional surface we can write the following:

T = 1

2

∫

(L)

(
I0δ(u̇

0
(δ))

2 + 2I1δ u̇
0
(δ)θ̇δ + I2δθ̇

2
δ

)
dx, (13)

where the so-called inertia parameters [52] are defined by:

I0, I1, I2 =
∑

k=1..N

y(δ)
k+1∫

y(δ)
k

bρ(k)(1, y, y2)dy(δ). (14)

The variational calculus is performed to obtain the governing equations of the system. The variation of the
total potential energy, 	 = U − T , with respect to the global membrane displacement provides the following
equation:

δu0 : Nxt,x + Nxb,x = (I0t + I0b)ü0 + I0t (yRt θ̈t + (tb − yR)θ̈b)

− I0b(yR − yRb)θ̈b + I1t θ̈t + I1bθ̈b.
(15)

The variation with respect to the rotations leads to further two equations:

δθt : Mxt,x + yRt Nxt,x − Qxt

= (I0t yRt + I1t )ü0 + (I0t y
2
Rt + I1t2yRt + I2t )θ̈t

+ (I0t yRt + I1t )(tb − yR)θ̈b,

(16)

δθb : Mxb,x − (yR − yRb)Nxb,x + (tb − yR)Nxt,x − Qxb

= (I0t (tb − yR) − I0b(yR − yRb) + I1b)ü0

+ (I0t yRt (tb − yR) + I1t (tb − yR))θ̈t

+ (I2b + I0t (tb − yR)2 + I0b(yR − yRb)
2)θ̈b

+ −2I1b(yR − yRb)θ̈b.

(17)

Finally, the equation with respect to the transverse deflection (or vibration) becomes:

δv : Qxt,x + Qxb,x = (I0t + I0b)v̈. (18)
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Fig. 3 Elastic foundation part (0) with parameters required to determine the kw foundation stiffness

2.2 Delaminated part—free mode model

The delaminated part is modeled by traditional laminated first-order shear deformable (Timoshenko) beams;
both the top and bottom subbeams are based on Eq.(1); however, u0 is ignored. The procedure to obtain the
governing equations is exactly the same as it was in the case of the intact part. The most important aspect is
that independent membrane displacements, rotations and deflections are implied. The latter means that a free
mode model is applied. The governing equations obtained based on variational calculus are:

δu0δ : Nx(δ),x = I0δ ü0δ + I1δθ̈xδ, (19)

δθδ : Mx(δ),x − Qx(δ) = I1δ ü0δ + I2δθ̈xδ, (20)

δvδ : Qx(δ),x = I0δv̈δ. (21)

where Eqs.(19, 20, 21) are related to the longitudinal, rotational and transverse wave motion including the
coupling effect.

2.3 Elastic foundation part

If any of the beam ends is extended by a built-in length resting on Winkler-type foundation, then the first
step is that we determine the foundation stiffness (kw). This stiffness should be determined in terms of the
through-thickness modulus based on Fig. 3 and the following equations [55]:

kw = bσy(x)

v(x)
, σy(x) = E22εy(x), εy(x) = v(x)

(tt + tb)/2
. (22)

where σy is the average transverse normal stress in the beam and determined by the simple Hooke’s law by the
second equation.Moreover, εy is the through-thickness strain. In accordance with Fig. 3, the strain is calculated
by the ratio of change of original length over the original length in the transverse direction. The combination
of the equations above leads to the following result:

kw = b

tt + tb
E22. (23)

The basic concept of the built-in part resting on Winkler foundation (refer to Fig. 1) is that is far enough from
the delamination tip, and thus, there is no need to imply two independent rotations of the top and bottom
subbeams. Thus, the potential and kinetic energies of the system can be derived in the standard way. The only
difference is that the springs should be considered. The elastic energy stored in the foundation springs is given
by:

Uw = 1

2

∫

(c)
kwv2bdx, (24)

The governing equations based on variational calculus become:

δu0 : Nx,x = I0ü0 + I1θ̈x , (25)

δθx : Mx,x − Qx = I1ü0 + I2θ̈x , (26)

δv : Qx,x − kwv = I0v̈, (27)

describing again the longitudinal, rotational and transverse wave motions together with the coupling effect.



On the dynamic stability of ... 1491

Table 1 Continuity conditions of the delaminated composite beam in Fig. 1

Description Conditions

V1(L1) = V2t (L1) Xt1(L1) = Xt2(L1)
Displacement V1(L1) = V2b(L1) Xb1(L1) = Xb2(L1)
and rotation V3(L1 + a) = V2t (L1 + a) Xt1(L1 + a) = Xt2(L1 + a)

V3(L1 + a) = V2b(L1 + a) Xb1(L1 + a) = Xb2(L1 + a)

(U01 + y(t)
R Xt1 + (tb − yR)Xb1)|x=L1 = U02t (L1)

Longitudinal (U01 − (yR − y(b)
R )Xb1)|x=L1 = U02b(L1)

displacement (U03 + y(t)
R Xt3 + (tb − yR)Xb3)|x=L1+a = U02t (L1 + a)

(U03 − (yR − y(b)
R )Xb3)|x=L1+a = U02b(L1 + a)

Equivalent M̂x t1(L1) + M̂xb1(L1) = M̂x t2(L1) + M̂xb2(L1)

bending moment (M̂x t2 + M̂xb2)|x=a+L1 = (M̂x t3 + M̂xb3)|x=a+L1
Shear forces Qx t1(L1) = Qxt2(L1), Qxb1(L1) = Qxb2(L1)

Qx t2(a + L1) = Qx t3(a + L1), Qxb2(a + L1) = Qxb3(a + L1)
Normal forces (Nx t1 + Nxb1)|x=L1 = (Nxb2 + Nxt2)|x=L1

(Nx t3 + Nxb3)|x=a+L1 = (Nxb2 + Nxt2)|x=a+L1

Table 2 Boundary conditions of the delaminated composite beam depending on the constraints in Fig. 1

Description Conditions

End with elastic Mx0(−c) = 0 Nx0(−c) = 0, Qx0(−c) = 0
foundation V1(0) = V0(0), U01(0) = U00(0) Xt1(0) = X0(0), Xb1(0) = X0(0)
Free end M̂xt3(L) = 0, M̂xb3(L) = 0 (Qxt3 + Qxb3)|x=L = 0, (Nxt3 + Nxb3)|x=L = 0
Pinned end M̂xt1(0) = 0, M̂xb1(L) = 0 V3(0) = 0 , (Nxt1 + Nxb1)|x=L = 0
Built-in end U03(L) = 0, V3(L) = 0 Xt3(L) = 0 , Xb3(L) = 0

2.4 Frequency and mode shape analysis

The system of governing equations (15, 16, 17, 18), (19, 20, 21) and (25, 26, 27) can be solved easily for each
region of the beam for example based on the previous works of the author [46,47]. For any regions of the
beam, the deflection and the rotations can be obtained by assuming harmonic motion in time:

⎛

⎝
vδ(x, t)
θδ(x, t)
u0δ(x, t)

⎞

⎠ =
⎛

⎝
Vδ(x)
Xδ(x)
U0δ(x)

⎞

⎠ sin(αt),

⎛

⎝
Vδ(x)
Xδ(x)
U0δ(x)

⎞

⎠ =
⎛

⎝
Kδ

Lδ

Mδ

⎞

⎠ eλx , (28)

where α is the natural frequency of the system and λ is the characteristic root. Moreover, Vδ(x), Uδ(x) and
θδ(x) are the eigenshape functions of the corresponding parameters representing the standing wave solution
of the free vibration problem.

The required continuity conditions are listed in Table 1. The set of conditions includes the continuity
of displacement parameters and the sum of stress resultants at the transitions. The conditions against the
longitudinal displacements are derived based on Eq.(5). An important detail is that between (1)-(3) and (3)-(5)
the equivalent bending moments should be used to ensure the continuity [46], these are derived based on
Eqs.(16, 17):

M̂xt = Mxt + yRt Nxt , M̂xb = Mxb − (yR − yRb)Nxb + (tb − yR)Nxt . (29)

The possible boundary conditions shown in Fig. 1 are formulated by equations in Table 2. If the ends are
resting on elastic foundation, then further continuity conditions are required between regions (0) and (1).

Based on the solution functions, boundary and continuity conditions, a system of linear algebraic equations
is created and the determinant of the matrix term provides the frequency equation. The latter can be solved
by, e.g., a bisection method [17,50] to find the natural frequencies of the system. In the knowledge of the
frequencies, the eigenshapes in Eq.(28) can be determined by using the system of algebraic equations and
determining the constant coefficients (K , L and M).
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a

b

Fig. 4 Stress resultants at the transition cross sections of a delaminated composite beam (a). Finite element discretization and
nodal DoFs of a composite beam with delamination (b).

3 Finite element discretization—weak form

The finite element discretization is carried out based on the weak formulation of the problem [52,56]. The
FE model is developed based on Fig. 4 indicating the stress resultants (a) and the nodal parameters (b).
Essentially, for each region—shown by Fig. 4b—there are three independent displacement parameters: the
membrane displacement, the rotation and the deflection. The interpolation scheme of these parameters is the
following:

u0 = NT
u ue, θ = NT

θ ue, v = NT
v ue, (30)

where Nu , Nθ and Nv are the vectors of interpolation functions and contain the linear, quadratic and cubic
interpolation functions, respectively [57].

3.1 Elastic foundation part

We get started with the elastic foundation part (region (0) in Fig. 4) and based on Eq. (9) it is possible to give
the potential energy of the system by:

U = 1

2
uT
e

(
Keu + Keuθ + Keθ + Kesh + Kew

)
ue, (31)

where the stiffness matrices are defined as:

Keu =
1∫

0

β1

le
N′
uN′T

u dξ, Keuθ =
1∫

0

β2

le

(
N′
uN′T

θ

)

symdξ, Keθ =
1∫

0

β3

le
N′

θN′T
θ dξ, (32)

where ξ is the dimensionless coordinate and le is the element length. Note that in the middle of Eq. (32) the
symmetric part of the product should be determined. Moreover:

Kesh =
1∫

0

β4BshBT
shledξ, Kew =

1∫

0

kwNvNT
v ledξ, (33)
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where β denotes coefficients related to the stiffness parameters, B is the strain-displacement vector:

β1 = A11t + A11b, Bsh = Nθ + 1

le
N′

v, (34)

β2 = 2A11t (yRt + tb − yR) − 2A11b(yR − yRb) + 2(B11t + B11b), (35)

β3 = A11t (y
2
Rt + (tb − yR)2) − A11b(yR − yRb)

2+
2B11t (yRt + tb − yR) − 2B11b(yR − yr B) + D11t + D11b, (36)

β4 = k(A55t + A55b). (37)

The kinetic energy of the system can be formulated based on Eqs. (13)–(14). The following can be obtained:

T = 1

2
u̇T
e

(
Meu + Meuθ + Meθ + Mev

)
u̇e, (38)

where the mass matrices are given below:

Meu =
1∫

0

κ1NuNT
u ledξ, Meuθ =

1∫

0

κ2
(
N′
uN′T

θ

)

symledξ, (39)

Meθ =
1∫

0

κ3NθNT
θ ledξ, Mev =

1∫

0

κ1NvNT
v ledξ. (40)

The coefficients, denoted by κ , are related to the inertia parameters according to the following:

κ1 = I0t + I0b, (41)

κ2 = 2I0t (yRt + tb − yR) − 2I0b(yR − yRb) + 2(I1t + I1b), (42)

κ3 = I0t (y
2
Rt + (tb − yR)2) + I0b(yR − yRb)

2+
2I1t (yRt + tb − yR) − 2I1b(yR − yRb) + I2t + I2b. (43)

To calculate the vectors of interpolation functions, we assign the function approximation as follows:

ve =
3∑

i=0

aiξi , θe = γ0e − 1

le
v′
e, ue =

1∑

i=0

biξi (44)

where γ0e is the shear strain. The literature offers different variants of the interpolation of Timoshenko beams
[58], in this work an element with constant elementwise shear strain is chosen [52,56]. The shear strain can
be determined based on the static equilibrium equation of the intact part, i.e., by Eqs. (16, 17) and assuming
identical rotations (θb = θt ):

γ0e = 6a3β3

l3e (A55t + A55b)
. (45)

The ai and bi coefficients in Eq. (44) can be determined based on the nodal conditions. Since this is a standard
FE step [47,52,56], it is not detailed in this paper. The vector of nodal displacements of the intact part with
elastic foundation becomes (refer to Fig. 4b):

uT
e = (

u1 v1 θ1 u2 v2 θ2
)
. (46)

Using the above and the interpolated forms by Eq. (30), it is possible to seek the interpolation functions and
the corresponding vectors. Afterward, the stiffness and mass matrices can be determined as well.

3.2 The intact part

Out of the stiffness matrices in Eq. (31), Kew should be ignored to have the total stiffness matrix of the intact
part denoted by (1) in Fig. 1. The mass matrices are the same as given by Eqs. (39, 40). It is important to note
that in the FE model the rotations are the same in the top and bottom subbeams of the intact part, in contrast
with the analytical model (refer to Eq. (15)). The comparison of the analytical and FE models indicated that
the two different cases lead to essentially the same natural frequencies and mode shapes.
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3.3 Transition elements

The left transition element denoted by (2) can be seen in Fig. 4b and provides the kinematic relationship
(continuity) between the intact (1) and delaminated (3) parts. In other words, the transition element represents
the delamination tip. As it can be recognized, there is one node at the left side and two nodes are on the
right-hand side. Thus, the nine related DoFs and the vector of nodal displacements can be written as:

uT
e = (

u1 v1 θ1 ut2 vt2 θt2 ub2 vb2 θb2
)
. (47)

The displacement parameters are interpolated by the following scheme:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ut (ξ)
vt (ξ)
θt (ξ)
ub(ξ)
vb(ξ)
θb(ξ)

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

=
9∑

i=1

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

Nt
ui

N t
vi

N t
θ i

Nb
ui

Nb
vi

Nb
θ i

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

uei , (48)

where the displacement parameters are captured by:

uδ(ξ) =
1∑

i=0

biδξ
i =

9∑

i=1

N δ
ui ui = (Nδ

u)
T ue, (49)

vδ(ξ) =
3∑

i=0

aiδξ
i =

9∑

i=1

N δ
vi ui = (Nδ

v)
T ue, (50)

θδe(ξ) = γ0δe − 1

le

dvδe

dξ
= (Nδ

θ )
T ue, γ0δe = 6D11δa3δ

l2e A55δ
, (51)

where γ0 is determined again based on the static equilibrium equation (set the right hand side of Eq. (20) to
zero) and the elementwise constant shear strain assumption for the static case. The deflection and the angle
of rotation is formulated quite similarly; however, the deflection is approximated by cubic, the rotation is
interpolated by quadratic functions, and the latter two are not independent of each other (refer to Eq. (34)). The
equations above mean twelve unknown coefficients altogether. The required nodal conditions in accordance
with Fig. 4b and Eq. (5) are:

vt (0) = v1, vt (1) = vt2, θt (0) = θ1, θt (1) = θt2,

vb(0) = v1, vb(1) = vb2, θb(0) = θ1, θb(1) = θb2,

(52)

ut (0) = u1 + (y(t)
R + tb − yR)θ1, ut (1) = ut2,

ub(0) = u1 − (yR − y(b)
R )θ1, ub(1) = ub2.

(53)

With the aid of the conditions above, the vectors of interpolation functions and the stiffness matrices can be
determined exactly in the same way as it was performed for the intact part, i.e., using Eqs. (31, 32, 33, 34, 35,
36, 37). Thus, the stiffness matrices of the left transition element are:

Keu =
b∑

δ=t

1∫

0

A11δ

le
N′
uδN′T

uδdξ, Keuθ =
b∑

δ=t

1∫

0

2B11δ

le

(
N′
uδN′T

θδ

)

symdξ, (54)

and:

Kesh =
b∑

δ=t

1∫

0

A55δleBshδBT
shδdξ, Keθ =

b∑

δ=t

1∫

0

D11δ

le
N′

θδN′T
θδdξ, (55)
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where:

Bshδ = Nθδ + 1

le
N′

vδ, (56)

Using the kinetic energy expression by Eq. (13) and the vectors of interpolation functions in Eq. (49, 50, 51),
the mass matrices are calculated as:

Meu =
b∑

δ=t

1∫

0

I0δNuδNT
uδledξ, Meuθ =

b∑

δ=t

1∫

0

2I1δ
(
NuδNT

θδ

)

symledξ, (57)

Meθ =
b∑

δ=t

1∫

0

I1δNθδNT
θδledξ, Mev =

b∑

δ=t

1∫

0

I0δNvδNT
vδledξ. (58)

The right transition element is also visible in Fig. 4b and by means of the previous procedure the stiffness and
mass matrices can be derived similarly.

3.4 Delaminated part

The FE matrices of the delaminated part can be obtained quite simply in the knowledge of the previous
computations. The laminated Timoshenko beam element with elementwise constant shear strain is applied to
both the top and bottom subbeams [59].Moreover, in Eqs. (32, 33) and in Eqs. (39, 40) the following parameters
should be altered (obviously, there is no elastic foundation):

β1 = A11δ, β2 = 2B11δ, β3 = D11δ, β4 = k A55δ, (59)

κ1 = I0δ, κ2 = 2I1δ, κ3 = I2δ, (60)

where the matrices should be determined equally for the top and bottom subbeams. The interpolation scheme
is quite similar to that by Eq. (44).

3.5 Boundary conditions

The possible boundary conditions of the FE model are discussed based on Fig. 1. If the boundary is pinned,
then the end section is constrained by fixing the deflection and the longitudinal displacement at that node. For
a built-in end the deflection, membrane displacement and the rotation are equally zero. If the end is free, then
there is nothing to do with that since only the kinematic conditions are treated by the FE method [56].

3.6 Free mode model with no delamination opening

In a recent paper [47], it was shown that for beams made out of unidirectional layers, i.e., when the material
is transversely isotropic, then the free mode model can be modified in order to prevent the delamination
opening during vibration. Let η = tt/tb be the ratio of thicknesses, then the modified densities satisfying the
conservation law of mass become [47]:

ρ(t)
eq = ρ

(1 + η)η2

1 + η3
, ρ(b)

eq = ρ(1 + η) − ρ(t)
eq η. (61)

In accordance with the equations above, the densities and so the inertia parameters in the top and bottom
subbeams of the delaminated part (3) should be modified. In some recent papers [46,47], it has been shown that
these equations work perfectly in transversely isotropic beams including the Euler–Bernoulli and Timoshenko
beam theories as well. However, if the system is discretized by the FE method, then the equations above work
correctly only for the Euler–Bernoulli beam theory, but not for the Timoshenko beam element. The reason is
the elementwise constant strain approximation. In spite of that, by introducing a further power parameter in
the equations of the inertia parameters the delamination opening can be prevented:

I0t = ρ(t)
eq btt (1 + (tt/tb))

p0 , I0b = ρb(tt + tb) − I0t , (62)
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Table 3 Reference plane coordinates for unidirectional isotropic beams with symmetric lay-up

yR yRt yRb

(tt + tb)/2 tt/2 tb/2

Table 4 Geometry of the tested delaminated composite beams

a [mm] 60 80 100 120
L1 [mm] 58 46 33 24
L3 [mm] 62 54 47 36

where p0 is the power parameter and its value depends on the position and the length of delamination. In other
words, it should be determined by a trial or iterative technique calculating the mode shapes and observing the
delamination opening relatively to the vibration amplitude. The natural frequencies are not influenced by the
power parameter, because the vibrating mass is always the same. The power parameters will be given later
(refer to Table 5).

3.7 Free vibration analysis

The free vibration analysis of the system was carried out in the usual way by solving the MÜ + KU = 0
equation of motion by assuming harmonic motion in time: U = A sin αt , where α is the natural frequency of
the system. The fist step is to determine the natural frequencies through the det(−α2M + K) = 0 equation,
then by using the frequencies the second step involves the calculation of the eigenshape vectors by means
of the (−α2M + K)U = 0 equation. Note that damping is not considered in the analysis; however, a recent
publication [50] revealed that the effect of damping on the natural frequencies is negligible from engineering
point of view.

4 Geometry, material properties and ANSYS plane FE model

The analysis is carried out on delaminated composite beams made out of unidirectional glass-polyester
layers. The left end is resting on elastic foundation, the right end is free in accordance with Fig. 1. This model
is referred to as “elastic.” For comparison purposes, the left end is built-in and the analysis is carried out
again, the model is referred to as“rigid.” The properties required for the analysis are: E11=33 GPa, E22=7.2
GPa, G12=3 GPa, ρ=1330 kg/m3, L=180 mm (total length), c=50 mm (built-in length), b=20 mm (width).
The thickness of the beams is always 6.2 mm (=tt + tb). The reference plane coordinates in this special
case are listed in Table 3. The length of delamination, a as well as L1 and L3 are given in Table 4. Each
beam is built-up using 14 unidirectional layers. The primal assembly of the system is performed based on
Fig. 4b. In the sequel, a user-defined beam code number will be assigned to refer to the delamination length
and the thicknesswise position of the delamination: as matter of fact, the 60/0 code means that the length of
delamination is 60 mm (first number) and the position of the delamination is exactly the global midplane of
the beam (second number), i.e.: tt = tb = 6.2 · 7/14 = 3.1mm. Some other code numbers are: 60/2 meaning
that the thicknesses are: tt = 6.2 · 5/14 mm andtb = 6.2 · 9/14mm, 60/4 means thattt = 6.2 · 3/14mm
and tb = 6.2 · 11/14mm, finally 60/6 means thattt = 6.2 · 1/14mm and tb = 6.2 · 13/14mm. The number
of elements is chosen to achieve the convergence of the first four natural frequencies. For the 60/... and
80/... beams,Ne0 = Ne1 = Ne3 = Ne5 = 30 elements are applied. In the case of the 100/... and 120/...
beams, Ne0 = 30, Ne1 = Ne5 = 20andNe3 = 40elements are used. The lengths of the transition elements
areL2 = L4=0.5 mm. The power parameters for the specified geometries are given in Table 5.

To validate the results of the analytical and the own-developed FE models, the delaminated beams with
c=50 mm long built-in length and free end are created in ANSYS, too, using isoparametric QUAD elements
under plane stress assumption. The element size is 1 mm × 1 mm in each case, and the convergence of
the frequencies is checked. Mode shapes are also determined, and the delamination opening is prevented by
imposing identical transverse displacements along the nodes of the two delamination faces. The mode shapes
are physically consistent with those obtained by the analytical and own-developed FE solutions.
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Table 5 Power parameter for the Timoshenko beam finite element for Eq.(62)

Beam code 60/0 60/2 60/4 60/6 80/0 80/2 80/4 80/6
p0 0 3.52 0.91 0.28 0 4.40 1.40 0.52
Beam code 100/0 100/2 100/4 100/6 100/0 100/2 100/4 100/6
p0 0 5.25 1.74 0.74 0 4.40 1.40 0.52

Table 6 Free vibration frequencies of the (60/0) and (60/2) composite beams with built-in+free ends in [Hz]

Beam configuration 60/0 60/2

Frequencies f1 f2 f3 f4 f1 f2 f3 f4

Modal hammer test 133 855 1824 3900 134 875 1881 4005
Sweep excitation test 128 858 1918 3962 124 826 1908 3992
E.-B., rigid, analytical 152 961 2025 4566 153 965 2153 4749
E.-B., rigid, FEM 152 960 2025 4567 153 964 2153 4750
E.-B., elastic, analytical 141 897 1901 4297 142 899 2019 4451
E.-B., elastic, FEM 141 896 1901 4301 142 898 2019 4455
Timoshenko, rigid, analytical 151 941 1966 4291 152 944 2083 4436
Timoshenko, rigid, FEM 151 941 1967 4294 152 944 2082 4423
Timoshenko, elastic, analytical 138 867 1836 4115 138 868 1944 4158
Timoshenko, elastic, FEM 138 867 1837 4119 138 868 1943 4147
ANSYS (plane FE), elastic 141 889 1851 4077 142 891 1956 4200

5 Experiments—natural frequencies

Two different tests are performed on the delaminated unidirectional specimens: the modal hammer (or impact
hammer) test and the sweep excitation test. Further details of the experiments can be found in [46,47]. The
experiments are repeated in this paper for the sake of completeness. For unidirectional composite beams, the
reference plane coordinates are given in Table 3. The further geometrical data are listed in Table 4.

6 Results and discussion

In this section, the first four natural frequencies by the analytical and finite element models are presented and
compared to experimentally measured frequencies and also to those by the ANSYS plane FEmodel. Moreover,
the displacement parameters and stress resultants are discussed. In the final subsection, the dynamic buckling
phenomenon and the related stability diagrams as well as the critical forces and amplitudes are determined
and commented.

6.1 Natural frequencies by models and experiments

The natural frequencies for sixteen different beam configurations are presented by the following models:

• Euler–Bernoulli beam theory, rigidly fixed end, analytical model [46] and FE solution [47] (note that this
model can be obtained by using the Timoshenko beam model with G12=∞),

• Euler–Bernoulli beam theory, elastic foundation effect, analytical model and FE solution (using the Tim-
oshenko beam model with G12=∞),

• Timoshenko beam theory, rigidly fixed end, analytical model developed in Sect. 2 and solved by Eq. (28)
and FE solution detailed in section 3,

• Timoshenko beam theory, elastic foundation effect, analytical model developed in Sect. 2 and solved in
accordance with Eq. (28) and FE solution developed in Sect. 3.

Table 6 presents the natural frequencies for the 60/0 and the 60/2 beams. It is observable right away that as
the model is refined the values of frequencies get closer and closer to the measured values. As a matter of fact,
the first effect is transverse shear, which is not considered by the Euler–Bernoulli beam theory. Comparing the
results of the two theories from this point of view, it can be recognized that the effect of transverse shear is very
small on the first frequency and moderate on higher frequencies. The second effect is the Winkler foundation
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Table 7 Free vibration frequencies of the (60/4) and (60/6) composite beams with built-in+free ends in [Hz]

Beam configuration 60/4 60/6

Frequencies f1 f2 f3 f4 f1 f2 f3 f4

Modal hammer test 130 836 2041 4083 130 840 2192 4360
Sweep excitation test 124 824 2050 4080 126 834 2206 4390
E.-B., rigid, analytical 153 959 2389 5000 153 963 2610 5203
E.-B., rigid, FEM 153 959 2390 5005 154 963 2615 5220
E.-B., elastic, analytical 142 892 2230 4659 143 894 2425 4825
E.-B., elastic, FEM 142 891 2231 4667 143 894 2429 4841
Timoshenko, rigid, analytical 152 938 2293 4622 153 942 2489 4775
Timoshenko, rigid, FEM 152 939 2292 4613 153 943 2494 4788
Timoshenko, elastic, analytical 138 861 2132 4322 139 862 2304 4456
Timoshenko, elastic, FEM 138 861 2131 4313 139 863 2308 4466
ANSYS (plane FE), elastic 142 884 2158 4392 143 887 2360 4553

that the built-in length is resting on. A significant decrease in frequencies is clearly observable considering the
Euler–Bernoulli beam models. This tendency further goes on by taking the results of the Timoshenko beam
model into account. The explanation of the decrease in first frequency from 151 to 138 Hz in the latter case is
the interaction between the transverse shear and elastic foundation effects. The elastic foundation represents
the transverse elasticity of the built-in length, and thus, the stiffness of the system decreases compared to the
rigidly fixed models. The degree of decrease results in the fact that the agreement between the first two and
the last before rows in Table 6 becomes very good for all of the frequencies.

It was recognized that the sweep excitation test provides always a lower value for the first frequency than
the modal hammer test. Considering the other frequencies, no clear tendencies were observed regarding the
relationship (which one is higher or smaller); however, the values by the two methods are very close to each
other.

The plane stress ANSYS FE model including the built-in length of the beams seems to agree very well
with the Euler–Bernoulli model with elastic foundation effect if the first two frequencies are investigated. The
third and fourth frequencies by the ANSYS model agree rather with the Timoshenko model dealing with the
elastic foundation effect. Nevertheless, the definite agreement between the frequencies by the developed beam
models and those by the ANSYS plane FE ones validates the former. This holds for any of the forthcoming
tables.

The results of the 60/4 and 60/6 beams are summarized in Table 7. The tendencies and the relations of the
analyticalmodels and the experiments are likewise in the case of Table 6. For both Tables 6 and 7, the agreement
between the analytical models and the corresponding FE models is excellent: there are only slight mismatches
and essentially only the fourth frequency involves larger absolute differences. These small mismatches are
dedicated to the different solution algorithms (bisection root finding vs. eigenvalue calculation).

The results of the 80/0, 80/2 and 80/4, 80/6 beams are collected in Tables 8 and 9. These results support
the previous conclusions and observations; however, the agreement between the last before line and the first
two ones is even better than in Tables 6 and 7. The difference between the analytical (or FE) models and
the experiments is associated with the possible manufacturing defects. The final conclusion is that it is very
important to apply an appropriate model to capture the reality and get consistent result. Some more tables are
presented for the 100/0-100/6 and 120/0-120/6 beams, these are placed in Appendix A. The same conclusions
are maintained as those for Tables 6, 7, 8, 9.

6.2 Displacement parameters and stress resultants

In the subsequent part of this article, the results of the Timoshenko beam finite element model are presented
if otherwise not stated. Each figure is created with a 1 mm vibration amplitude at the end of the beam. Fig. 5
presents the deflection and the angle of rotation along the beam length for the first two natural frequencies of the
100/4 beam. The main aspect highlighted that is the influence of elastic foundation. Although the deflections
are almost the same, the mismatch between the angle of rotations by rigidly fixed and Winkler foundation
models is more pronounced. The effect of elastic foundation is the most significant at the built-in cross section
(i.e., at x = 0) and decreases subsequently till the free end. It can be seen that the artificial power parameter
(p0) works well and prevents any delamination opening during vibration.
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Table 8 Free vibration frequencies of the (80/0) and (80/2) composite beams with built-in+free ends in [Hz]

Beam configuration 80/0 80/2

Frequencies f1 f2 f3 f4 f1 f2 f3 f4

Modal hammer test 132 823 1558 3248 132 842 1637 3427
Sweep excitation test 124 812 1598 3324 126 836 1784 3588
E.-B., rigid, analytical 148 925 1819 3853 151 944 1960 4136
E.-B., rigid, FEM) 148 923 1816 3855 151 943 1957 4139
E.-B., elastic, analytical 138 875 1682 3642 141 889 1818 3902
E.-B., elastic, FEM 138 875 1681 3645 140 888 1817 3907
Timoshenko, rigid analytical 147 908 1770 3675 150 926 1902 3920
Timoshenko, rigid, FEM 147 908 1769 3680 150 925 1899 3911
Timoshenko, elastic, analytical 135 850 1626 3471 137 861 1753 3699
Timoshenko, elastic, FEM 135 850 1625 3476 137 861 1751 3690
ANSYS (plane FE), elastic 138 866 1655 3501 140 879 1777 3714

Table 9 Free vibration frequencies of the (80/4) and (80/6) composite beams with built-in+free ends in [Hz]

Beam configuration 80/4 80/6

Frequencies f1 f2 f3 f4 f1 f2 f3 f4

Modal hammer test 134 857 1927 3832 132 853 2158 4245
Sweep excitation test 126 848 1954 4044 126 850 2160 4260
E.-B., rigid, analytical 155 971 2283 4712 154 965 2566 5111
E.-B., rigid, FEM 155 971 2283 4720 154 965 2569 5129
E.-B., elastic, analytical 144 907 2120 4418 143 896 2381 4753
E.-B., elastic, FEM 138 906 2121 4427 143 897 2385 4769
Timoshenko, rigid, analytical 155 951 2197 4400 154 944 2449 4709
Timoshenko, rigid, FEM 155 950 2196 4387 154 945 2453 4717
Timoshenko, elastic, analytical 140 876 2031 4135 139 865 2265 4403
Timoshenko, elastic, FEM 140 876 2030 4122 139 866 2268 4408
ANSYS (plane FE), elastic 144 898 2061 4170 143 889 2319 4488

The longitudinal displacement and the normal force are plotted in Fig. 6 again for the 100/4 beam including
the first two natural frequencies. An immediate observation is that the longitudinal displacement of the rigidly
fixed model has a relatively higher slope than that of the elastic foundation model. The normal force is
determined by the derivative of the longitudinal displacement (refer to Eq.(10)). The first and most important
outcome of this analysis is that the normal force along the delaminated region is constantly distributed. Another
important finding of this study is that the normal force by elastic foundation model is higher by around 10
percent than the one by the rigidly fixedmodel at the same vibration amplitude if the system performs harmonic
vibration by the first natural frequency. In the case of the second natural frequency, the two models predict
almost the same normal force. For highermodes, the effect of elastic foundation on the normal force distribution
is more and more negligible.

The stress resultants (total bending moment and total shear force) are displayed in Fig. 7 for the first two
vibration frequencies, again for the 100/4 beam. Note, that the sum of bending moments (Mxt + Mxb) is
shown and not sum of the equivalent bending moments [46], that is the reason for the discontinuity between
the delaminated and intact beam parts. For the first two frequencies, it is clearly recognized that the moment
by elastic foundation model is smaller by approximately 18 and 27 % at x = 0 than those by the rigidly
fixed formulation. From the standpoint of shear force, Fig. 7 indicates that it goes up suddenly and reaches a
maximum value close to x = 0. First, the shear force is the higher at a specified cross section along the built-in
length. Second, the shear force by the FE solution is piecewise constant. Thus, even the analytical solution is
plotted in Fig. 7 for the elastic foundation providing excellent agreement with the FE solution. The difference
between the shear forces by the two formulations is significant even along the effective beam length.

The most important role out of the stress resultants is attributed to the normal force, because this is the one
governing the dynamic buckling phenomenon during free vibration.
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Fig. 5 Deflection and rotation along the length of the 100/4 beam for the first two vibration modes by rigid and elastic clamping

6.3 Dynamic buckling analysis

Figure 8 indicates how the parametric excitation takes place as the beam performs harmonic vibration. If the
upward motion occurs, then the top beam is always compressed, the bottom is extended. If the downward
motion is considered, then the top beam is extended and the bottom one is compressed. In other words, the
tensile and compressive forces interchange each other with respect to the vibration frequency. It is important
to recognize that the top beam can buckle only in the outward direction.

6.3.1 The geometric stiffness matrix

The buckling analysis requires the determination of the geometric stiffness matrix of the delaminated part for
Euler-buckling. The strain energy from the nonlinear strain is [57]:

UNL =
∫

V

σ 0
x εNLdV = 1

2
uT
e KGeue, (63)

where the geometric stiffness matrix can be defined as:

KGe =
∫

(V )

GT SGdV =
1∫

0

N

le
N′

vN′T
v dξ, (64)

where everything is determined for the top subbeam of the delaminated part using the Timoshenko beammodel
and N is the normal force distributed uniformly over the delamination length in accordance with Fig. 6. It has
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Fig. 6 Longitudinal displacement and normal force along the length of the 100/4 beam for the first two vibration modes

already been shown that the buckling takes place locally; thus, it is only investigated within the delaminated
region.

6.3.2 The equation of motion and the solution

Let us consider only the top beam, the equation of motion has the following form [47]:

Mt Üt + KtUt + (
FdK0

Gt cos (�t)
)

Ut = 0, (65)

where Ut is the increment of the nodal displacement vector due to delamination buckling of the top subbeam,
� is the frequency of parametric excitation; however, in this work, it will be one of the natural frequencies of
the whole beam: � = α. The solution can be developed in accordance with [47]:

Ut = Φ T̂ (t), (66)

where T̂ (t) is the time function of the local delamination buckling having only a positive amplitude. This
function can be expanded into a Fourier series and taken back into Eq. (65) [47]:

Ut = a0 +
∞∑

k=1,2,3...

ak cos (kαt) , a0 = a0Φ, ak = akΦ, k = 1, 2, 3, ... (67)
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Fig. 7 The sum of bending moments and shear forces along the length for the first two vibration modes of the 100/4 beam

where Φ is the first mode static buckling eigenshape vector of the top subbeam of the delaminated region
under clamped-clamped conditions. The acceleration vector is determined by:

Üt = −α2
∞∑

k=1,2,3...

akk2 cos (kαt) , k = 1, 2, 3, ... (68)

Using the series solution by Eqs. (67, 68) and taking it back into the equation of motion an infinite equation
can be obtained. This equation can be sorted in accordance with the wavelengths of the cos functions and can
be arranged into a matrix equation with infinite dimension. The limit curves of stability can be determined by
calculating the finite determinant of the coefficient matrix [60]:

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Kt
1
2 FdK0

Gt 0 0 0 · · ·
FdK0

Gt Kt − α2Mt
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2 FdK0
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∣

= 0. (69)
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a

b

c

Fig. 8 The harmonically changing normal force in a delaminated beam under free vibration. Upward motion—compressive force
(a), downward motion—tensile force (b). Local model of the parametrically excited top subbeam (c)

The determinant above leads to a lengthy two-variable function including the frequency and the force amplitude.
Eq.(69) is called the general solution of the dynamic stability problem.

The second solution is based on the modal decomposition of the equation of motion. By multiplying the
equation of motion byΦ (eigenmode vector of static buckling) from the left and right hand sides, the following
scalar equation is obtained:

¨̂T (t) + �2(1 + 2μ cosαt)T̂ (t) = 0, (70)

where:

� = ΦT KtΦ

ΦT MtΦ
, μ = 1

2

1

�2

ΦT KGtΦ

ΦT MtΦ
. (71)

The same procedure [47] as we have seen before to obtain Eq.(69) leads to the determinant below:

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

�2 �2μ 0 0 0 · · ·
2�2μ �2 − α2 �2μ 0 0 · · ·
0 �2μ �2 − 4α2 �2μ 0 · · ·
0 0 �2μ �2 − 9α2 �2μ · · ·
0 0 0 �2μ �2 − 16α2 · · ·
...

...
...

...
...

. . .

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= 0. (72)

As it can be seen in this case, the elements within the determinant are scalar parameters. However, the vector
Φ should be determined for each delamination length and tt thickness separately. In the sequel, we present the
results of the dynamic stability analysis using both models (Eq. (69) and Eq. (72)). In each case, the matrices
are determined by the Timoshenko beam finite element model Table 11.

6.4 Dynamic stability analysis results

This subsection is divided into two parts: one related to the determination of the critical value of the force and
another dedicated to the critical amplitude of the free vibration.
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a

b

Fig. 9 Stability diagrams for local dynamic buckling of the 100/6 (a) and 120/6 (b) beams using the modal decomposition
technique, Ne=20, Ndet=20

6.4.1 Determination of the critical value of dynamic force

Figure 9 provides the stability diagram plots of the 100/6 and the 120/6 beams using the modal decomposition
technique. Twenty (Ne) elements are applied along the length, and the twentieth-order determinant (Ndet ) is
calculated. The convergence of the solution was investigated as well, and these parameters were found to be
appropriate. The critical values of the dynamic force amplitude, Fd are shown against the natural frequency, the
curves are determined by Eq. (72). The values of the first natural frequency by Timoshenko and Euler–Bernoulli
beam theories including the Winkler foundation together with the modal hammer and sweep excitation tests
are also shown with the corresponding force values. The enlarged subfigures on the right top corner show how
the intersection and projection is performed in order to obtain the critical dynamic force amplitude. A detailed
description of this procedure is given below:

• Thefirst step is thatwe choose the theory ormethod the frequency is determined by. Let it be theTimoshenko
beam theory. In Table 12, the first free vibration frequency of the 100/6 beam is 138 Hz by the Timoshenko
beam theory including the elastic foundation effect (Tables 13, 14).

• Convert the former frequency to rad/s, this provides 867 rad/s.
• In order to find the critical value of the force, Fd indicated in Fig. 8 we consider Fig. 9. We find the first
intersection between the solution curve and the vertical line going across the frequency value of 867 rad/s.

• The critical value of the force is determined by a horizontal line going across the intersection point, leading
to 189.5 N as it can be seen in Fig. 9 as well.
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a

b

Fig. 10 Stability diagrams for local dynamic buckling of the 100/6 (a) and 120/6 (b) beams using the general solution, Ne=12,
Ndet=10

• The same procedure can be applied to any other frequency in order to determine the corresponding critical
force. A consequence is that the critical value of the dynamic force is frequency dependent.

For both Figs. 9a, b, it can be recognized that the critical force amplitude is quite sensitive to the frequency.
For the 100/6 beam, the first natural frequency by the Timoshenko, Euler–Bernoulli beam models and modal
hammer test and the sweep excitation test intersects the same limit curve. However, it is possible that any of
the former four frequencies—being a slightly smaller or greater than the other three—intersects with another
limit curve resulting in a significantly smaller or larger critical force amplitude. The picture is quite similar to
this if we take a look at Fig. 9b for the 120/6 beam.

Figure 10 presents the diagrams using the general description of the dynamic stability problem (Eq. (69)).
In this case, both Ne and Ndet are reduced (Ne=12, Ndet=10) because of the significantly higher matrix size;
however, convergence was again achieved in each investigated case. The first observance is that the picture
by this general solution is quite different compared to that obtained by the modal decomposition technique
related to Fig. 9. Nevertheless, the technique to determine the critical force amplitude is exactly the same. The
frequencies for the 100/6 beam are given in the figure in rad/s and can be found in Table 12 in Hz. Based
on the frequencies, the critical forces are easy to locate using the diagram. For both beam configurations, the
limit curves in Figure 10 are again quite different than those in Fig. 9. In Fig. 10a, the critical force values are
relatively close to each other; however, there is a huge mismatch with the forces in Fig. 9a (100/6 beam). For
the 120/6 beam, the mismatch between Figs. 9b and 10b is again significant from the standpoint of critical
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Table 10 Critical dynamic force values and critical vibration amplitudes by Timoshenko beam theory and experiment

Beam Model Continuum model Modal decomposition General solution Experiment

code type f1 [Hz] Nxt [N] Fd [N] δcr [mm] Fd [N] δcr [mm] δexp [mm]

60/6 Rigid 153 32.8 29.3 0.89 35.2 1.07 0.46
Elastic 139 27.0 53.3 1.97 79.7 2.95

80/6 Rigid 154 33.8 29.3 0.87 50.7 1.50 0.3
Elastic 139 28.3 39.2 1.39 14.1 0.50

100/6 Rigid 152 35.7 39.5 1.11 25.6 0.72 0.12
Elastic 138 29.9 189.5 6.33 40.7 1.36

120/6 Rigid 151 35.6 7.0 0.2 19.3 0.54 0.04
Elastic 137 29.9 11.2 0.38 34.1 1.14

forces; however, the solution is definitely more sensitive to the frequency by the general solution because of
the relatively large slope of the curves.

In order to elaborate how the thicknesswise position of the delamination influences the stability diagrams,
we provide Figs. 11 and 12. In Fig. 11, the results by the modal decomposition technique are plotted for the
100/0, 100/2 and 100/4 beams, respectively. Obviously, relatively huge values are obtained for the dynamic
force amplitude in each case. This can be explained by the fact that the slope of the curves becomes higher and
higher. The general solution provides the curves in Figs. 12a–c; the sensitivity of the critical dynamic force to
the frequency is still brought to the stage by these results.

Here, an alternative utilization of the results in Figs. 9, 10, 11, 12 is explained. The dynamic stability
analysis is carried out by taking only the top beam of the delaminated part into consideration (local model,
refer to Figure 8). Therefore, the surrounding structure of this top beam is no longer required to obtain the
critical force values. The conclusion is that if in any (fictitious) structure the delaminated part has the same
geometry andmaterial as that Figs. 9, 10, 11, 12 are determined based on, then the presented figures remain true
even for this structure. Once the frequencies of this fictitious structure are determined, we know the frequency
of parametric excitation and we can determine the critical force, too.

6.4.2 Determination of the critical vibration amplitude

In thiswork, the Timoshenko beammodelwithout andwith built-in length resting onWinkler elastic foundation
is chosen to determine the critical amplitudes required to initiate dynamic buckling. The modal decomposition
technique as well as the general solution are applied to both models. The structure of Table 10 is the following.
The results of the continuummodel, i.e., the numerical FEmodel (they give the same results) are collected in the
third and fourth columns for the .../6 beams. These results are the first natural frequency and the normal force
at the left crack tip (which is uniform along the delaminated part). The subsequent columns contain the critical
values of the Fd force amplitude (detailed in the previous subsection) and the critical vibration amplitude. The
latter is always the ratio of Fd over Nxt . The critical amplitudes were also determined experimentally in a
previouswork [47]; these values are listed in the last columnofTable 10. The comparison of the critical vibration
amplitudes from themodels and by experiments shows that the agreement is bad. The biggest discrepancy takes
place for the 100/6 beam by the elastic foundation model combined with the modal decomposition technique
providing a critical vibration amplitude of 6.33 mm against the 0.12 mm value by experiment. Overall, it seems
that in spite of the fact that the modal decomposition technique seems to be justified, the general solution is free
of extreme discrepancies compared to the experiments.We highlight again the sensitivity of the force amplitude
to the frequency, which is the main reason for the mismatches between model prediction and experiments.
Also, in a previous work the agreement between the critical vibration amplitudes by the Euler–Bernoulli
model without elastic foundation and by experiments was better. The reason for this is that based on Fig. 9
lower dynamic force amplitudes are associated with the higher frequencies, and based on Tables 6, 7, 8, 9 the
Euler–Bernoulli model without the elastic foundation results in the highest natural frequencies.

7 Conclusions

In this paper, the dynamics of delaminated composite beams was investigated using the Timoshenko and
Euler–Bernoulli beam theories. The work was done essentially in two different aspects. In the first phase, the
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c

Fig. 11 Stability diagrams for local dynamic buckling of the 100/0 (a), 100/2 (b) and 100/4 (c) beams using the modal decom-
position technique, Ne=20, Ndet=20
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a

b

c

Fig. 12 Stability diagrams for local dynamic buckling of the 100/0 (a), 100/2 (b) and 100/4 (c) beams using the general solution,
Ne=12, Ndet=10
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free vibration of the clamped beams was investigated using two different models. The built-in length of the
model was captured by theWinkler type elastic foundation providing an additional transverse displacement and
rotation compared to the rigidly fixed case. The analysiswas carried out by developing the governing differential
equations for every regions of the beam and by solving the equations analytically. Also, the numerical solution
was provided by the finite element method. The natural frequencies, mode shapes and the stress resultants were
determined in the first phase of the work. The natural frequencies were determined also by experiments using
modal hammer and sweep excitation tests. The comparison of analytical and experimental results showed that
the Timoshenko beam theory with elastic foundation along the built-in length provides the best agreement with
the measured frequencies. Note, that the first four natural frequencies were compared to each other.

In the second phase, the dynamic buckling phenomenon was investigated using the harmonic balance
method. Two different approximations were applied. The general description is based on a determinant of
a matrix with matrix elements. This approximation was also applied in a previous paper [47]. The second
solution is based on the modal decomposition technique providing a quite similar determinant of a matrix;
however, the latter contained scalar terms only. The stability limit curves of dynamic buckling in the plane
of the free vibration frequency and the dynamic force amplitude were determined by both approximations.
The critical dynamic forces were determined for the frequencies by Timoshenko beam theory, Euler–Bernoulli
beam theory (both involved the effect of elastic foundation), moreover, for the frequencies by modal hammer
and sweep excitation tests, respectively. The results indicated that the critical dynamic force is quite sensitive
to the frequency. Thus, the agreement between the theoretical and experimental critical vibration amplitudes
at which the buckling initiates was bad. However, the models developed in this work made it clear that the
phenomenon itself is more complex than it was thought before and neither of the previous works revealed this
feature of the free vibration problem of delaminated composite beams in the past.

The next step should be to elaborate how the damping affects the stability curves. Apparently, damping has
a negligible effect on the natural frequencies but has a substantial effect on the stability curves of parametrically
excited systems [50]. Nevertheless, being a special case investigated in this paper it is still an unsolved problem.
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Appendix A - Natural frequencies of the 100/0-100/6 and 120/0-120/6 beams

Table 11 Free vibration frequencies of the (100/0) and (100/2) composite beams with built-in+free ends in [Hz]

Beam configuration 100/0 100/2

Frequencies f1 f2 f3 f4 f1 f2 f3 f4

Modal hammer test 124 738 1396 2842 124 756 1511 3000
Sweep excitation test 122 766 1640 3084 122 762 1644 3104
E.-B., rigid, analytical 138 831 1701 3444 142 857 1841 3716
E.-B., rigid, FEM 138 831 1702 3453 142 856 1836 3714
E.-B., elastic, analytical 130 803 1565 4418 133 822 1770 3447
E.-B., elastic FEM 130 803 1564 4427 133 822 1771 3449
Timoshenko, rigid, analytical 138 820 1664 3304 141 844 1789 3535
Timoshenko, rigid, FEM 138 820 1661 3306 141 842 1784 3527
Timoshenko, elastic, analytical 127 786 1510 3057 130 802 1627 3281
Timoshenko, elastic, FEM 127 786 1508 3061 130 802 1623 3276
ANSYS (plane FE), elastic 130 793 1550 3123 132 810 1664 3332

Table 12 Free vibration frequencies of the (100/4) and (100/6) composite beams with built-in+free ends in [Hz]

Beam configuration 100/4 100/6

Frequencies f1 f2 f3 f4 f1 f2 f3 f4

Modal hammer test 121 781 1692 3532 132 854 2135 4125
Sweep excitation test 118 754 1726 3524 126 850 2136 4144
E.-B., rigid, analytical 147 902 2123 4259 152 950 2513 4963
E.-B., rigid, FEM 147 901 2120 4264 152 950 2516 4980
E.-B., elastic, analytical 137 851 1958 3969 142 885 2327 4611
E.-B.,elastic, FEM 137 851 1958 3975 142 886 2330 4626
Timoshenko, rigid, analytical 137 851 1958 3969 152 930 2402 4586
Timoshenko, rigid, FEM 137 851 1958 3975 152 931 2404 4594
Timoshenko, elastic, analytical 133 826 1878 3740 138 856 2214 4284
Timoshenko, elastic, FEM 133 826 1875 3731 138 856 2217 4290
ANSYS (plane FE), elastic 136 841 1915 3784 142 878 2270 4365

Table 13 Free vibration frequencies of the (120/0) and (120/2) composite beams with built-in+free ends in [Hz]

Beam configuration 120/0 120/2

Frequencies f1 f2 f3 f4 f1 f2 f3 f4

Modal hammer test 122 686 1487 2838 120 705 1527 2905
Sweep excitation test 120 720 1534 2914 118 724 1592 3024
E.-B., rigid, analytical 129 754 1620 3272 135 800 1759 3533
E.-B., rigid, FEM 129 754 1613 3267 135 798 1752 3528
E.-B., elastic, analytical 122 737 1500 3035 127 774 1625 3258
E.-B., elastic, FEM 122 736 1499 3038 127 774 1624 3257
Timoshenko, rigid, analytical 129 746 1585 3136 135 789 1716 3368
Timoshenko, rigid, FEM 129 746 1581 3136 135 787 1708 3359
Timoshenko, elastic, analytical 120 725 1454 2886 125 759 1571 3102
Timoshenko, elastic, FEM 120 724 1450 2887 125 758 1565 3095
ANSYS (plane FE), elastic 122 726 1491 2969 127 762 1608 3176
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Table 14 Free vibration frequencies of the (120/4) and (120/6) composite beams with built-in+free ends in [Hz]

Beam configuration 120/4 120/6

Method, theory f1 f2 f3 f4 f1 f2 f3 f4

Modal hammer test 130 715 1889 3749 125 857 2182 4144
Sweep excitation test 122 794 1872 3694 126 836 2148 4086
E.-B., rigid, analytical 144 868 2071 4118 151 938 2485 4887
E.-B., rigid, FEM 144 867 2066 4120 151 938 2486 4902
E.-B., elastic, analytical 134 826 1911 3804 141 877 2299 4524
E.-B., elastic, FEM 134 826 1912 3808 141 877 2302 4538
Timoshenko, rigid, analytical 143 853 2003 3876 151 919 2377 4521
Timoshenko, rigid, FEM 143 852 1995 3864 151 919 2377 4527
Timoshenko, elastic, analytical 131 805 1837 3589 137 848 2190 4208
Timoshenko, elastic, FEM 131 804 1831 3580 137 849 2191 4214
ANSYS (plane FE), elastic 134 815 1878 3657 141 869 2245 4293
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