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Abstract In this work the finite element (FE) implementation of the small strain cyclic plasticity is discussed.
The family of elastoplastic constitutive models is considered which uses the mixed, kinematic-isotropic hard-
ening rule. It is assumed that the kinematic hardening is governed by the Armstrong–Frederick law. The radial
return mapping algorithm is utilized to discretize the general form of the constitutive equation. A relation
for the consistent elastoplastic tangent operator is derived. To the best of the author’s knowledge, this for-
mula has not been presented in the literature yet. The obtained set of equations can be used to implement
the cyclic plasticity models into numerous commercial or non-commercial FE packages. A user subroutine
UMAT (User’s MATerial) has been developed in order to implement the cyclic plasticity model by Yoshida
into the open-source FE program CalculiX. The coding is included in the Appendix. It can be easily modified
to implement any isotropic hardening rule for which the yield stress is a function of the effective plastic strain.
The number of the utilized backstress variables can be easily increased as well. Several validation tests which
have been performed in order to verify the code’s performance are discussed.

List of symbols

c Correction to effective plastic strain increment
bi i-th isotropic hardening function parameter (i = 1, 2, . . . , N )
Ci i-th kinematic hardening parameter (i = 1, 2, . . . , M)
Ce−p Consistent elastoplastic tangent operator fourth-order tensor
E Young’s modulus
ēp Effective plastic strain
ee Elastic strain deviator
εa Axial strain component
εl Lateral strain component
εp Axial plastic strain component
εe Elastic small strain tensor
εp Plastic small strain tensor
h∗ Effective hardening modulus
I Fourth-order identity tensor
J2(•) Second-order tensor second invariant
k Initial yield stress
K Bulk (Helmholtz) modulus
n̄ Normalized effective stress tensor
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p Volumetric stress
Qi i-th isotropic hardening function parameter (i = 1, 2, . . . , N )
r Function of effective plastic strain increment
R Isotropic hardening function
Ri i-th isotropic hardening function term (i = 1, 2, . . . , N )
s Stress deviator
spr Stress deviator predictor
wi i-th auxiliary effective plastic strain increment function (i = 1, 2, . . . , M)
X backstress tensor
X(i) i-th backstress tensor component (i = 1, 2, . . . , M)
Z Auxiliary second-order stress tensor
α Auxiliary function of effective plastic strain increment
γ Engineering shear strain
γi i-th kinematic hardening parameter (i = 1, 2, . . . , M)
σ Stress tensor
σ pr Equivalent HMH predictor stress
σy Yield stress
λ Lamé elastic parameter
λ∗ Effective Lamé parameter
μ Shear (Kirchhoff) modulus
μ∗ Effective shear modulus
ν Poisson’s ratio
ε Total dilatation
εe Elastic dilatation
1 Second-order identity tensor
tr(•) Trace operator
⊗ Dyadic product
· Double contraction product
sgn(•) Signum function
(•)· Time derivative operator

1 Introduction

The classical flow plasticity based on the Huber-von Mises-Hencky (HMH) yield criterion is the theory
which is the most commonly used for the description of the mechanical properties of metals, e.g., [27]. The
constitutive equations of small strain plasticity utilizing the isotropic, the kinematic or the mixed hardening
rules are available in practically every finite element (FE) program used for solving engineering problems,
e.g., [6,7,9,19]. The standard formulation of the kinematic hardening makes use of the linear rule developed
by Prager [20]. This version of the kinematic hardening model is widely used for solving different boundary
value problems of elastoplasticity. However, the Prager’s model is the most basic one, and often a need arises
for a constitutive relation that would describe the material response more accurately.

Armstrong and Frederick [2] proposed an elastoplastic constitutive model which utilizes a more elaborate
relation to describe the backstress evolution during the kinematic hardening phenomenon. This model is more
suitable for the description of material behaviors associated with the cyclic loadings such as the Bauschinger
effect. The model by Armstrong and Frederick was further extended by Chaboche and Rousselier by adding
the isotropic hardening behavior [4,5]. Thus, a mixed hardening rule was obtained this way. For the purpose of
modeling the kinematic hardening, this constitutive model assumes that the total backstress is a sum of several
components, each one evolving according to a separate Armstrong–Frederick (A-F) equation. The Voce law
[25]was used byChaboche andRousselier in order to simulate the isotropic hardening behavior. It was assumed
that the total yield stress is a sum of terms which evolve according to separate differential equations of the
type defined by the Voce rule. The Chaboche and Rousselier (Ch-R) model and its modifications are often
used for simulating the material response in the case of cyclic loadings, e.g., [6,9,19,26]. A special case of the
elastoplastic Ch-R model was considered by Yoshida et al. [29] where a single Voce term was used to describe
the isotropic hardening behavior, whereas the total backstress associated with the kinematic hardening was
assumed as a sum of two components. The evolution of the first backstress component was governed by the
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A-F law, while the second component was defined by the Prager rule. The rate-independent plasticity Ch-R
model was generalized to take into account the viscous effects, cf [4,5]. The Ch-R model is also a basis for
the formulation of more elaborate constitutive equations which can take into account such effects as the cyclic
shear softening, for instance, e.g., Kowalewski et al. [13].

The Ch-R constitutive model and its various modifications have been implemented into several commercial
and non-commercial FE analysis programs, e.g., [6,9,19]. However, usually the details of the FE implemen-
tation, such as: the integration of the constitutive equation and the derivation of the tangent operator, are not
covered in the available program’s documentation. On the other hand, Auricchio et al. [3] discussed the FE
implementation of a small strain cyclic plasticity model being a slight modification of the constitutive relation
by Chaboche and Rousselier. In the aforementioned work a modified formulation of the HMH yield criterion
was utilized. The isotropic hardening was described by a linear function of the effective plastic strain, and a
single backstress which evolves according to the A-F rule was used to simulate the kinematic hardening. This
approach was further extended by Artioli et al. [1]. Moreover, Kobayashi and Ohno discussed the FE imple-
mentation of selected cyclic plasticity models [12]. Kullig and Wippler [14] utilized the implicit backward
Euler method and the radial return mapping algorithm to develop an integration scheme for the viscoplastic
Chaboche model. A method for calculating the tangent operator was presented as well. The obtained inte-
gration algorithm was used to implement the considered constitutive model into the FE system ABAQUS
by taking advantage of the UMAT subroutine (User’s MATerial), cf [9]. Yang and Feng [28] used the radial
return algorithm to implement a viscoplastic material model based on the A-F kinematic hardening law into
ABAQUS. A proper UMAT code was written for that purpose.

In this work the FE implementation of the small strain cyclic plasticity is discussed. The radial return
mapping algorithm is utilized to develop an integration scheme which is valid for a family of elastoplastic
constitutive models assuming the mixed hardening behavior. The general form of the isotropic hardening rule
is considered where the yield stress is an arbitrary function of the effective plastic strain. It is assumed that the
kinematic hardening behavior is determined by a number of backstress variables which evolve according to
the separate A-F equations. In the special case, when the function describing the isotropic hardening behavior
is assumed in the form of the Voce law, the considered constitutive model takes the form of the Ch-R model.

A general relation for the consistent fourth-order tangent operator is derived. To the best of the author’s
knowledge, this formula for the tangent operator of the consideredmodel formulation has not been presented in
the literature before. The fact that the fourth-order operator is consistent, i.e., in agreement with the radial return
mapping algorithm used for the integration of the model equations, guarantees a quadratic rate of convergence
during the numerical computations when the operator is entirely coded in an FE program, cf e.g., [1].

The developed model integration algorithm along with the tangent operator is utilized to implement the
elastoplastic model proposed by Yoshida et al. [29] into the FE program CalculiX. For that purpose, the user
subroutine UMAT has been written. Numerous FE simulations have been performed in order to verify the
performance of the developed code. The obtained results are presented in this work. The UMAT code has
been attached in the Appendix Section. It has a general form and can be easily modified to incorporate some
different isotropic hardening laws (Ludwik [16], Swift [24] or numerous Voce terms etc.). The number of
programmed backstresses defined by the A-F or the Prager laws can be easily increased as well.

2 Basic notions

The total stress tensor σ can be decomposed into the volumetric stress p (opposite to the pressure) and the
deviatoric stress s, e.g., [23], i.e.,

σ = p1 + s, p = 1

3
tr σ , s = σ − p1. (1.1-3)

The volumetric stress and the stress deviator are associatedwith the elastic strain by the following relationships:

p = K εe, s = 2μee, (2)

where K is the bulk (Helmholtz) modulus and μ = G is the shear (Kirchhoff) modulus, whereas εe and ee are
the elastic dilatation and the elastic deviatoric strain, respectively, i.e.,

εe = tr εe, ee = εe − 1

3
εe1, (3)
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where εe is the total elastic strain tensor. The shear and the bulk moduli are related to the engineering constants,
i.e., Young’s modulus E and Poisson’s ratio ν, via the following equalities:

K = E

3(1 − 2ν)
, G = E

2(1 + ν)
. (4)

It is assumed that the total small strain tensor ε can be additively decomposed into its elastic and plastic
components, i.e., εe and ε p, respectively [20,23,27]:

ε = εe + ε p, (5)

where ε p is the plastic strain tensor. The volume change is treated as fully elastic, thus tr ε p = 0, so that
ε p = ep. It follows that in Eqs. (2) εe = ε = tr ε while ee = e − ep. Thus, another equation which governs
the evolution of the plastic strain tensor is required.

The Huber-von Mises-Hencky (HMH) yield criterion has to be satisfied when plastic flow occurs [4,5]:

F(σ ,X, ē p) = J2(s − X) − R(ē p) − k = 0, J2(s − X) =
√
3

2
(s − X) · (s − X), (6)

where X is the backstress tensor, k is the initial yield stress, while R(ē p) is a function responsible for the
isotropic hardening behavior (the expansion or the reduction in size of the yield function F(σ ,X, ē p)). The
effective plastic strain ē p is given by the following formulas:

ē p =
∫ ē p

0
dē p, dē p =

√
2

3
dep · dep. (7)

The evolution of the plastic strain is governed by the equation:

dep = dλ
∂F

∂σ
= 3

2
dλ

s − X
J2(s − X)

, (8)

where dλ is the plastic multiplier. After some manipulation, it can be found from Eq. (8) that dλ = dē p. Thus:

dep = 3

2
dē pn̄, n̄ = s − X

J2(s − X)
, (9)

where n̄ is the normalized effective stress tensor.
The total backstress tensor X is assumed to be a sum of M components X(i) (i = 1, 2, . . . , M) [4,5], i.e.,

X =
M∑
i=1

X(i), (10)

which evolve according to the separate Armstrong–Frederick (A-F) equations, cf [2]:

dX(i) = 2

3
Cidep − γidē

pX(i), (i = 1, 2, . . . , M), (11)

where Ci and γi are the kinematic hardening parameters. Some specific forms of R(ē p) are considered further
in the text. In the following Section the discretization of the constitutive model equations is discussed.
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3 Numerical integration of the constitutive model

The radial return mapping algorithm is utilized for the integration of the constitutive model, e.g., [1,3,14,22].
The deviatoric stress in the increment n + 1 is given by the following relation:

sn+1 = sn + 2μ
ee, 
ee = 
e − 
ep, (12)

thus:
sn+1 = sprn+1 − 2μ
ep, sprn+1 = sn + 2μ
e, (13.1,2)

with sprn+1 being the predictor stress. Equations (11) are discretized by replacing the differentials with the finite
differences, i.e.,


X(i) = X(i)
n+1 − X(i)

n = 2

3
Ci
ep − γiX

(i)
n+1
ē p. (14)

After some rearrangements Eq. (14) can be rewritten as follows:

X(i)
n+1 = wi

(
X(i)
n + 2

3
Ci
ep

)
, wi = 1

1 + γi
ē p
. (15.1,2)

Equations (9) can be written in incremental form, i.e.,


ep = 3

2

ē pn̄n+1, n̄n+1 = sn+1 − Xn+1

J2(sn+1 − Xn+1)
. (16.1,2)

Subtracting Eq. (10) from Eq. (13.1) and substituting Eqs. (15.1) and (16.1) yields

sn+1 − Xn+1 = sprn+1 − 2μ
ep −
M∑
i=1

X(i)
n+1 = sprn+1 − 3μ
ē pn̄n+1 −

M∑
i=1

wi

(
X(i)
n + Ci
ē pn̄n+1

)
. (17)

After some manipulation Eq. (17) can be written as:

sn+1 − Xn+1 = sprn+1 −
(
3μ +

M∑
i=1

wiCi

)

ē pn̄n+1 −

M∑
i=1

wiX(i)
n . (18)

Using Eq. (16.2) in Eq. (18) and some rearrangements lead to:

(sn+1 − Xn+1)

[
1 +

(
3μ +

M∑
i=1

wiCi

)

ē p

J2(sn+1 − Xn+1)

]
= sprn+1 −

M∑
i=1

wiX(i)
n , (19)

where
J2(sn+1 − Xn+1) = k + R(ē pn+1), (20)

when the material is yielding. The following notations are introduced:

α(
ē p) = 1 +
(
3μ +

M∑
i=1

wiCi

)

ē p

k + R(ē pn+1)
, (21)

and

Z = sprn+1 −
M∑
i=1

wiX(i)
n . (22)

After inserting Eqs. (20)–(22) into Eq. (19) it is found that:

(sn+1 − Xn+1) α(
ē p) = Z. (23)

By performing some manipulations Eq. (23) can be converted into a scalar equation, i.e.,(
k + R(ē pn+1)

)
α(
ē p) − J2(Z) = 0, (24)
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where J2(Z) =
√

3
2Z · Z and ē pn+1 = ē pn + 
ē p. Equation (24) is a nonlinear algebraic equation which has

to be solved numerically for the effective plastic strain increment 
ē p. The solution of Eq. (24) by means of
Newton’s iterative method is discussed in the Appendix. After determining the value of 
ē p the backstress
components can be updated according to Eq. (15.1) and the total backstress is calculated using Eq. (10).
Subsequently, the deviatoric stress is updated using Eq. (23), i.e.,

sn+1 = Xn+1 + Z
α(
ē p)

. (25)

It is important to note that using Eqs. (20), (23), and (24) it can be found that:

n̄n+1 = sn+1 − Xn+1

J2(sn+1 − Xn+1)
= Z

J2(Z)
. (26)

4 Consistent tangent operator

Taking the variation of Eq. (13.1) with respect to all quantities gives:

δsn+1 = δsprn+1 − 3μδē pn̄n+1 − 3μ
ē pδn̄n+1,

(27)

where the formulas for the variations δē p and δn̄n+1 have to be found. For the purpose of finding δē p, the
variation of Eq. (24) is taken, i.e.,

δR(ē p)α(
ē p) + (k + R(ē p))δα(
ē p) − δ J2(Z) = 0, (28)

with δR(ē p) = dR(ē p)
dē p δē p which depends on the specific form of R(ē p) (see Table 1), whereas δα(
ē p) =

dα(
ē p)
d
ē p δē p takes the form:

δα(
ē p) = δē p

k + R(ē p)

[
3μ +

M∑
i=1

wiCi
(
1 − γiwi
ē p

)+ (1 − α(
ē p)
) dR(ē p)

dē p

]
, (29)

see Appendix for the derivation. The variation δ J2(Z) is given by the following equation (see Appendix):

δ J2(Z) = 3

2
n̄n+1 · δsprn+1 + 3

2

M∑
i=1

γiw
2
i

(
n̄n+1 · X(i)

n

)
δē p. (30)

Substituting Eqs. (29) and (30) into Eq. (28) and solving it for δē p leads to the following relation:

δē p =
3
2 n̄n+1 · δsprn+1

3μ +∑M
i=1 wiCi (1 − γiwi
ē p) + dR

dē p
∣∣
ē pn+1

− 3
2

∑M
i=1 γiw

2
i

(
n̄n+1 · X(i)

n

) . (31)

It is convenient to introduce the so-called effective hardening modulus:

h∗ =
M∑
i=1

wiCi (1 − γiwi
ē p) + dR

dē p

∣∣∣∣
ē pn+1

− 3

2

M∑
i=1

γiw
2
i

(
n̄n+1 · X(i)

n

)
. (32)

Thus, using Eq. (32) the formula for the effective plastic strain variation can be written as:

δē p = 3

2

n̄n+1 · δsprn+1

3μ + h∗ . (33)

The variation of the normalized effective stress is given as (see Appendix):
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δn̄n+1 = 1

J2(Z)

(
I − 3

2
n̄n+1 ⊗ n̄n+1

)
· δsprn+1 + 1

J2(Z)

(
I − 3

2
n̄n+1 ⊗ n̄n+1

)
·
(

M∑
i=1

γiw
2
i X

(i)
n δē p

)
.

(34)

Inserting Eqs. (33) and (34) into Eq. (27) leads to:

δsn+1 = δsprn+1 − 3μ

3μ + h∗

(
3

2
n̄n+1 · δsprn+1

)
n̄n+1 − 3μ
ē p

J2(Z)

(
I − 3

2
n̄n+1 ⊗ n̄n+1

)
· δsprn+1

− 3μ
ē p

J2(Z)

(
I − 3

2
n̄n+1 ⊗ n̄n+1

)
·
(

M∑
i=1

γiw
2
i X

(i)
n

)
3

2

n̄n+1 · δsprn+1

3μ + h∗ ,

(35)

which after some rearrangements can be expressed as:

δsn+1 =
(
1 − 3μ
ē p

J2(Z)

)
δsprn+1 + 1

2

[
h∗

μ(1 + h∗
3μ)

− 3

(
1 − 3μ
ē p

J2(Z)

)]
(n̄n+1 ⊗ n̄n+1) · δsprn+1

− 3μ
ē p

(3μ + h∗)J2(Z)

3

2

M∑
i=1

γiw
2
i

[
X(i)
n ⊗ n̄n+1 − 3

2

(
n̄n+1 · X(i)

n

)
n̄n+1 ⊗ n̄n+1

]
· δsprn+1.

(36)

The effective shear modulus μ∗ is introduced as:

μ∗ = μ

(
1 − 3μ
ē p

J2(Z)

)
. (37)

Moreover, the following relations are utilized:

3

2

1

3μ + h∗

(
−3μ
ē p

J2(Z)

)
= 1

2μ
(
1 + h∗

3μ

)
(

−3μ
ē p

J2(Z)

)
= − 1

2μ

1 − μ∗
μ

1 + h∗
3μ

, (38)

and

δsprn+1 = 2μ

(
δεn+1 − 1

3
tr(δεn+1)1

)
. (39)

Substituting Eqs. (37)–(39) into Eq. (36) yields:

δsn+1 = −2

3
μ∗ tr(δεn+1)111 + 2μ∗δεn+1 +

(
h∗

1 + h∗
3μ

− 3μ∗
)

(n̄n+1 ⊗ n̄n+1) · δεn+1

− 1 − μ∗
μ

1 + h∗
3μ

M∑
i=1

γiw
2
i

[
X(i)
n ⊗ n̄n+1 − 3

2

(
n̄n+1 · X(i)

n

)
n̄n+1 ⊗ n̄n+1

]
· δεn+1,

(40)

where the fact that 1 · n̄n+1 = tr(n̄n+1) = 0 has been utilized. The variation of the total stress tensor at the
increment n + 1, i.e., σ n+1, is given as:

δσ n+1 = δsn+1 + δpn+1111, δpn+1 = K tr(δεn+1). (41.1,2)

A relation between the stress and the strain variations can be obtained by inserting Eqs. (40) and (41.2) into
Eq. (41.1), i.e.,

δσ n+1 = CCCe−p
n+1 · δεn+1, (42)

where CCCe−p
n+1 is the consistent algorithmic tangent operator which is given by the following relation:

CCCe−p
n+1 = λ∗111 ⊗ 111 + 2μ∗I +

(
h∗

1 + h∗
3μ

− 3μ∗
)
n̄n+1 ⊗ n̄n+1

− 1 − μ∗
μ

1 + h∗
3μ

M∑
i=1

γiw
2
i

[
X(i)
n ⊗ n̄n+1 − 3

2

(
n̄n+1 · X(i)

n

)
n̄n+1 ⊗ n̄n+1

]
,

(43)
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with

λ∗ = K − 2

3
μ∗ (44)

being the effective Lamé parameter. It should be emphasized that the tangent operator given by Eq. (43) is
non-symmetric, cf [3,14]. For M = 1 and γ1 = 0 the tangent operator simplifies to the form corresponding to
the mixed hardening model (with the kinematic hardening governed by the rule by Prager, cf [11]). Moreover,
if it is further assumed that R(ē p) = 0 the tangent operator of the Prager’s kinematic hardening model is
obtained, cf [22]. If one assumes M = 0 in Eq. (43) the tangent operator is reduced to the one of the isotropic
hardening model [22].

If the equivalent HMH predictor stress does not satisfy the condition σ pr = J2(s
pr
n+1 −Xn) > k + R(ē pn ),

the tangent operator takes the form of the elasticity tensor, i.e.,

CCC = λ111 ⊗ 111 + 2μI, (45)

where λ = K − 2
3μ is the Lamé constant.

5 User material (UMAT) subroutine for cyclic elastoplasticity

Most of the commercial and non-commercial FE programs offer the option of using a user-written subroutine
to define a constitutive relation which is unavailable in the program’s material library, e.g., [6,7,9,19]. Usually
such subroutines require from the user to define the stress update rule and the material tangent operator also
known as the material Jacobian. The FE program CalculiX utilizes alternatively two different interfaces which
can be used for coding a user-defined constitutive law, cf [7]. The first is the ABAQUS interface with the
second being the CalculiX native interface.

In this study the stress update algorithm described in Section 3 and the tangent operator given by Eq. (43)
were used to implement the small strain cyclic plasticity constitutive model into the FE program CalculiX via
the UMAT subroutine (User MATerial). It was decided to utilize the CalculiX native interface due to its better
performance compared to the ABAQUS UMAT used under CalculiX. The subroutine UMAT uses the small
mechanical strain tensor components (the “emec” columnmatrix) as an input which is further used to calculate
the stress tensor component matrix (“stre”) and the components of the tangent operator stored in a column
matrix (“stiff”). It is assumed that the tangent operator is symmetric [7], i.e., when the tangent operator is
written as a 6×6 matrix only the upper half of the components should be defined. The non-symmetric tangent
operator tensors should be symmetrized as shown in the exemplary source files provided with CalculiX. It has
been demonstrated in the literature that the performed symmetrization has no negative influence on the accuracy
of the FE computations and very limited influence on their robustness, e.g., [10,12]. Below the indexes of the
fourth-order tensor components have been listed in the 6× 6 matrix (the indexes of the “stiff” column matrix
components are given in the brackets; the Voigt notation is not used):

CCCe−p
6×6 =

⎡
⎢⎢⎢⎢⎣

1111 (1) 1122 (2) 1133 (4) 1112 (7) 1113 (11) 1123 (16)
2222 (3) 2233 (5) 2212 (8) 2213 (12) 2223 (17)

3333 (6) 3312 (9) 3313 (13) 3323 (18)
S 1212 (10) 1213 (14) 1223 (19)

Y 1313 (15) 1323 (20)
M 2323 (21)

⎤
⎥⎥⎥⎥⎦ . (46)

The subroutine UMAT calculates the components of stress and material tangent operator at each Gauss
integration point. These quantities are subsequently used by CalculiX to form up the element stiffness matrix.
Finally, the global stiffnessmatrix is assembledbyCalculiXusing the element stiffnessmatrices. This procedure
is repeated during every iteration of the Newton–Raphson process for all increments of the analysis (Fig. 1).

The UMAT subroutine is written in Fortran 77 language. In order to use it with CalculiX the code should
be compiled to the dynamic link library file (DLL)1. The DLL file should be placed in the same folder on the
computer’s hard drive as the CalculiX solver executable. Proper references to the user subroutine should be
included in the CalculiX input file on the *MATERIAL and *SOLID SECTION cards. That is:
*MATERIAL, NAME=@YOSHIDA
*USER MATERIAL, CONSTANTS=8

1 This can be performed using the MinGW free and open-source software development environment, for instance.
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79308.361,0.3,843.902,-216.91355,213.92731,58791.656,147.73622,1803.7759
284
*DEPVAR 25
and
*SOLID SECTION, ELSET=SOLIDPART-1, MATERIAL=@YOSHIDA
where “YOSHIDA” is the name of the DLL file containing the compiled UMAT code for the elastoplastic
model by Yoshida [29]. This UMAT code can be found in the Appendix Section. The calculations performed
by the developed subroutine follow the list in the box below. In the case of the Yoshida elastoplastic model
M = 2 with γ2 = 0, whereas the isotropic hardening behavior is simulated using the rule by Voce, cf [29].

FE implementation algorithm

Input: Xn
6×1, X

(1) n
6×1 , X

(2) n
6×1 , …, X(M) n

6×1 , ep n6×1.

1. Calculate elastic strain predictor for increment n + 1:

εe6×1 = εn+1
6×1 − ep n6×1

2. Calculate predictor stress:

σ
pr
6×1 = λ

(
εe1 + εe2 + εe3

)
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1
1
1
0
0
0

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

+ 2μεe6×1, p = 1

3
(σ1 + σ2 + σ3)

3. Calculate HMH equivalent stress σ pr and yield stress σy(ē
p
n ) = k + R(ē pn ).

4. If σ pr > σy(ē
p
n ):

(a) Solve Eq. (24) for effective plastic strain increment (Newton-Raphson method):


ē pi+1 = 
ē pi + ci , ci = − r(
ē pi )

∂r(
ē p)
∂
ē p

∣∣∣

ē p=
ē pi

.

(b) Calculate elastoplastic tangent operator components, Eq. (43).
(c) Update stresses and strains:

Z6×1 = σ
pr
6×1 −

M∑
i=1

wiX
(i) n
6×1, wi = 1

1 + γi
ē p
, n̄n+1

6×1 = Z6×1

J2(Z)
,

X(i) n+1
6×1 = wi

(
X(i) n
6×1 + Ci
ē pn̄n+1

6×1

)
, Xn+1

6×1 =
M∑
i=1

X(i) n+1
6×1 ,

σ n+1
6×1 = Xn+1

6×1 + Z6×1

α(
ē p)
+

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

p
p
p
0
0
0

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

.

5. If σ pr ≤ σy(ē
p
n ) calculate elastic tangent operator, Eq. (45).

6. Store variables: Xn+1
6×1, X

(1) n+1
6×1 , X(2) n+1

6×1 , …, X(M) n+1
6×1 , ep n+1

6×1 .
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Fig. 1 Flowchart for the integration of CalculiX and UMAT

Table 1 Isotropic hardening functions and their derivatives (σy(ē p) = k + R(ē p))

No. Reference R(ē p) dR
dē p

1 Linear law Hēp H
2 Voce [25] Q

(
1 − e−bēp

)
Qbe−bēp

3 Chaboche and Rousselier [4,5]
∑M

i=1 Qi
(
1 − e−bi ē p

) ∑M
i=1 Qibi e−bi ē p

4 Jemioło and Gajewski [11] R0ē p + R∞
(
1 − e−bēp

)
R0 + R∞be−bēp

5 Mróz and Maciejewski [18] Q
[
1 − e−b(ē p)n

]
Qbn(ē p)n−1e−b(ē p)n

6 Ludwik [16] C(ē p)n Cn(ē p)n−1

7 Swift [24] C(ē p + e0)n − k Cn(ē p + e0)n−1

8 Ludwigson [15] C1(ē p)n1 + C2en2 ē
p − k C1n1(ē p)n1−1 + C2n2en2 ē

p

9 Marciniak and Kuczyński [17] Aēp+B
ēp+C − k AC−B

(ē p+C)2

The number of the utilized backstresses can be easily increased by a proper modification to the attached
code. The UMAT subroutine has been written in a general form so that any other function than Voce defining
the isotropic hardening behavior can be easily implemented by modifying the code. Some alternative forms of
the function R(ē p) and its derivative are listed in Table 1.

It should be emphasized that the maximum number of material parameters which can be listed in a single
row in the *Material card is eight. If there are more parameters, they should be listed in the subsequent
rows. Moreover, if the number of the model’s parameters is precisely eight (as in the example given above)
the temperature should be given in the subsequent row of the input file, regardless of the type of analysis [7].

6 Exemplary problems

Below some exemplary simulations are discussed which were utilized to verify the performance of the devel-
oped UMAT code. The verification tests included simulating processes with homogenous strain and stress
fields: uniaxial tension/compression (UT/UC), equibiaxial tension/compression (BT/BC) and simple shear
(SS). The radial return mapping algorithm was used to derive equation sets which describe the aforementioned
processes. These equations were utilized to write simulation programs in Scilab software [21] which were
further used to verify the results of the FE simulations performed with CalculiX. In addition to the problems
mentioned above some more complex examples were considered as well.
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6.1 Uniaxial tension/compression (UT/UC)

A uniaxial stress state is assumed. Thematrices containing the components of the total stress tensor, its deviator
(according to Eq. (1.3)) and the backstress tensor are given as:

σ 3×3 =
⎡
⎣σ 0 0
0 0 0
0 0 0

⎤
⎦ , s3×3 =

⎡
⎣

2
3σ 0 0
0 − 1

3σ 0
0 0 − 1

3σ

⎤
⎦ , X3×3 =

⎡
⎣

2
3 X 0 0
0 − 1

3 X 0
0 0 − 1

3 X

⎤
⎦ . (47)

Thus:

(s − X)3×3 =
⎡
⎣

2
3 (σ − X) 0 0

0 − 1
3 (σ − X) 0

0 0 − 1
3 (σ − X)

⎤
⎦ , (48)

and the HMH equivalent stress takes the form:

J2(s − X) =
√
3

2
(s − X) · (s − X) = |σ − X | . (49)

It follows from the generalized Hooke’s law given by Eqs. (1.1) and (2) that the axial elastic strain component
is

εe11 = 1

E
[σ11 − ν(σ22 + σ33)] , (50)

where according to the assumed boundary conditions:

σ22 = σ33 = 0, σ11 = σ, (51)

thus:
σ = Eεe11. (52)

The axial stress component in the increment n + 1 is given as:

σn+1 = σn + E
εe11, (53)

with the axial elastic strain component

εe11 = 
ε11 − 
ε

p
11. (54)

The total strain and plastic strain matrices take the form:

ε3×3 =
⎡
⎣ εa 0 0

0 εl 0
0 0 εl

⎤
⎦ , ε

p
3×3 =

⎡
⎣ ε p 0 0

0 − 1
2ε

p 0
0 0 − 1

2ε
p

⎤
⎦ , (55)

where εa is the total axial strain, εl is the total lateral strain, whereas ε p is the axial plastic strain component.
It follows from Eqs. (54) and (55) that Eq. (53) can be rewritten as:

σn+1 = σ
pr
n+1 − E
ε

p
11, σ

pr
n+1 = σn + E
εa . (56.1,2)

The components of the Z stress are assumed in the following form:

Z3×3 =
⎡
⎣

2
3 Z 0 0
0 − 1

3 Z 0
0 0 − 1

3 Z

⎤
⎦ . (57)

Thus, it follows from Eq. (26) that the axial component of the normalized effective stress is:

(n̄n+1)11 =
2
3 Z

|Z | = 2

3
sgn(Z). (58)

After substituting Eq. (58) into Eq. (16.1) it is found that:


ε
p
11 = 
ē p sgn(Z). (59)
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Inserting Eq. (59) into Eq. (56.1) results in

σn+1 = σ
pr
n+1 − E
ē p sgn(Z). (60)

According to Eq. (15.1) the axial component of the i-th backstress in the increment n + 1 is

X (i)
11 n+1 = wi

(
X (i)
11 n + 2

3
Ci
ε

p
11

)
, (61)

while it follows from Eq. (10) that the total axial backstress is

X11 =
M∑
i=1

X (i)
11 , (62)

whereas X11 = 2
3 X and X (i)

11 = 2
3 X

(i), thus

X =
M∑
i=1

X (i). (63)

After inserting Eq. (59) into Eq. (61) it is found that

X (i)
n+1 = wi

(
X (i)
n + Ci
ē p sgn(Z)

)
. (64)

Subtracting Eq. (63) from Eq. (60) and substituting Eq. (64) gives:

σn+1 − Xn+1 = σ
pr
n+1 −

M∑
i=1

wi X
(i)
n −

(
E +

M∑
i=1

wiCi

)

ē p sgn(Z). (65)

It follows from Eqs. (26), (47), and (57) that

2
3 (σ − X)

|σ − X | =
2
3 Z

|Z | , (66)

thus
sgn(σ − X) = sgn(Z). (67)

According to Eq. (20) the following equality should hold when the material is actively yielding:

|σn+1 − Xn+1| = k + R(ē pn+1). (68)

Substituting Eq. (68) into Eq. (67) leads to:

sgn(Z) = σn+1 − Xn+1

k + R(ē pn+1)
. (69)

Thus, after inserting Eq. (69) into Eq. (65) and some rearrangements it is found that:

(σn+1 − Xn+1)

[
1 +

(
E +

M∑
i=1

wiCi

)

ē p

k + R(ē pn+1)

]
= σ

pr
n+1 −

M∑
i=1

wi X
(i)
n , (70)

where ē pn+1 = ē pn + 
ē p. The following notation is used:

α(
ē p) = 1 +
(
E +

M∑
i=1

wiCi

)

ē p

k + R(ē pn + 
ē p)
. (71)

It follows from Eqs. (22), (47), and (57) that

Z = σ
pr
n+1 −

M∑
i=1

wi X
(i)
n . (72)
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Substituting Eqs. (71) and (72) into Eq. (70) after some rearrangements gives:

σn+1 = Xn+1 + Z

α(
ē p)
. (73)

The following equation is also valid:

|σn+1 − Xn+1| α(
ē p) = |Z | . (74)

Inserting Eq. (68) into Eq. (74) and further rearrangement yields:(
k + R(ē pn + 
ē p)

)
α(
ē p) − |Z | = 0, (75)

which is the nonlinear algebraic equation that should be solved for the effective plastic strain increment 
ē p.
If the isotropic hardening function is assumed in the form proposed by Chaboche and Rousselier, then:

R(ē pn + 
ē p) =
N∑
i=1

Qi

(
1 − e−bi (ē

p
n +
ē p)

)
. (76)

The derived set of equations was utilized to write a Scilab program designated for simulating uniaxial
tension and compression processes. The computations performed by the program have been listed in the box
below. The Scilab function fsolve [21] was used for solving the nonlinear algebraic equation given by Eq.
(75). The developed program was used to verify the results of the FE simulations performed using the UMAT
code.

The data for DP1000 steel by Zimniak and Wiewiórska [30] were utilized to determine the material
parameters of the elastoplastic constitutive model by Yoshida. The evaluated parameter values are listed in
Table 2. This material parameter set was used for the numerical simulations both in CalculiX and Scilab. In
the case of the Yoshida model M = 2 in Eq. (62) with γ2 = 0 and N = 1 in Eq. (76).

The simulation of the uniaxial tension/compression process was performed in CalculiX using a cubic geo-
metrical model with the dimensions 1mm×1mm×1mm. The cube was meshed with a single C3D8 element2.
In Fig. 2a the applied boundary conditions have been illustrated. A kinematic excitation was assumed. A ramp
displacement δ in the direction “1” of the rectangular coordinate system was applied to the cube’s frontal face
ABCD (see Fig. 2c). The following boundary conditions were applied to the other faces of the cube: a zero
displacement in the direction “1” was set on the face EFGH , a zero displacement in the direction “2” on the
face AEHD, and a zero displacement in the direction “3” on the face ABFE . After reaching the maximum
value of δ = 0.07 mm the displacement started decreasing linearly with the analysis time. The simulation
ended with δ = 0 mm. The axial strain is calculated as: εa = δ/1 = δ.

2 Cubic, three-dimensional, eight nodes.
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Integration of model equations (UT/UC process)

input: εa n+1; output: σn+1, Xn+1, εl n+1

1. Calculate stress predictor for increment n + 1:


εa = εa n+1 − εa n, σ
pr
n+1 = σn + E
εa

2. Check for plastic process:

If
∣∣σ pr

n+1 − Xn
∣∣ < k + R(ē pn ), then:

(a) Update strains and stress:

ē pn+1 = ē pn , ε
p
n+1 = ε

p
n , εen+1 = εa n+1 − ε

p
n+1,

σn+1 = σ
pr
n+1, εl n+1 = −

(
ν

E
σn+1 + 1

2
ε
p
n+1

)
.

(b) Update backstresses:

X (i)
n+1 = X (i)

n (i = 1, 2, . . . , M), Xn+1 = Xn .

Else:

(a) Solve nonlinear equation for effective plastic strain increment 
ē p:
(
k + R(ē pn + 
ē p)

)
α(
ē p) − |Z | = 0,

R =
N∑
i=1

Ri , Ri = Qi

(
1 − e−bi (ē

p
n +
ē p)

)
,

α(
ē p) = 1 +
(
E +

M∑
i=1

wiCi

)

ē p

k + R(ē pn + 
ē p)
,

Z = σ
pr
n+1 −

M∑
i=1

wi X
(i)
n , wi = 1

1 + γi
ē p
.

(b) Update effective plastic strain and other variables:

ē pn+1 = ē pn + 
ē p, R =
N∑
i=1

Ri , Ri = Qi

(
1 − e−bi ē

p
n+1

)
, wi = 1

1 + γi
ē p
,

α(
ē p) = 1 +
(
E +

M∑
i=1

wiCi

)

ē p

k + R(ē pn+1)
, Z = σ

pr
n+1 −

M∑
i=1

wi X
(i)
n .

(c) Update backstresses and stress:

X (i)
n+1 = wi

(
X (i)
n + Ci
ē p sgn(Z)

)
, Xn+1 =

M∑
i=1

X (i)
n+1,

σn+1 = Xn+1 + Z

α(
ē p)
.

(d) Update strains:

ε
p
n+1 = ε

p
n + 
ē p sgn(Z), εl n+1 = −

(
ν

E
σn+1 + 1

2
ε
p
n+1

)
,

εen+1 = εa n+1 − ε
p
n+1.
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Fig. 2 Boundary conditions used for FE simulations: a uniaxial tension/compression, b equibiaxial tension/compression, c faces
of the finite element used to apply boundary conditions

Table 2 Material parameters of the Yoshida model determined for DP1000 steel

No. Parameter Name Value Unit

1 E Young’s modulus 79308.361 MPa
2 ν Poisson’s ratio 0.3 –
3 k Initial yield stress 843.902 MPa
4 Q1 Isotropic hardening parameter − 216.9135 MPa
5 b1 Isotropic hardening parameter 213.9273 –
6 C1 Kinematic hardening parameter 58791.656 MPa
7 γ1 Kinematic hardening parameter 147.7362 –
8 C2 Kinematic hardening parameter 1803.7759 MPa
9 γ2 Kinematic hardening parameter 0 –

Fig. 3 Metal cube undergoing uniaxial tension/compression: a stress vs axial strain, b lateral strain vs axial strain
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Fig. 4 Metal cube undergoing uniaxial cyclic tension/compression: a stress vs axial strain, b lateral strain vs axial strain, c axial
strain vs analysis time

The results obtained using the finite element method (FEM) in CalculiX were compared to those generated
by the simulation using the Scilab program. In Fig. 3a the comparison of the stress–axial strain responses
produced independently by the two aforementioned methods can be seen. In Fig. 3b the obtained plots of the
axial strain (εa) vs the lateral strain (εl ) are compared. An excellent agreement is found in both cases.

Another uniaxial tension/compression simulation was performed using the same FE model and set of
boundary conditions with a more complex loading history. In this approach the displacement of the cube’s
ABCD face was defined using the increasing saw function. It can be seen in Fig. 4a and b that again an
excellent agreement was found between the results produced by CalculiX and Scilab. In Fig. 4c the assumed
complex loading history can be seen.

Both of the described FE simulationswere repeated for the cubemeshedwith twenty-sevenC3D8 elements.
Again a very good agreement was observed between the results generated using CalculiX and Scilab. The
simulations described above were also performed for different types of finite elements, i.e., C3D203, C3D44

and C3D105. No decrease in the performance of the developed UMAT code was observed.

6.2 Equibiaxial tension/compression (BT/BC)

An equibiaxial stress state is assumed. The stress tensor components and the volumetric stress are given as:

σ 3×3 =
⎡
⎣σ 0 0
0 σ 0
0 0 0

⎤
⎦ , p = tr(σ )

3
= 2

3
σ. (77)

3 Cubic, three-dimensional, twenty nodes.
4 Tetrahedral, three-dimensional, four nodes.
5 Tetrahedral, three-dimensional, ten nodes.
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It follows that the components of the stress deviator take the form:

s3×3 =
⎡
⎣

1
3σ 0 0
0 1

3σ 0
0 0 − 2

3σ

⎤
⎦ . (78)

The backstress and the auxiliary stress Z are assumed in a similar form to the stress deviator, i.e.,

X3×3 =
⎡
⎣

1
3 X 0 0
0 1

3 X 0
0 0 − 2

3 X

⎤
⎦ , Z3×3 =

⎡
⎣

1
3 Z 0 0
0 1

3 Z 0
0 0 − 2

3 Z

⎤
⎦ , (79.1,2)

whereas, due to the plastic incompressibility (tr(ε p) = 0), the plastic strain has the following components:

ε
p
3×3 =

⎡
⎣ ε p 0 0

0 ε p 0
0 0 −2ε p

⎤
⎦ . (80)

It follows from Eqs. (78) and (79.1) that

(s − X)3×3 =
⎡
⎣

1
3 (σ − X) 0 0

0 1
3 (σ − X) 0

0 0 − 2
3 (σ − X)

⎤
⎦ , (81)

thus the HMH equivalent stress takes the form:

J2(s − X) =
√
3

2

[
2

9
(σ − X)2 2 + 4

9
(σ − X)2

]
= |σ − X | . (82)

According to the generalized Hooke’s law as given by Eqs. (1.1) and (2) after some rearrangements the elastic
strain components are given as:

εe11 = 1

E
[σ11 − ν(σ22 + σ33)] , εe22 = 1

E
[σ22 − ν(σ11 + σ33)] , εe33 = 1

E
[σ33 − ν(σ11 + σ22)] . (83)

After taking into account that σ11 = σ22 = σ and σ33 = 0 and some further manipulations it is found that:

σ = E

1 − ν
εe11 = E

1 − ν
εe22, εe33 = − ν

E
σ. (84)

The matrix of the components of the total strain tensor takes the form:

ε3×3 =
⎡
⎣ εa 0 0

0 εa 0
0 0 εl

⎤
⎦ . (85)

It follows from Eqs. (85) and (5) that:

εe3×3 =
⎡
⎣ εa − ε

p
11 0 0

0 εa − ε
p
22 0

0 0 εl − ε
p
33

⎤
⎦ . (86)

Thus, Eq. (84.1) can be written in the following incremental form:


σ = E

1 − ν

εe11 = E

1 − ν
(
εa − 
ε

p
11), (87)

so that the stress in the increment n + 1 is given as:

σn+1 = σn + 
σ = σn + E

1 − ν

εa − E

1 − ν

ε

p
11. (88)
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After introducing the predictor stress Eq. (88) takes the form:

σn+1 = σ
pr
n+1 − E

1 − ν

ε

p
11, σ

pr
n+1 = σn + E

1 − ν

εa . (89.1,2)

It follows from Eqs. (79.1,2) and (26) that

J2(Z) = |Z | , (n̄n+1)11 =
1
3 Z

|Z | = 1

3
sgn(Z). (90.1,2)

According to Eqs. (16.1) and (90.2) the plastic strain increment 
ε
p
11 is given by the following relation:


ε
p
11 = 3

2

ē p

1

3

Z

|Z | = 1

2

ē p sgn(Z). (91)

Assuming X (i)
11 = 1

3 X
(i), it follows from Eqs. (79.1), (10), (15.1) and (91) that

Xn+1 =
M∑
i=1

X (i)
n+1, X (i)

n+1 = wi

(
Ci
ē p sgn(Z) + X (i)

n

)
. (92.1,2)

Subtracting Eq. (92.1) from Eq. (89.1) and substituting Eq. (92.2) after some rearrangements gives:

σn+1 − Xn+1 = σ
pr
n+1 −

M∑
i=1

wi X
(i)
n −

(
E

2(1 − ν)
+

M∑
i=1

wiCi

)

ē p sgn(Z). (93)

It follows from Eqs. (26), (78), and (79.2) that

sgn(σ − X) = sgn(Z), (94)

whereas inserting Eq. (82) into Eq. (20) results in

|σn+1 − Xn+1| = k + R(ē pn+1) = k + R(ē pn + 
ē p). (95)

The Z11 component of the auxiliary stress is given as:

Z11 = 1

3
σ
pr
n+1 −

M∑
i=1

wi
1

3
X (i)
n = 1

3

(
σ
pr
n+1 −

M∑
i=1

wi X
(i)
n

)
. (96)

Thus, according to Eqs. (79.2) and (96):

Z11 = 1

3
Z , Z = σ

pr
n+1 −

M∑
i=1

wi X
(i)
n . (97.1,2)

After substituting Eqs. (94), (95) and (97.2) into Eq. (93) and some manipulations it is found that:

(σn+1 − Xn+1)α(
ē p) = Z , (98)

where the following notation is adapted:

α(
ē p) = 1 +
(

E

2(1 − ν)
+

M∑
i=1

wiCi

)

ē p

k + R(ē pn+1)
, (99)

with wi (i = 1, 2, . . . , M) given by Eq. (15.2). Equation (98) can be transformed into the form:
(
k + R(ē pn + 
ē p)

)
α(
ē p) − |Z | = 0, (100)
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Fig. 5 Metal cube undergoing equibiaxial tension/compression: a stress vs axial strain, b lateral strain vs axial strain

which is the nonlinear algebraic equation that has to be solved numerically for the effective plastic strain
increment 
ē p. The following relation which follows from Eq. (98) is used for updating the stress when the
plastic strain increment is determined:

σn+1 = Xn+1 + Z

α(
ē p)
. (101)

In the case of the Yoshida model M = 2 with γ2 = 0, whereas the isotropic hardening is described using the
model by Voce (N = 1 in Eq. (76)).

The derived equations were used to write a Scilab program designated for simulating the equibiaxial
tension/compression processes. The calculations performed by the program during every computational step
have been gathered in the box below. The fsolve function offered by Scilab was utilized for solving Eq.
(100). The developed Scilab program was used to verify the results of the FE simulations performed using the
UMAT code. In Table 2 the material parameter values which were used for the simulations are gathered.

The simulation of the equibiaxial tension/compression process was performed in CalculiX using a cubic
geometricalmodelwith the dimensions 1mm×1mm×1mm. The cubewasmeshedwith a single C3D8 element.
In Fig. 2b the applied boundary conditions have been illustrated. A kinematic excitation was assumed. A ramp
displacement δ in the direction “1” of the rectangular coordinate system was applied to the two of the cube’s
faces, i.e., ABCD and BFGC (see Fig. 2c). The following boundary conditions were applied to the other
faces of the cube: a zero displacement in the direction “1” was set on the face EFGH , a zero displacement in
the direction “2” on the face AEHD, and a zero displacement in the direction “3” on the face ABFE . After
reaching the maximum value of δ = 0.05 mm the displacement started decreasing linearly with the analysis
time. The simulation ended when δ = 0 mm.

The results obtained in CalculiX were compared with those generated by Scilab program. In Fig. 5a the
stress–axial strain (the strain in the axes of tension) response produced by FEM simulation was compared with
that generated by the Scilab program. In Fig. 5b the obtained plots of the lateral strain vs the axial strain are
compared. In both cases an excellent agreement is found between the results generated by CalculiX and Scilab.
The same analysis was repeated for a larger number and different types of finite elements (C3D4, C3D10,
C3D20). Again, a very good agreement between the results obtained using CalculiX and Scilab was found.
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Integration of model equations (BT/BC process)

input: εa n+1; output: σn+1, Xn+1, εl n+1

1. Calculate stress predictor for increment n + 1:


εa = εa n+1 − εa n, σ
pr
n+1 = σn + E

1 − ν

εa

2. Check for plastic process:

If
∣∣σ pr

n+1 − Xn
∣∣ < k + R(ē pn ), then:

(a) Update strains and stress:

ē pn+1 = ē pn , ε
p
n+1 = ε

p
n , εen+1 = εa n+1 − ε

p
n+1,

σn+1 = σ
pr
n+1, εl n+1 = −2

( ν

E
σn+1 + ε

p
n+1

)
.

(b) Update backstresses:

X (i)
n+1 = X (i)

n (i = 1, 2, . . . , M), Xn+1 = Xn .

Else:

(a) Solve nonlinear equation for effective plastic strain increment 
ē p:
(
k + R(ē pn + 
ē p)

)
α(
ē p) − |Z | = 0,

R =
N∑
i=1

Ri , Ri = Qi

(
1 − e−bi (ē

p
n +
ē p)

)
,

α(
ē p) = 1 +
(

E

2(1 − ν)
+

M∑
i=1

wiCi

)

ē p

k + R(ē pn + 
ē p)
,

Z = σ
pr
n+1 −

M∑
i=1

wi X
(i)
n , wi = 1

1 + γi
ē p
.

(b) Update effective plastic strain and other variables:

ē pn+1 = ē pn + 
ē p, R =
N∑
i=1

Ri , Ri = Qi

(
1 − e−bi ē

p
n+1

)
, wi = 1

1 + γi
ē p
,

α(
ē p) = 1 +
(

E

2(1 − ν)
+

M∑
i=1

wiCi

)

ē p

k + R(ē pn+1)
, Z = σ

pr
n+1 −

M∑
i=1

wi X
(i)
n .

(c) Update backstresses and stress:

X (i)
n+1 = wi

(
X (i)
n + Ci
ē p sgn(Z)

)
, Xn+1 =

M∑
i=1

X (i)
n+1,

σn+1 = Xn+1 + Z

α(
ē p)
.

(d) Update strains:

ε
p
n+1 = ε

p
n + 
ē p sgn(Z), εl n+1 = −2

( ν

E
σn+1 + ε

p
n+1

)
,

εen+1 = εa n+1 − ε
p
n+1.
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Integration of model equations (SS process)

input: εn+1; output: σn+1, Xn+1

1. Calculate stress predictor for increment n + 1:


ε = εn+1 − εn, σ
pr
n+1 = σn + 2μ
ε

2. Check for plastic process:

If
√
3
∣∣σ pr

n+1 − Xn
∣∣ < k + R(ē pn ), then:

(a) Update strains and stress:

ē pn+1 = ē pn , ε
p
n+1 = ε

p
n , εen+1 = εn+1 − ε

p
n+1, σn+1 = σ

pr
n+1.

(b) Update backstresses:

X (i)
n+1 = X (i)

n (i = 1, 2, . . . , M), Xn+1 = Xn .

Else:

(a) Solve nonlinear equation for effective plastic strain increment 
ē p:

(
k + R(ē pn + 
ē p)

)
α(
ē p) − √

3 |Z | = 0,

R =
N∑
i=1

Ri , Ri = Qi

(
1 − e−bi (ē

p
n +
ē p)

)
,

α(
ē p) = 1 +
(
3μ +

M∑
i=1

wiCi

)

ē p

k + R(ē pn + 
ē p)
,

Z = σ
pr
n+1 −

M∑
i=1

wi X
(i)
n , wi = 1

1 + γi
ē p
.

(b) Update effective plastic strain and other variables:

ē pn+1 = ē pn + 
ē p, R =
N∑
i=1

Ri , Ri = Qi

(
1 − e−bi ē

p
n+1

)
, wi = 1

1 + γi
ē p
,

α(
ē p) = 1 +
(
3μ +

M∑
i=1

wiCi

)

ē p

k + R(ē pn+1)
, Z = σ

pr
n+1 −

M∑
i=1

wi X
(i)
n .

(c) Update backstresses and stress:

X (i)
n+1 = wi

(
X (i)
n + 1√

3
Ci
ē p sgn(Z)

)
, Xn+1 =

M∑
i=1

X (i)
n+1,

σn+1 = Xn+1 + Z

α(
ē p)
.

(d) Update strains:

ε
p
n+1 = ε

p
n +

√
3

2

ē p sgn(Z), εen+1 = εa n+1 − ε

p
n+1.
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6.3 Simple shear (SS)

In the case of SS process the stress, the backstress, and the auxiliary stress tensors have the following compo-
nents:

σ 3×3 = s3×3 =
⎡
⎣ 0 σ 0

σ 0 0
0 0 0

⎤
⎦ , X3×3 =

⎡
⎣ 0 X 0
X 0 0
0 0 0

⎤
⎦ , Z3×3 =

⎡
⎣ 0 Z 0
Z 0 0
0 0 0

⎤
⎦ , (102.1-3)

It follows from Eqs. (2) and (5) that the total shear stress in the n + 1 increment can be expressed as

σn+1 = σ
pr
n+1 − 2μ
ε

p
12, σ

pr
n+1 = σn + 2μ
ε. (103.1,2)

It is seen in Eq. (102.2) that X12 = X , whereas X (i)
12 = X (i); thus, according to Eqs. (10) and (15.1) for the

increment n + 1 we have:

Xn+1 =
M∑
i=1

X (i)
n+1, X (i)

n+1 = wi

(
2

3
Ci
ε

p
12 + X (i)

n

)
, (104.1,2)

where wi (i = 1, 2, . . . , M) is given by Eq. (15.2). Subtracting Eq. (104.1) from Eq. (103.1) and substituting
Eq. (104.2) yields

σn+1 − Xn+1 = σ
pr
n+1 −

M∑
i=1

wi X
(i)
n − 2μ
ε

p
12 −

M∑
i=1

2

3
wiCi
ε

p
12. (105)

It follows from Eqs. (22) and (102.3) that

Z12 = Z = σ
pr
n+1 −

M∑
i=1

wi X
(i)
n . (106)

According to Eqs. (102.3) and (26):

J2(Z) = √
3 |Z | , (n̄n+1)11 = Z√

3 |Z | . (107.1,2)

Thus, using Eqs. (16.1) and (107.2) the following relation for the component of the shear plastic strain
increment is found:


ε
p
12 = 3

2

ē p

Z√
3 |Z | =

√
3

2

ē p sgn(Z). (108)

Utilizing Eqs. (106) and (108) in Eq. (105) leads to the following relationship:

σn+1 − Xn+1 = Z − √
3

(
μ − 1

3

M∑
i=1

wiCi

)

ē p sgn(Z). (109)

It follows from Eqs. (102.1) and (102.2) that the HMH equivalent stress is in the considered case given by the
formula:

J2(s − X) =
√
3

2
2(σ − X)2 = √

3 |σ − X | . (110)

Thus, according to Eqs. (26), (107.1,2), and (110) we have:

(n̄n+1)11 = σ − X√
3 |σ − X | = Z√

3 |Z | , sgn(σ − X) = sgn(Z), (111)

while inserting Eq. (110) into Eq. (20) gives
√
3 |σn+1 − Xn+1| = k + R(ē pn+1). (112)
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Fig. 6 Simple shear FE simulation: a boundary conditions, b faces of the finite element used to apply the boundary conditions

Substituting Eqs. (111.2) and (112) into Eq. (109) after some rearrangements yields

(σn+1 − Xn+1) α(
ē p) = Z , (113)

where

α(
ē p) = 1 +
(
3μ −

M∑
i=1

wiCi

)

ē p

k + R(ē pn+1)
. (114)

It follows from Eq. (113) that

|σn+1 − Xn+1| α(
ē p) = |Z | . (115)

Inserting Eq. (112) into Eq. (115) gives

(
k + R(ē pn + 
ē p)

)
α(
ē p) − √

3 |Z | = 0, (116)

which is the nonlinear algebraic equation that has to be solved numerically for 
ē p at every computational
step of the simulation.When the law by Chaboche and Rousselier is applied to simulate the isotropic hardening
behavior, the function R(ē pn + 
ē p) is given by Eq. (76). Substituting Eq. (108) into Eq. (104.2) results in the
following formula for updating the backstress:

X (i)
n+1 = wi

(
1√
3
Ci
ē p sgn(Z) + X (i)

n

)
, (i = 1, 2, . . . , M). (117)

The derived set of equations was utilized to write a Scilab program which can be used for performing
simulations of the SS processes. The calculations performed by the Scilab program at every computational
step of the numerical simulation are listed in the box. The fsolve function was utilized for solving Eq. (116).
Again, in the considered case of the Yoshida model M = 2, γ2 = 0, while the isotropic hardening behavior is
governed by the Voce rule (N = 1 in Eq. (76)).

The developed Scilab programwas used to validate the results generated by CalculiX during the SS process
simulation. The material parameter set given in Table 2 was utilized. The boundary conditions used for the
simulation performed in CalculiX are illustrated in Fig. 6a. A cube was meshed with a single C3D8 finite
element. The displacements on the ABCD face of the cube (see Fig. 6b) were set to zero. The displacements
in the directions “2” and “3” were set to zero on the face EFGH . The displacement δ of the face EFGH in
the direction “1” was used as the kinematic excitation which increased linearly up to the maximum value of
δ = 0.2 mm. After reaching the maximum the displacement value started decreasing linearly to zero. Since
δ = tan γ ≈ γ (Fig. 6), it follows that the shear strain ε = γ /2 = δ/2. In Fig. 7 the comparison of the
results produced by Scilab and CalculiX is presented. An excellent agreement was found. The simulation was
repeated for the cube meshed using C3D4, C3D10, and C3D20 elements. In all the considered cases a very
good agreement was found between the results generated by the Scilab program and those obtained from the
FE simulation in CalculiX.
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Fig. 7 Metal cube undergoing simple shear: shear stress vs shear strain

Fig. 8 Metal cube undergoing biaxial tension/compression: displacement histories

6.4 Cyclic biaxial tension/compression

In order to investigate the accuracy of the FE computations performed using the developed UMAT subroutine
a simulation of cyclic biaxial tension/compression was performed in CalculiX. Again, a cube with the edge
length of 1mm, meshed with a single C3D8 element, was used for the simulation. A kinematic excitation
was assumed. A displacement δ1 in the direction “1” of the rectangular coordinate system was applied to the
cube’s face ABCD, Fig. 2c. The time history of δ1 is shown in Fig. 8. Another displacement δ2 in the direction
“2” was defined on the cube’s BFGC face. The history of δ2 can be seen in Fig. 8. The following boundary
conditions were applied to the other faces of the cube: a zero displacement in the direction “1” was set on the
face EFGH , a zero displacement in the direction “2” on the face AEHD, and a zero displacement in the
direction “3” on the face ABFE .

The simulation was repeated for different sizes of the fixed time increment 
t , i.e., 1E-2, 1E-3, 1E-4, and
1E-5 s. The FE solution obtained for 
t = 1E − 5 s was assumed as exact. The following normalized error
function was used to estimate the accuracy of FE computations for different incrementation size:

error = ‖σ com − σ exa‖
‖σ exa‖ ,

∥∥σ com − σ exa
∥∥ = √(σ com − σ exa) · (σ com − σ exa), (118)

with σ exa being the Cauchy stress tensor calculated for 
t = 1E − 5 s, whereas σ com is the stress tensor
computed for another increment size for which the error value is being calculated. In Fig. 9a and b the stress–
strain histories that were computed for the selected increment sizes are shown. In Fig. 9c the time history of
the error calculated using Eqs. (118) for different incrementations can be seen. The obtained error values are
negligible and proportional to the increment size value. By comparing Figs. 8 and 9c it can be noticed that any
non-smoothness in the assumed displacement history results in an instantaneous jump of the error.
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Fig. 9 Metal cube undergoing biaxial tension/compression: (a) stress vs. strain for direction “1” and different incrementation, (b)
stress vs. strain for direction “2” and different incrementation, (c) normalized error of FE computations for different increment
sizes

Table 3 Values of the largest residual force (LRF)

Equilibrium iteration 1 2 3 4

LRF increment 1 [N] 63.976072 64.172986 2.926277 0.119474
LRF increment 2 [N] 269.136863 65.948167 7.655403 0.073866
LRF increment 3 [N] 12.855408 1.555085 0.001763 –
LRF increment 4 [N] 3.450552 0.095036 – –
LRF increment 5 [N] 1.842925 0.143609 – –

6.5 Flat bar with hole in tension

6.5.1 Ramp loading

A notched bar in tension was considered as a performance test for the developed UMAT subroutine. Due to
the symmetries of the problem only one 8-th of the bar can be considered. The dimensions of the bar and the
applied boundary conditions are shown in Fig. 10a. A ramp displacement δ of the bar’s upper face was used
as a kinematic excitation. The bar was elongated until the maximum value of δ = 1 mm was reached. The
bar was meshed using C3D8 elements (see Fig. 10b). The material parameter values gathered in Table 2 were
used for the Yoshida elastoplastic model defined by subroutine UMAT.

In Fig. 11 the results of the FE simulation are presented. The largest residual force (LRF) values recorded
during the subsequent iterations are gathered in Table 3. It can be seen that for some increments the quadratic
convergence of solution was achieved.
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Fig. 10 Flat notched bar in tension: a boundary conditions, b FE mesh

Table 4 Values of analysis time for different incrementations

Increment [s] Analysis time [s]

0.005 160.38
0.0025 269.42
0.001 733.82

6.5.2 Cyclic loading

In the second approach the same set of boundary conditions as before was used; however, the time history
of the displacement δ (Fig. 10a) was defined using a triangular wave function, Fig. 12a. The simulation was
performed for different fixed increment sizes, i.e., 5E-3, 2.5E-3, and 1E-3 s. The total reaction force F at the
bar’s upper face was calculated for each increment. The plot of F vs. δ for selected incrementations can be
seen in Fig. 12b.

In Table 4 the analysis time values obtained for different increment sizes are gathered6. It is seen that the
analysis time is approximately inversely proportional to the increment size.

6.6 Hollow cylinder under cyclic tension/compression and torsion

A hollow cylinder subjected to cyclic axial tension/compression and torsion was considered. The cylinder was
meshedwith 19440C3D8 elements, Fig. 13a. One end of the cylinder was assumed fixedwith all displacements
set to zero. An axial displacement was defined on the cylinder’s frontal face. Moreover, a rotation of the frontal
face around the cylinder’s axis was applied. The assumed time histories of the axial displacement δ and the
angle of twist α are shown in Fig. 13b. The maximum values were δmax = 1.08 mm for the axial displacement
and αmax = 9.8o for the angle of twist.

The simulation was performed in two variants using the automatic incrementation option. For the first
variant the maximum time increment size 
tmax was set to 1E-1 s, while for the second variant it was set to
2.5E-2 s. The computed results that were saved for the selected finite element no. 29983 (Fig. 13a) can be seen
in Fig. 14. Very similar results were obtained for both considered incrementation methods.

7 Conclusions

In this work the FE implementation of cyclic elastoplasticity was discussed. The radial return mapping algo-
rithm was used to develop a numerical integration scheme for a group of constitutive equations based on the

6 A PC with Intel i7 processor (7th generation) and 16 GB RAM was used to perform the FE simulations.
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Fig. 11 Flat notched bar in tension: a displacement magnitude, bHMH equivalent stress, c total strain component in the direction
of elongating

Fig. 12 Flat notched bar under cyclic loading: a displacement history, b total reaction force on the bar’s upper face versus the
face’s displacement for different incrementations
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Fig. 13 Hollow cylinder under cyclic tension/compression and torsion: a FEmesh and boundary conditions, b axial displacement
δ and angle of twist α time histories

Fig. 14 Hollow cylinder under cyclic tension/compression and torsion: a axial stress vs. axial strain for different incrementations,
b shear stress vs. shear strain for different incrementations

elastoplastic model proposed by Chaboche and Rousselier [4,5]. A fourth-order tangent operator was derived
which is consistent with the utilized algorithm of integrating the constitutive model. To the best of the author’s
knowledge this particular form of the tangent operator has not been presented in the literature before.

A subroutine UMAT was developed which allows to implement the elastoplastic model by Yoshida [29]
into the FE program CalculiX. The UMAT code has a general form which allows to easily modify the isotropic
hardening rule used by the model. The number of the utilized backstress variables can be increased easily
as well. Many validation tests were performed in order to verify the performance of the developed UMAT
subroutine. An excellent agreement was found between the results produced by UMAT and those of the
verification programs. What is more, a quadratic convergence was observed during the Newton–Raphson
iterative process.
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Appendix—Solution of nonlinear algebraic equation

The increment of effective plastic strain has to be found by solving Eq. (24) which is a nonlinear algebraic
equation with respect to 
ē p. It can be written as:

r(
ē p) = (k + R(ē pn + 
ē p)
)
α(
ē p) − J2(Z) = 0. (119)

The Newton–Raphson method is utilized for the purpose of solving this equation. If we expand r(
ē p) in a
series around 
ē p and limit ourselves to the first two terms, for the i-th iteration we obtain:

r(
ē pi ) + ∂r(
ē p)

∂
ē p

∣∣∣∣

ē p=
ē pi

ci+1 = 0, (120)

with ci+1 being the correction term which is given as

ci+1 = − r(
ē pi )

∂r(
ē p)
∂
ē p

∣∣∣

ē p=
ē pi

. (121)

At every step of the iterative procedure the calculated value of the correction term is used to update the value
of the searched effective plastic strain increment, i.e.,


ē pi+1 = 
ē pi + ci+1. (122)

The derivative of r(
ē p) with respect to 
ē p is calculated as follows:

∂r(
ē p)

∂
ē p
= ∂R(ē pn + 
ē p)

∂
ē p
α(
ē p) + (k + R(ē pn + 
ē p)

)∂α(
ē p)

∂
ē p
− ∂ J2(Z)

∂
ē p
. (123)

The function α(
ē p) is defined by Eq. (21). Its derivative with respect to 
ē p is given as:

∂α(
ē p)

∂
ē p
=
⎛
⎝3μ +

M∑
k=1

wkCk

⎞
⎠ 1

k + R(ē pn+1)
+ 
ē p

k + R(ē pn+1)

M∑
k=1

dwk

d
ē p
Ck −

⎛
⎝3μ +

M∑
k=1

wkCk

⎞
⎠ 
ē p(

k + R(ē pn+1)
)2

dR(ē pn+1)

dē pn+1

,

(124)
where it follows from Eq. (15.2) that

dwk

d
ē p
= −γk

(
1 + γk
ē p

)−2 = −γkw
2
k . (125)

Substituting Eq. (125) into Eq. (124) leads to:

∂α(
ē p)

∂
ē p
= 1

k + R(ē pn+1)

[(
3μ +

M∑
k=1

wkCk

)(
1 − 
ē p

k + R(ē pn+1)

dR(ē pn+1)

dē pn+1

)
− 
ē p

M∑
k=1

Ckγkw
2
k

]
.

(126)
Using Eq. (21) after some further rearrangements it is found that:

∂α(
ē p)

∂
ē p
= 1

k + R(ē pn+1)

[
3μ +

M∑
k=1

wkCk(1 − γkwk
ē p) + (1 − α(
ē p)
) dR(ē pn+1)

dē pn+1

]
. (127)

The differential of J2(Z) with respect to 
ē p follows from the chain rule, i.e.,

∂ J2(Z)

∂
ē p
= ∂ J2(Z)

∂Z
· ∂Z
∂
ē p

, (128)

with
∂ J2(Z)

∂Z
= 3

2

Z
J2(Z)

= 3

2
n̄n+1,

∂Z
∂
ē p

= −
M∑
k=1

dwk

d
ē p
X(k)
n =

M∑
k=1

γkw
2
kX

(k)
n . (129.1,2)
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Inserting Eqs. (129.1,2) into Eq. (128) leads to:

∂ J2(Z)

∂
ē p
= 3

2

M∑
k=1

γkw
2
k

(
n̄n+1 · X(k)

n

)
. (130)

The differential of R(ē pn+1) with respect to 
ē p is given by the following relation:

∂R(ē pn+1)

∂
ē p
= ∂R(ē pn+1)

∂ ē pn+1

∂ ē pn+1

∂
ē p
= dR(ē pn+1)

dē pn+1

, (131)

and has to be calculated for the specific form of the isotropic hardening function, cf Table 1.
Equations (119), (121), (123), (127), (130), and (131) are used to calculate the correction term ci+1 during
every step of the Newton–Raphson iterative procedure. Subsequently, the effective plastic strain is updated
according to Eq. (122). These actions are repeated in a loop until the demanded accuracy of the solution is
reached.

Appendix—Calculating variations

It follows from the chain rule that the variation δ J2(Z) can be expressed as:

δ J2(Z) = ∂ J2(Z)

∂Z
· δZ, (132)

where according to Eqs. (22) and (15.2)

Z = sprn+1 −
M∑
k=1

wiX(i)
n , wk = 1

1 + γi
ē p
. (133)

Taking the variation of Eq. (113.1) leads to:

δZ = δsprn+1 −
M∑
i=1

X(i)
n

dwi

d
ē p
δē p. (134)

Inserting Eq. (125) into Eq. (134) gives:

δZ = δsprn+1 +
M∑
i=1

γiw
2
i δē

pX(i)
n . (135)

Thus, substitution of Eqs. (129.1) and (135) into Eq. (132) results in:

δ J2(Z) = 3

2
n̄n+1 · δsprn+1 + 3

2

M∑
i=1

γiw
2
i

(
n̄n+1 · X(i)

n

)
δē p. (136)

The variation of the normalized effective stress given by Eq. (26) takes the form:

δn̄n+1 = − 1

(J2(Z))2
δ J2(Z)Z + 1

J2(Z)
δZ. (137)

After inserting Eqs. (135) and (136) into Eq. (137) the following relation is found:

δn̄n+1 = 1

J2(Z)

(
I − 3

2
n̄n+1 ⊗ n̄n+1

)
· δsprn+1 + 1

J2(Z)

(
I − 3

2
n̄n+1 ⊗ n̄n+1

)
·
(

M∑
i=1

γiw
2
i X

(i)
n δē p

)
.

(138)
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Appendix—Coding in Fortran 77

The following UMAT code is provided under the terms of the GNU General Public License (GPL). If you use
the UMAT code please cite this article in your work (book, article, report, etc.).

subroutine umat(amat,iel,iint,kode,elconloc,emec,emec0,
& beta,xokl,voj,xkl,vj,ithermal,t1l, _____dtime, ____time,ttime,
& icmd,ielas,mi,nstate_,xstateini,xstate,stre,stiff,
& iorien,pgauss,orab,pnewdt,ipkon)

implicit none
!

character*80 amat
!

integer ithermal,icmd,kode,ielas,iel,iint,nstate_,mi(*),iorien,
& ipkon(*)

!
real*8 elconloc(21),stiff(21),emec(6),emec0(6),beta(6),stre(6),

& vj,t1l,_____dtime,xkl(3,3),xokl(3,3),voj,pgauss(3),orab(7,*),
& ____time,ttime,pnewdt

!
real*8 xstate(nstate_,mi(1),*),xstateini(nstate_,mi(1),*)

real*8 zero, one, two, three, six

integer k1, knewton

parameter(zero=0.d0, one=1.d0, two=2.d0, three=3.d0, six=6.d0)
!

real*8 eelas(6),eplas(6),
1 backstre(6),backstre1(6),backstre2(6),
2 flow(6),depsilon(6),Z(6)

!
real*8 e,nu,G,G2,G3,B,lam,kyield,Q1,b1,C1,gamma1,C2,

1 sHMH,syield,shydro,
2 eqplas,deqplas,
3 effhrd,effG,effG2,effG3,efflam,effh,
4 term1,term2,term3,term4,term5,term6,term7,treelas,
5 eqZ,w1,R1,alfa,
6 dRdep,dJ2Zdep,dalfadep,drhsddep,
7 rhs,FlowdotBstre1,threetwo

integer newton

real*8 toler

newton=10
toler=1.D-6
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! -------------------------------------------------------------------
! CALCULIX UMAT FOR YOSHIDA ELASTO-PLASTIC MODEL
! (SMALL STRAIN FORMULATION)
!
! POLISH ACADEMY OF SCIENCES
! INSTITUTE OF FUNDAMENTAL TECHNOLOGICAL RESEARCH
!
! CYPRIAN SUCHOCKI, FEBRUARY 2021
! -------------------------------------------------------------------
! elconloc(1) - e Young’s modulus
! elconcoc(2) - nu Poisson’s ratio
! elconloc(3) - kyield initial yield stress
! elconcoc(4) - Q1 isotropic hardening parameter
! elconloc(5) - b1 isotropic hardening parameter
! elconcoc(6) - C1 kinematic hardening parameter
! elconloc(7) - gamma1 kinematic hardening parameter
! elconloc(8) - C2 kinematic hardening parameter
! -------------------------------------------------------------------
! Local arrays:
! backstre(6) - back stress
! backstre1(6) - back stress component no. 1
! backstre2(6) - back stress component no. 2
! eelas(6) - elastic strain
! eplas(6) - plastic strain
! depsilon(6) - mechanical strain increment (the components:
! 4, 5 and 6 are shear strain angle increments)
! flow(6) - flow direction
! c(6,6) - material Jacobian
!
! Local variables:
! G - shear modulus
! B - bulk modulus
! lam - lambda (Lame constant)
! treelas - trace of the lastic strain tensor
! eqplas - equivalent plastic strain
! deqplas - equivalent plastic strain increment
! sHMH - equivalent stress
! syield - yield stress
! shydro - hydrostatic stress
! effhrd - effective hardening parameter
! effG - effective shear modulus
! effG2 - effective shear modulus times two
! effG3 - effective shear modulus times three
! efflam - effective lambda constant
! -------------------------------------------------------------------
!
! Material parameters
!

e=elconloc(1) ! Young’s modulus
nu=elconloc(2) ! Poisson’s ratio
kyield=elconloc(3) ! initial yield stress
Q1=elconloc(4) ! isotropic hardening parameter
b1=elconloc(5) ! isotropic hardening parameter
C1=elconloc(6) ! kinematic hardening parameter
gamma1=elconloc(7) ! kinematic hardening parameter
C2=elconloc(8) ! kinematic hardening parameter
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G=e/(two*(one+nu)) ! shear modulus
G2=two*G
G3=three*G
B=e/(three*(one-two*nu)) ! bulk modulus
lam=B-two/three*G ! lambda

threetwo=three/two
!
! Extract state variables
!

do k1=1,6
backstre(k1)=xstateini(k1,iint,iel)
backstre1(k1)=xstateini(k1+6,iint,iel)
backstre2(k1)=xstateini(k1+12,iint,iel)
eplas(k1)=xstateini(k1+18,iint,iel)

end do
eqplas=xstateini(25,iint,iel)

!
! Calculate elastic strain
!

do k1=1,6
eelas(k1)=emec(k1)-eplas(k1)

end do
!
! Calculate predictor stress
!

treelas=eelas(1)+eelas(2)+eelas(3)

stre(1)=lam*treelas+G2*eelas(1)
stre(2)=lam*treelas+G2*eelas(2)
stre(3)=lam*treelas+G2*eelas(3)
stre(4)=G2*eelas(4)
stre(5)=G2*eelas(5)
stre(6)=G2*eelas(6)

!
! HMH equivalent stress
!

sHMH=(stre(1)-backstre(1)-stre(2)+backstre(2))**2
1 +(stre(2)-backstre(2)-stre(3)+backstre(3))**2
2 +(stre(3)-backstre(3)-stre(1)+backstre(1))**2
do k1=4,6

sHMH=sHMH+six*(stre(k1)-backstre(k1))**2
end do
sHMH=____sqrt(sHMH/two)

!
! Yield stress
!

R1=Q1*(one-___exp(-b1*eqplas))
syield=kyield+R1

!
! Determine if actively yielding
!

if(sHMH.gt.(one+toler)*syield) then
!
! Separate the deviatoric from the hydrostatic stress
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! Calculate the flow direction
!

shydro=(stre(1)+stre(2)+stre(3))/three
!
! Solve for equivalent plastic strain, Newton iteration
!

deqplas=zero
do knewton=1,newton

call calcterm(Q1,b1,kyield,R1,gamma1,C1,C2,G3,stre,
1 backstre1,backstre2,eqplas+deqplas,deqplas,shydro,
2 syield,w1,alfa,Z,eqZ,dRdep,dJ2Zdep,dalfadep,
3 FlowdotBstre1,term2,threetwo)

rhs=syield*alfa-eqZ
drhsddep=dRdep*alfa+syield*dalfadep-dJ2Zdep
deqplas=deqplas-rhs/drhsddep
if(___abs(rhs).lt.toler*syield) goto 10

end do
10 continue

eqplas=eqplas+deqplas
call calcterm(Q1,b1,kyield,R1,gamma1,C1,C2,G3,stre,

1 backstre1,backstre2,eqplas,deqplas,shydro,syield,w1,alfa,Z,
2 eqZ,dRdep,dJ2Zdep,dalfadep,FlowdotBstre1,term2,threetwo)

!
! Calculate the flow direction
!

do k1=1,6
flow(k1)=Z(k1)/eqZ

end do
!
! Calculate symmetrized Material Jacobian for active yielding
!

effG=G*(one-G3*deqplas/eqZ)
effG2=two*effG
effG3=three*effG
efflam=B-effG2/three

effh=term2+dRdep-dJ2Zdep
effhrd=effh/(one+effh/G3)-effG3

term3=(one-effG/G)/(one+effh/G3)*gamma1*w1**two
term4=threetwo*FlowdotBstre1

if(icmd.ne.3) then

stiff(1)=effG2+efflam+flow(1)*flow(1)*effhrd
1 -term3*(backstre1(1)*flow(1)
2 -term4*flow(1)*flow(1))

stiff(2)=efflam+flow(1)*flow(2)*effhrd
1 -term3*(0.5d0*(backstre1(1)*flow(2)
2 +backstre1(2)*flow(1))-term4*flow(1)*flow(2))

stiff(3)=effG2+efflam+flow(2)*flow(2)*effhrd
1 -term3*(backstre1(2)*flow(2)
2 -term4*flow(2)*flow(2))

stiff(4)=efflam+flow(1)*flow(3)*effhrd
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1 -term3*(0.5d0*(backstre1(1)*flow(3)
2 +backstre1(3)*flow(1))-term4*flow(1)*flow(3))

stiff(5)=efflam+flow(2)*flow(3)*effhrd
1 -term3*(0.5d0*(backstre1(2)*flow(3)
2 +backstre1(3)*flow(2))-term4*flow(2)*flow(3))

stiff(6)=effG2+efflam+flow(3)*flow(3)*effhrd
1 -term3*(backstre1(3)*flow(3)
2 -term4*flow(3)*flow(3))

stiff(7)=flow(1)*flow(4)*effhrd
1 -term3*(0.5d0*(backstre1(1)*flow(4)
2 +backstre1(4)*flow(1))-term4*flow(1)*flow(4))

stiff(8)=flow(2)*flow(4)*effhrd
1 -term3*(0.5d0*(backstre1(2)*flow(4)
2 +backstre1(4)*flow(2))-term4*flow(2)*flow(4))

stiff(9)=flow(3)*flow(4)*effhrd
1 -term3*(0.5d0*(backstre1(3)*flow(4)
2 +backstre1(4)*flow(3))-term4*flow(3)*flow(4))

stiff(10)=effG+flow(4)*flow(4)*effhrd
1 -term3*(backstre1(4)*flow(4)
2 -term4*flow(4)*flow(4))

stiff(11)=flow(1)*flow(5)*effhrd
1 -term3*(0.5d0*(backstre1(1)*flow(5)
2 +backstre1(5)*flow(1))-term4*flow(1)*flow(5))

stiff(12)=flow(2)*flow(5)*effhrd
1 -term3*(0.5d0*(backstre1(2)*flow(5)
2 +backstre1(5)*flow(2))-term4*flow(2)*flow(5))

stiff(13)=flow(3)*flow(5)*effhrd
1 -term3*(0.5d0*(backstre1(3)*flow(5)
2 +backstre1(5)*flow(3))-term4*flow(3)*flow(5))

stiff(14)=flow(4)*flow(5)*effhrd
1 -term3*(0.5d0*(backstre1(4)*flow(5)
2 +backstre1(5)*flow(4))-term4*flow(4)*flow(5))

stiff(15)=effG+flow(5)*flow(5)*effhrd
1 -term3*(backstre1(5)*flow(5)
2 -term4*flow(5)*flow(5))

stiff(16)=flow(1)*flow(6)*effhrd
1 -term3*(0.5d0*(backstre1(1)*flow(6)
2 +backstre1(6)*flow(1))-term4*flow(1)*flow(6))

stiff(17)=flow(2)*flow(6)*effhrd
1 -term3*(0.5d0*(backstre1(2)*flow(6)
2 +backstre1(6)*flow(2))-term4*flow(2)*flow(6))

stiff(18)=flow(3)*flow(6)*effhrd
1 -term3*(0.5d0*(backstre1(3)*flow(6)
2 +backstre1(6)*flow(3))-term4*flow(3)*flow(6))

stiff(19)=flow(4)*flow(6)*effhrd
1 -term3*(0.5d0*(backstre1(4)*flow(6)
2 +backstre1(6)*flow(4))-term4*flow(4)*flow(6))

stiff(20)=flow(5)*flow(6)*effhrd
1 -term3*(0.5d0*(backstre1(5)*flow(6)
2 +backstre1(6)*flow(5))-term4*flow(5)*flow(6))

stiff(21)=effG+flow(6)*flow(6)*effhrd
1 -term3*(backstre1(6)*flow(6)
2 -term4*flow(6)*flow(6))

end if
!
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! Calculate stress and update strains
!

term1=threetwo*deqplas

term5=C1*deqplas
term6=C2*deqplas

do k1=1,3
backstre1(k1)=w1*(backstre1(k1)+term5*flow(k1))
backstre2(k1)=backstre2(k1)+term6*flow(k1)
backstre(k1)=backstre1(k1)+backstre2(k1)
stre(k1)=backstre(k1)+Z(k1)/alfa+shydro
eplas(k1)=eplas(k1)+term1*flow(k1)

end do
do k1=4,6

backstre1(k1)=w1*(backstre1(k1)+term5*flow(k1))
backstre2(k1)=backstre2(k1)+term6*flow(k1)
backstre(k1)=backstre1(k1)+backstre2(k1)
stre(k1)=backstre(k1)+Z(k1)/alfa
eplas(k1)=eplas(k1)+term1*flow(k1)

end do

else
!
! Calculate Material Jacobian for elastic case
!

if(icmd.ne.3) then

term7=lam+G2

stiff(1)=term7
stiff(2)=lam
stiff(3)=term7
stiff(4)=lam
stiff(5)=lam
stiff(6)=term7
stiff(7)=0.d0
stiff(8)=0.d0
stiff(9)=0.d0
stiff(10)=G
stiff(11)=0.d0
stiff(12)=0.d0
stiff(13)=0.d0
stiff(14)=0.d0
stiff(15)=G
stiff(16)=0.d0
stiff(17)=0.d0
stiff(18)=0.d0
stiff(19)=0.d0
stiff(20)=0.d0
stiff(21)=G

endif

endif
!
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! Store state variables
!

do k1=1,6
xstate(k1,iint,iel)=backstre(k1)
xstate(k1+6,iint,iel)=backstre1(k1)
xstate(k1+12,iint,iel)=backstre2(k1)
xstate(k1+18,iint,iel)=eplas(k1)

end do
xstate(25,iint,iel)=eqplas

!
return
end

! -----------------------------------------------------------------
subroutine calcterm(Q1,b1,kyield,R1,gamma1,C1,C2,G3,stre,

1 backstre1,backstre2,eqplas,deqplas,shydro,syield,w1,alfa,Z,
2 eqZ,dRdep,dJ2Zdep,dalfadep,FlowdotBstre1,term2,threetwo)

real*8 Q1,b1,kyield,R1,gamma1,C1,C2,G3,stre(6),
1 backstre1(6),backstre2(6),eqplas,deqplas,shydro

real*8 syield,w1,alfa,Z(6),eqZ,dRdep,dJ2Zdep,dalfadep,
1 FlowdotBstre1,term2,threetwo

real*8 one, two, six

parameter(one=1.d0, two=2.d0, six=6.d0)

R1=Q1*(one-___exp(-b1*eqplas))
syield=kyield+R1
w1=(one+gamma1*deqplas)**(-one)
alfa=one+(G3+w1*C1+C2)*deqplas/syield

!
! Z stress
!

do k1=1,3
Z(k1)=stre(k1)-w1*backstre1(k1)-backstre2(k1)-shydro

end do
do k1=4,6

Z(k1)=stre(k1)-w1*backstre1(k1)-backstre2(k1)
end do

!
! Z equivalent stress
!

eqZ=(Z(1)-Z(2))**2+(Z(2)-Z(3))**2+(Z(3)-Z(1))**2
do k1=4,6

eqZ=eqZ+six*Z(k1)**2
end do
eqZ=____sqrt(eqZ/two)
!
! Derivatives
!
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dRdep=Q1*b1*___exp(-b1*eqplas)
FlowdotBstre1=(Z(1)*backstre1(1)+Z(2)*backstre1(2)

1 +Z(3)*backstre1(3)+two*(Z(4)*backstre1(4)
2 +Z(5)*backstre1(5)+Z(6)*backstre1(6)))/eqZ
dJ2Zdep=threetwo*FlowdotBstre1*gamma1*w1**two
term2=w1*C1*(one-gamma1*w1*deqplas)+C2
dalfadep=(G3+term2+(one-alfa)*dRdep)/syield

return
end
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