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Abstract Motivated by the influence of deformation-induced microcracks on the effective electrical proper-
ties at the macroscale, an electro-mechanically coupled computational multiscale formulation for electrical
conductors is proposed. The formulation accounts for finite deformation processes and is a direct extension of
the fundamental theoretical developments presented by Kaiser and Menzel (Arch Appl Mech 91:1509–1526,
2021) who assume a geometrically linearised setting. More specifically speaking, averaging theorems for the
electric field quantities are proposed and boundary conditions that a priori fulfil the extended Hill–Mandel
condition of the electro-mechanically coupled problem are discussed. A study of representative boundary value
problems in two- and three-dimensional settings eventually shows the applicability of the proposed formulation
and reveals the severe influence of microscale deformation processes on the effective electrical properties at
the macroscale.

1 Introduction

Computational multiscale formulations are well-established numerical tools to predict macroscopic mate-
rial properties from the underlying heterogeneous microstructure. To this end, detailed information on the
microstructure is collected in so-called representative volume elements, [11,36], and classic constitutive equa-
tions are substituted by detailed microstructure simulations. By using averaging theorems, macroscopic field
quantities are related to their microscopic analogues, and the effective material response at the macroscale is
predicted. Detailed information on micromechanical processes is thus taken into account in multiscale simula-
tions which are, for instance, used in the development process of advanced materials with tailored properties or
functionalities, [6]. Vice versa, multiscale methods contribute to an understanding of experimentally recorded
data at themacroscale by relating the properties of single phases and interfaces at themicroscale to the effective
macroscale material response.

In this regard, an electro-mechanically coupled computational multiscale formulation for electrical con-
ductors is proposed in the present contribution that allows to study the influence of microscale deformation
processes on the effective electrical properties at the macroscale. In particular, this contribution is motivated
by experimental findings on material thin films [7]. In these experiments, copper thin films are cyclically
strained, and the effective electrical resistance as a function of deformation is measured. The recorded increase
in electrical resistance with increasing deformation is explained by the formation of mechanically induced
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microcracks. Metal thin films are the basis for flexible electronic devices such as wearable sensors [10,31]
and foldable displays [5,22], and a detailed understanding of failure mechanisms and of deformation-induced
changes of the effective electrical properties is required to ensure their functionality. Furthermore, the pro-
posed multiscale formulation is expected to contribute to the development process of advanced non-destructive
electrical resistance-based testing methods used to analyse defect structures in specimens, e.g. [23].

The computational multiscale formulation for electro-mechanically coupled problems proposed in the
present contribution relies on and is a direct extension of well-established computational homogenisation
schemes as presented in the review paper [13]. For purely mechanical problems, first-order computational
homogenisation schemes are, for instance, discussed in [12,14,24,27–30]. The extension to generalised con-
tinuum theories by additionally taking the second gradient of the placement field into account has been
studied in e.g. [17,25,26,32]. Moreover, computational homogenisation schemes for thermo-mechanically
coupled problems are addressed in [2,3,33,37,39], formulations for magneto-mechanically coupled problems
are discussed in [18,38], and formulations that focus on the simulation of piezo- and ferroelectric materials are
elaborated in [20,21,35]. Compared to the present formulation, the latter developments on electro-active solids
are based on the fundamentals of electrostatics, whereas the present formulation relies (amongst others) on
the continuity equation for the electric current. Moreover, the flow of electric charge is intrinsically dissipative
and stipulates an inequality comparable to Fourier’s inequality of thermal problems that restricts the particu-
lar form of the constitutive equation for the electric current density vector. This is in striking contrast to the
(possibly) reversible processes of electro-active solids studied in [20,21,35]. From a materials science point
of view, piezo- and dielectric moduli are in the focus of the latter works, whereas the electrical conductivity
tensor is the primary material parameter that characterises the process studied in the present contribution.
More specifically speaking, the present contribution is a direct extension of the fundamental developments
on multiscale formulations for electrical conductors discussed in [19], subject to the assumption of linearised
kinematics, to a finite deformation setting. This extension is essential to capture the effect of (inhomogeneous)
geometry changes at the microscale on the effective macroscale conductivity tensor.

For the convenience of the reader, the article is organised similar to its small strain analogue [19]: Based
on Maxwell’s equations of electromagnetism, the governing set of partial differential equations of the electro-
mechanically coupled continuum under consideration is briefly summarised in Sect. 2. These fundamentals
serve as the basis for the multiscale formulation proposed in Sect. 3. A finite element-based implementation is
then discussed in Sect. 4 before representative boundary value problems in two- and three dimensional settings
are studied in Sect. 5. The findings are summarised and concluding remarks are drawn in Sect. 6.

1.1 Notation

Let α, β, γ , δ denote tensor-valued quantities of first order, and let⊗ denote the standard dyadic product. With
these definitions at hand, the single tensor contractionwill be used in the sense [α ⊗ β] ·[γ ⊗ δ

]=[
β · γ

]
[α ⊗ δ]

and the double tensor contraction in the sense [α ⊗ β] : [
γ ⊗ δ

] = [
α · γ

]
[β · δ] . In addition to the

standard dyadic product, the generalised dyadic products [α ⊗ β]⊗ [
γ ⊗ δ

] = [
α ⊗ γ

] ⊗ [β ⊗ δ] and
[α ⊗ β]⊗ [

γ ⊗ δ
] = [

α ⊗ γ
] ⊗ [δ ⊗ β] are introduced to allow for a compact notation. Moreover, gradi-

ent, divergence, and curl operators with respect to referential and spatial coordinates are denoted as ∇X, ∇X·,
∇X×, respectively, ∇x, ∇x·, ∇x×, the material time derivative as •̇, and the second-order identity tensor as I.

2 Continuum thermodynamics

The thermodynamic fundamentals of (thermo-magneto-)electro-mechanically coupled problems in a finite
deformation setting will briefly be summarised in this Section. In particular, Sect. 2.1 focuses on kinematics
and on the mechanical subproblem, Sect. 2.2 focuses on the electrical subproblem, and Sect. 2.3 focuses on
the conservation of energy and on the dissipation inequality. A more detailed elaboration of the governing set
of field equations is presented in e.g. [16].

2.1 Kinematics and mechanical subproblem

Let particles be identified by their position vectors X ∈ B0 at time t0 ∈ R, and let the region in space that is
occupied by the body under consideration at time t0 be denoted by B0 ⊂ R

3. Moreover, let x ∈ Bt denote the
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position vector of a particle at time t ≥ t0 and let Bt ⊂ R
3 denote the spatial configuration of the body. The

deformationmap relating the referential and the current configuration is given byϕ (X, t) : B0×R → Bt ⊂ R
3.

The associated map acting on the tangent space is F = ∂ϕ/∂X, with cofactor cof (F) = JFF−t and with
Jacobian JF = det (F) > 0. Making use of the latter definitions and denoting referential and spatial outward
unit normal vectors by N, respectively n, transformation rules for (referential and spatial) volume, surface and
line elements follow accordingly: JF dV = dv, cof (F) · N dA = n da, F · dS = ds.

The mechanical subproblem is governed by the balance equation of linear momentum in its classic, refer-
ential form

∇X · P + ρ0 f = ρ0 ẍ, (1)

with the Piola stress tensor P, the (mass-specific) body force vector f and the mass density with respect to the
reference configuration ρ0. The balance equation of angular momentum reduces to the symmetry condition
of the Cauchy stress tensor σ = σ t with P = JF σ · F−t , and is accounted for by the specific choice of the
constitutive equations. According to Cauchy’s theorem, linear relations between the stress tensors, the outward
unit normal vectors, and the traction vectors tt , respectively, t0, are assumed

tt = σ · n, (2.1)

t0 = P · N. (2.2)

2.2 Electrical subproblem

Maxwell’s equations form the foundation for the simulation of general electro-magnetic problems.With respect
to the spatial configuration, these are given by

Gauss’s electric law (spatial)
∫

∂Bt

d · n da =
∫

Bt

ρft dv (3.1)

Gauss’s magnetic law (spatial)
∫

∂Bt

b · n da = 0 (3.2)

Faraday’s law of induction (spatial)
∫

∂At

e · ds = − d

dt

∫

At

b · n da (3.3)

Ampére’s circuital law (spatial)
∫

∂At

h · ds =
∫

At

j · n da + d

dt

∫

At

d · n da (3.4)

whereAt denotes a surface that, in general, needs not to be closed. Moreover, the set of equations (3) includes
the continuity equation for the electric current which follows immediately from the evaluation of (3.4) for the
special case of a closed surface and from the insertion of (3.1) in the ensuing equation

0 =
∫

∂Bt

j · n da + d

dt

∫

Bt

ρft dv. (4)

It is remarked that the set of balance equations (3) is formulated in terms of the effective electric field vector e
(also referred to as the electromotive intensity) and the effective magnetic field vector h (also referred to as the
magnetomotive intensity). The balance equations can equivalently be formulated in terms of the Minkowskian
electric field vector e and the Minkowskian magnetic field vector h defined as

e = e − ẋ × b, (5.1)

h = h + ẋ × d. (5.2)

The spatial representations of the (conductive) electric current density vector j, of the dielectric displacement
vector d, and of the electric field vector e, are related to their referential counterparts via

J = JF F−1 · j, (6.1)

D = JF F−1 · d, (6.2)

E = Ft · e. (6.3)
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Moreover, the magnetic flux density b, the magnetic field vector h, and the (volume specific) free charge
density ρft transform according to

B = JF F−1 · b, (7.1)

H = Ft · h, (7.2)

ρf0 = JF ρft . (7.3)

By making use of (3), (6), and (7) one arrives at the referential representation of Maxwell’s equations,

Gauss’s electric law (referential)
∫

∂B0

D · N dA=
∫

B0

ρf0 dV (8.1)

Gauss’s magnetic law (referential)
∫

∂B0

B · N dA = 0 (8.2)

Faraday’s law of induction (referential)
∫

∂A0

E · dS = − d

dt

∫

A0

B · N dA (8.3)

Ampére’s circuital law (referential)
∫

∂A0

H · dS =
∫

A0

J · N dA + d

dt

∫

A0

D · N dA. (8.4)

In addition, by evaluating (8.4) for a closed surface and by inserting (8.1) in the ensuing equation one obtains
the continuity equation for the electric current in referential form,

0 =
∫

∂B0

J · N dA + d

dt

∫

B0

ρf0 dV , (9)

with

i0 = J · N (10)

denoting the projected current density vector. The localisation of (8) and (9) by making use of Gauss’s theorem
and Stoke’s theorem eventually results in

Gauss’s electric law (referential) ∇X · D = ρf0, (11.1)

Gauss’s magnetic law (referential) ∇X · B = 0, (11.2)

Faraday’s law of induction (referential) ∇X × E = −Ḃ, (11.3)

Ampére’s circuital law (referential) ∇X × H = J + Ḋ (11.4)

and

∇X · J + ˙ρf0 = 0 . (12)

Under the assumption of a (quasi-)stationary state, Faraday’s law of induction (11.3) simplifies and can nat-
urally be fulfilled by the introduction of a scalar-valued potentialφ for the (referential and spatial)Minkowskian
electric field vectors,

E = Ft · e, (13.1)

E = −∇Xφ, (13.2)

e = −∇xφ. (13.3)

Accordingly, the electrical subproblem reduces to the continuity equation for the electric current density,

∇X · J = 0 , (14)

with Gauss’s electric law (11.1) defining the local free charge density.
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2.3 Conservation of energy and dissipation inequality

Taking into account mechanical, thermal, and electrical contributions and introducing the (mass-specific)
internal energy density e, the balance equation of energy with respect to the spatial configuration is given by

d

dt

∫

Bt

ρt e dv + d

dt

∫

Bt

1

2
ρt ẋ · ẋ dv =

∫

Bt

ẋ · ρt f dv +
∫

∂Bt

ẋ · tt da

+
∫

Bt

ρt r dv −
∫

∂Bt

q · n da +
∫

Bt

j · e dv ,

(15)

with ρt = ρ0/JF denoting the mass density with respect to the current configuration, r denoting heat sources
or sinks and with the spatial heat flux vector q that is related to its referential counterpartQ = JF F−1 · q. The
last summand on the right-hand side of (15) is related to the electrical subproblem with the scalar product of
the electric current density vector and the electric field vector acting as a source term, cf. [8,9,34]. For the sake
of simplicity, additional energy contributions associated with polarisation and magnetisation are neglected.

By following standard procedures, (15) can equivalently be expressed with respect to the reference con-
figuration,

d

dt

∫

B0

ρ0 e dV + d

dt

∫

B0

1

2
ρ0 ẋ · ẋ dV =

∫

B0

ẋ · ρ0 f dV +
∫

∂B0

ẋ · t0 dA

+
∫

B0

ρ0 r dV −
∫

∂B0

Q · N dA +
∫

B0

J · E dV,

(16)

and localised as

ρ0 ė = P : Ḟ + ρ0 r − ∇X · Q + J · E . (17)

Furthermore, the localisation of the classic referential form of the dissipation inequality

d

dt

∫

B0

ρ0 s dV ≥
∫

B0

ρ0 r

θ
dV −

∫

∂B0

Q · N
θ

dA , (18)

with s denoting the (mass-specific) entropy density, yields

P : Ḟ − ρ0
[
ψ̇ + s θ̇

] − 1

θ
Q · ∇Xθ + J · E ≥ 0 . (19)

In the derivation of (19), the convex–concave Legendre–(Fenchel) transformation with regard to the (mass
specific) Helmholtz free energy density ψ (F, θ, •) was invoked in addition to (1) and (17). Moreover, it is
observed that the flow of electric charges is, intrinsically, a dissipative process and that (19) poses restrictions
on the particular form of the constitutive equation for the current density vector. The (dissipative) processes
that are in the focus of the present contribution are thus significantly different from the (possibly reversible)
processes of electro-active solids studied in e.g. [35].

3 Multiscale modelling

In computational multiscale methods, classic constitutive equations are substituted by a microscale boundary
value problem, and effective macroscale quantities are calculated based on their microscopic counterparts by
means of averaging theorems. In particular, a separation of time and length scales is assumed which motivates
the assumption of negligible body forces [33,37]. Moreover, we restrict ourselves to quasi-stationary problems
such that, based on (1) and (14), the electro-mechanically coupled microscale boundary value problem takes
the form

∇Xm · Pm = 0 , (20.1)

∇Xm · Jm = 0 . (20.2)

In (20) and in the following, superscripts •m and •M indicate micro- and macroscale quantities, respectively.
The corresponding averaging theorems that relate quantities at the two length scales are discussed in Sect. 3.1.
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These are closely related to the extended Hill–Mandel condition proposed in Sect. 3.2 which can a priori be
fulfilled by the choice of boundary conditions as shown in Sect. 3.3. The ensuing derivations are based on
and are direct extensions of well-established computational homogenisation procedures. For the mechanical
subproblem, these are, for instance, discussed in [12,24,27,28,30]. Multifield-multiscale methods for thermo-
mechanically coupled problems are moreover elaborated in e.g. [33] and applications to electro-mechanically
coupled problems of dielectric solids are discussed in e.g. [35]. Focusing on electrical conductors, a multiscale
method was recently proposed in [19] subject to the assumption of infinitesimal deformations.

3.1 Averaging theorems

In accordance with [3,37], (referential) macroscopic quantities are defined in terms of (referential) volume
averages of their microscopic counterparts. Furthermore, an alternative representation in terms of surface
integrals is derived which turns out to be beneficial for the evaluation of the extended Hill–Mandel condition
in Sect. 3.2 and for the derivation of algorithmic tangent stiffness contributions in Section 4.2.

More specifically speaking, by making use of the identity

∫

B0m

∇Xm • dV =
∫

B0m

[∇Xm•] · It dV =
∫

B0m

∇Xm · [• ⊗ I] dV =
∫

∂B0m

• ⊗ Nm dA (21)

and of the definition

Vm =
∫

B0m

dV , (22)

volume averages of the kinematic-type quantities can be expressed as

FM = 1

Vm

∫

B0m

Fm dV = 1

Vm

∫

B0m

∇Xmxm dV = 1

Vm

∫

∂B0m

xm ⊗ Nm dA , (23)

EM = 1

Vm

∫

B0m

Em dV = 1

Vm

∫

B0m

−∇Xmφm dV = 1

Vm

∫

∂B0m

−φm Nm dA . (24)

Their energetic duals

PM = 1

Vm

∫

B0m

Pm dV = 1

Vm

∫

∂B0m

Pm · Nm︸ ︷︷ ︸
= t0m

⊗Xm dA − 1

Vm

∫

B0m

[∇Xm · Pm
]

︸ ︷︷ ︸
= 0

⊗Xm dA (25)

and

JM = 1

Vm

∫

B0m

Jm dV = 1

Vm

∫

B0m

Jm · [∇XmXm
]t dV

= 1

Vm

∫

B0m

∇Xm · [Xm ⊗ Jm] dV − 1

Vm

∫

B0m

[∇Xm · Jm
]
Xm dV

= 1

Vm

∫

∂B0m

Jm · Nm︸ ︷︷ ︸
= i0m

⊗Xm dA − 1

Vm

∫

B0m

[∇Xm · Jm
]

︸ ︷︷ ︸
= 0

Xm dV (26)

followby taking into account the set of balance equations (20). It is remarked that (25) and (26)may alternatively
been derived by invoking (23), (24) and evaluating the Hill–Mandel energy equivalence conditions for specific
kinematic boundary conditions.
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3.2 Hill–Mandel conditions

Based on the balance equation of energy, (17), and in analogy with the well-established Hill–Mandel condition
of a purely mechanical problem,

PM : δFM = 1

Vm

∫

B0m

Pm : δFm dV = 1

Vm

∫

∂B0m

δxm · Pm · Nm︸ ︷︷ ︸
= t0m

dA − 1

Vm

∫

B0m

δxm · [∇Xm · Pm
]

︸ ︷︷ ︸
= 0

dV ,

(27)

the micro-macro energy equivalence condition

JM · δEM = 1

Vm

∫

B0m

Jm · δEm dV = − 1

Vm

∫

B0m

Jm · ∇Xmδφm dV

= − 1

Vm

∫

B0m

∇Xm · [δφm Jm] dV + 1

Vm

∫

B0m

δφm
[∇Xm · Jm

]
dV

= − 1

Vm

∫

∂B0m

δφm Jm · Nm︸ ︷︷ ︸
= i0m

dA + 1

Vm

∫

B0m

δφm
[∇Xm · Jm

]

︸ ︷︷ ︸
= 0

dV (28)

is additionally accounted for.

3.3 Boundary conditions

Mechanical and electrical RVE boundary conditions that can be shown to be consistent with the scale bridging
relations (23)–(26) and to fulfil the Hill–Mandel conditions (27) and (28) are summarised in (29):

mechanical electrical

affine xm = FM · Xm φm = φM − EM · Xm, (29.1)

periodic
[
x+
m − x−

m

] = FM · [X+
m − X−

m

] [
φ+
m − φ−

m

] = −EM · [X+
m − X−

m

]
, (29.2)

t+0m = −t−0m i+0m = −i+0m, (29.3)

uniform flux t0m = PM · Nm i0m = JM · Nm (29.4)

with superscripts •+ and •− referring to quantities at two opposing parts of the RVE-boundary. Since com-
prehensive discussions of boundary conditions for the mechanical subproblem are available in the literature,
see e.g. [37], the subsequent discussion is restricted to the suitability of the electrical boundary conditions.

With regard to the affine boundary conditions of the electrical problem (29.1) and in view of (20), (24),
(26), and (28), it is observed that

1

Vm

∫

B0m

Em dV = 1

Vm

∫

∂B0m

− [φM − EM · Xm] Nm dA

= 1

Vm

∫

B0m

∇Xm · [− [φM − EM · Xm] I] dV = EM

(30)

and that

1

Vm

∫

B0m

Jm · δEm dV = − 1

Vm

∫

∂B0m

i0m [δφM − δEM · Xm] dA

= 1

Vm

∫

∂B0m

i0m Xm dA · δEM = JM · δEM (31)

hold.
Likewise, taking into account the (anti-)periodicity conditions (29.2) and (29.3) in addition to the geometric

constraint for outward unit surface normal vectors,

N+
m = −N−

m , (32)
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one arrives at

1

Vm

∫

B0m

Em dV = − 1

Vm

[∫

∂B+
0m

φ+
m N+

mdA +
∫

∂B−
0m

φ−
m N−

m dA

]

= 1

Vm

[∫

∂B+
0m

EM · [
X+
m − X−

m

] ⊗ N+
m dA

]

= 1

Vm

[
EM ·

∫

∂B0m

Xm ⊗ I · Nm dA

]
= EM

(33)

and

1

Vm

∫

B0m

Jm · δEm dV = − 1

Vm

[∫

∂B+
0m

i+0m δφ+
m dA +

∫

∂B−
0m

i−0m δφ−
m dA

]

= 1

Vm

[∫

∂B+
0m

i+0m
[
δEM · [

X+
m − X−

m

]]
dA

]

= 1

Vm

[∫

∂B0m

i0m Xm dA · δEM

]
= JM · δEM .

(34)

Finally, by evaluating (26) for (29.4) one arrives at

1

Vm

∫

B0m

Jm dV = 1

Vm

∫

∂B0m

Xm ⊗ JM · Nm dA − 1

Vm

∫

B0m

[∇Xm · JM
]
Xm dV = JM, (35)

and by evaluating (28) for (29.4) at

1

Vm

∫

B0m

Jm · δEm dV = − 1

Vm

∫

∂B0m

δφm JM · Nm dA = JM ·
[
− 1

Vm

∫

∂B0m

δφm Nm dA

]
= JM · δEM .

(36)

4 Finite element implementation

Based on the theoretical fundamentals presented in Sects. 2 and 3, this Section focuses on the finite element-
based solutionof electro-mechanically coupledmultiscale problems for affine andperiodic boundary conditions
at the microscale. In particular, discrete representations of the averaging theorems (25) and (26) are discussed
in Sect. 4.1, and the corresponding tangent stiffness contributions that are required in an iterative, gradient-
based solution procedure at the macroscale are derived in Sect. 4.2. For the purely mechanical case, these
numerical procedures are well established and, for instance, discussed in the pioneering work [27]. Extensions
to thermo-mechanically coupled problems and to electro-mechanically coupled problems of dielectric solids
are discussed in e.g. [20,21,33,37].

For affine boundary conditions, the subsequent derivations are based on the generalised stiffness matrix
Km and on the generalised reaction force vector fm. In the case of periodic boundary conditions, the latter
quantities need to be substituted by the reduced generalised stiffness matrixK∗

m and by the reduced generalised
reaction force vector f∗m that occur when enforcing (anti-)periodicity conditions via linear constraints, e.g. [40].
More specifically speaking, in each iteration the linear system

Km · ΔXm = Δfm (37)

is partitioned into dependent Xmd and independent Xmi degrees of freedom that are related via the transfor-
mation matrix T according to

K∗
m = T t · Km · T , f∗m = T t · fm ,

[
Xmi
Xmd

]
= T · Xmi , (38)

and the reduced system

K∗
m · ΔXmi = Δf∗m (39)

is solved.
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4.1 Homogenisation

Scale-bridging relations in the proposed finite element implementation are based on (25) and (26), with
occurring integrals being substituted by a sum over all npn Dirichlet nodes. In this regard, nodal quantities
are indicated by superscripts (i) •, and additional superscripts •ϕ and •φ are introduced to differ between
mechanical and electrical contributions to the generalised (nodal) reaction force vector. With these definitions
at hand, the discrete representations of (25) and (26) read

PM = 1

Vm

∫

∂B0m

t0m ⊗ Xm dA ≈ 1

Vm

npn∑

i=1

(i)fϕm ⊗ (i)Xm (40)

and

JM = 1

Vm

∫

∂B0m

i0m Xm dA ≈ 1

Vm

npn∑

i=1

(i) f φ
m

(i)Xm . (41)

4.2 Generalised algorithmic tangent stiffness tensors

In order to derive consistent algorithmic tangent stiffness operators, the linear system (37) is partitioned into
Dirichlet Xmp and free Xmf degrees of freedom,

[
Kmpp Kmpf
Kmfp Kmff

]
·
[
ΔXmp
ΔXmf

]
=

[
Δfmp
0

]
, (42)

and the closed-form expression

K̂m · ΔXmp = Δfmp , K̂m = Kmpp − Kmpf · Km
−1
ff · Kmfp , (43)

relating changes in the generalised reaction force vector to changes in the prescribed degrees of freedom is
used. In the case of affine and periodic boundary conditions, the prescribed degrees of freedom are related to
changes in the macroscopic mechanical and electrical field quantities according to

Δ ( j)xmp = ΔFM · ( j)Xm (44)

and

Δ ( j)φmp = ΔφM − ΔEM · ( j)Xm . (45)

Moreover, by partitioning (43) into mechanical and electrical contributions, indicated by superscript •ϕ and
•φ , and by inserting (44) and (45) into the ensuing equation one arrives at
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Δ (i)fϕm =
npn∑

j=1

(i j)K̂ϕϕ
m · Δ ( j)xmp +

npn∑

j=1

(i j)K̂ϕφ
m Δ ( j)φmp (46.1)

=
npn∑

j=1

(i j)K̂ϕϕ
m · ΔFM · ( j)Xm −

npn∑

j=1

(i j)K̂ϕφ
m ⊗ ΔEM · ( j)Xm (46.2)

and

Δ (i) f φ
m =

npn∑

j=1

(i j)K̂φϕ
m · Δ ( j)xmp +

npn∑

j=1

(i j)K̂φφ
m Δ ( j)φmp (47.1)

=
npn∑

j=1

(i j)K̂φϕ
m · ΔFM · ( j)Xm −

npn∑

j=1

(i j)K̂φφ
m ΔEM · ( j)Xm . (47.2)

At this stage, it was used that the constitutive equations of the electro-mechanically coupled problem under
consideration depend on the electric potential field only via its gradient, i.e. the electric field vector, such that
changes in φM were neglected in (46) and (47) and will be neglected in the following. Finally, by inserting
(46) into (40) one arrives at

ΔPM ≈ 1

Vm

npn∑

i=1

npn∑

j=1

(i j)K̂ϕϕ
m ⊗

[
(i)Xm ⊗ ( j)Xm

]

︸ ︷︷ ︸

= dPM
dFM

: ΔFM − 1

Vm

npn∑

i=1

npn∑

j=1

(i j)K̂ϕφ
m ⊗ (i)Xm ⊗ ( j)Xm

︸ ︷︷ ︸

= dPM
dEM

·ΔEM,

(48)

and by inserting (47) into (41) at

ΔJM ≈ 1

Vm

npn∑

i=1

npn∑

j=1

(i)Xm ⊗ (i j)K̂φϕ
m ⊗ ( j)Xm

︸ ︷︷ ︸

= dJM
dFM

: ΔFM − 1

Vm

npn∑

i=1

npn∑

j=1

(i j)K̂φφ
m

(i)Xm ⊗ ( j)Xm

︸ ︷︷ ︸

= dJM
dEM

·ΔEM.

(49)

5 Representative simulation results

This Section focuses on the study of representative boundary value problems so as to reveal the influence of
mechanically induced microscale deformation processes on effective (electrical) macroscale material proper-
ties. To this end, the microscale material model is briefly summarised in Sect. 5.1, and sample boundary value
problems in two- and three-dimensional settings are studied in Sects. 5.2 and 5.3.

5.1 Microscale material models

At the microscale, the Neo-Hookean-type energy potential,

Ψ̃ (F) = ρ0 ψ̃ (F) = λ
J 2F − 1

4
−

[
λ

2
+ μ

]
ln (JF) + 1

2
μ [F : F − 3] , (50)

is adopted, featuring material parameters λ and μ that are akin to the Lamé constants of a small strain theory.
In virtue of (19), (50) gives rise to the specific form of the Piola stress tensor:

P = λ

2

[
J 2F − 1

]
F−t + μ

[
F − F−t] , (51)
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Table 1 Material parameters of an idealised material used in the simulations

E ν κt

130000N/mm2 0.35 58100A/[Vmm]

with associated tangent stiffness contributions

dP
dF

= λ J 2F F−t ⊗ F−t −
[
λ

2

[
J 2F − 1

] − μ

]
F−t⊗F−1 + μ I⊗ I (52)

and

dP
dE

= 0 . (53)

In accordance with the restrictions on the electric current density vector posed by (19), a linear relation
between the (spatial) electric current density vector and the (spatial) electric field vector is adopted at the
microscale, namely

j = S t · e . (54)

In (54),S t denotes the positive (semi-)definite spatial conductivity tensor that is chosen to be constant, isotropic,
and to depend on the scalar-valued conductivity parameter κt , namely

S t = κt I . (55)

Assuming κt to be constant allows us to study the influence of finite geometry changes at the microscale (e.g. of
voids) on the effective electrical conductivity tensor at the macroscale. In this regard, taking κt to be constant is
a simplifying modelling assumption. Regarding for example metals, irreversible plastic deformation processes
would be associated with the finite deformations studied in the present contribution. These would, in turn, be
accompanied by an increase in dislocation density which is expected to influence the electrical conductivity
as discussed in e.g. [1,4,15].

By additionally invoking (6.1) and (6.3), the referential representation of (54) follows as

J = [
JF F−1 · S t · F−t] · E (56)

with tangent stiffness contributions

dJ
dE

= JF F−1 · S t · F−t (57)

and

dJ
dF

= −JF F−1 ⊗ F−1 · S t · F−t · E − JF F−1 · [[
S t ⊗ F−t] ⊗F−t] · E + JF F−1 · S t · F−t · E ⊗ F−t.

(58)

5.2 Two-dimensional representative simulations

In this Section, the influence of mechanically induced deformation processes on the electrical conductivity is
studied in a two-dimensional plane strain setting. In particular, focus is on the biaxial tensile test specimen
depicted in Fig. 1a. The specimen is assumed to consist of two different materials as indicated in light and
dark grey. In the dark grey-coloured region, a material microstructure with a circular void according to Fig. 1b
is assumed, and the effective macroscopic material behaviour is calculated by using the multifield multiscale
formulation proposed in this contribution. In the light grey-coloured region, an idealised material behaviour
representing a microstructure without voids is assumed. The respective material parameters are summarised
in Table 1.
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fections according to b are assumed in the dark grey-coloured region and resolved by using the proposed multiscale approach. In
the light grey-coloured region, a classic phenomenological material model is used. Dimensions are given in mm
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Fig. 2 a Electric current I• (surface integral of projected electric current density vector i0) as a function of deformation for a
prescribed electric potential difference Δφ• = 0.1mV, see Fig. 1. Curves labelled with “FE2” indicate fully coupled electro-
mechanical multiscale simulations. Curves labelled with “pheno.” indicate reference solutions with a multiscale approach used
for the mechanical problem and a classic phenomenological material model with a constant spatial conductivity tensor used for
the electrical problem. Stated differently, in the latter case the inhomogeneous deformation of themicrostructure is only accounted
for in the evaluation of the mechanical problem. b Evolution of the spatial conductivity tensor near the centre of the specimen.
For each deformation state, given in terms of the prescribed displacement u, the distance of points to the origin represents the
projected conductivity κt p in the respective spatial direction ep

The biaxial tensile test specimen is loaded in e1-direction, with the prescribed horizontal displacement
u being linearly increased and the vertical displacement enforced to be zero at both ends. The remaining
boundaries are assumed to be traction-free. Regarding the electrical subproblem, either a potential difference
Δφ1 or a potential difference Δφ2 is prescribed. The remaining boundaries are assumed to be electrically
insulated, i.e. J · N = 0 holds. From a numerical point of view, four-node quadrilateral elements and a
Gaussian integration scheme featuring four sampling points are used at the micro- and at the macroscale.
Moreover, periodic boundary conditions are assumed at the microscale.
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A reference model is introduced in order to evaluate the influence of the microscale deformation on the
effective macroscopic quantities that may be measured in experiments. This model does not take changes in
the effective conductivity tensor due to deformation processes at the microscale into account. However, the
mechanical behaviour is still assumed to be governed by the microscale so that the macroscopic deformation
is the same as in the complete FE2-model. To this end, the FE2-based calculation of the electrical subproblem
in the dark grey-coloured region is replaced by a classic single-scale material model with the effective spatial
conductivity tensor

S̃ t = κ̃t I with κ̃t = 32 488.9A/[Vmm] (59)

that resembles the properties of the microstructure in the undeformed state. The respective elongation–electric
current curves are provided in Fig. 2a: 1) By comparing the Δφ1 = 0.1mV and Δφ2 = 0.1mV curves, a
significant difference in the electric current is observed that can primarily be attributed to the macroscopic
deformation process. In particular, the effective electrical resistance in e1-direction increases because the length
of the specimen increases while the effective cross section is reduced. Likewise, the effective electrical resis-
tance in e2-direction decreases. 2) Regarding the difference between FE2-based simulations (that account for
the influence of the inhomogeneous microscale deformation on the effective macroscopic conductivity tensor)
and the reference model as defined above (that does not account for deformation-induced changes in the con-
ductivity tensor), one observes a significant decrease in the electric current with increasing deformation for the
complete FE2 model. Stated differently, the coefficients of the homogenised spatial macroscopic conductivity
tensor

S tM = 1

JFM
FM · dJM

dEM
· Ft

M (60)

decrease with increasing deformation, for the deformation states analysed. The latter observation is further
underlined by the directional conductivities

κt p =
[
ep · S t

−1
M · ep

]−1
, (61)

depicted in Fig. 2b, which indicate a significant reduction in the effective macroscopic conductivity in e2-
direction, whereas only a moderate reduction in the conductivity in e1-direction is observable. The projected
conductivities are defined analogous to the directional Young’s moduli of mechanical problems and emulate
an uni-axial electric current in the respective spatial direction ep. The latter findings are further underlined
by the deformed macro- and microscale configurations and the electric current density distributions depicted
in Fig. 3. In particular, it is observed that a quasi-homogeneous state is achieved in the centre region of the
chosen specimen. In addition to the results presented in this Section, the influence of the discretisation of the
representative volume elements on the simulation results is briefly discussed in the Appendix.

5.3 Three-dimensional representative simulations

In order to study the influence ofmechanically induced deformation processes at themicroscale on the effective
macroscopic conductivity in a three-dimensional setting, uni-axial tension tests and simple shear tests are
analysed. The macroscale boundary value problems are sketched in Fig. 4a, b. In the case of the uni-axial
tension test, the boundary conditions are chosen such that the lateral contraction in e3-direction is not hindered,
whereas the displacements in e3-direction are suppressed in the case of the simple shear test. Moreover, the
prescribed displacement u is linearly increased to 0.4 h. The material response at the macroscale is governed
by the microstructure sketched in Fig. 4c that features a spherical void with a radius of 0.3 edge length. The
microscale boundary value problem is based on the constitutive equations summarised in Sect. 5.1, andmaterial
parameters according to Table 1 are chosen. From a numerical point of view, 8-node hexahedral elements and a
Gaussian quadrature scheme with eight sampling points are employed. Moreover, the microscale calculations
are based on periodic boundary conditions.

The evolution of the effective macroscopic conductivity tensor as a function of deformation is visualised in
Fig. 5 for the tensile test and in Fig. 6 for the simple shear test. In the case of the tensile test, no significant change
of the directional conductivity in loading direction (e1-direction) with increasing deformation is observed,
whereas significant reductions in the directional conductivities in the e2–e3-plane are observed. Moreover, the
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(a) macroscale
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(b) microscale

Fig. 3 Deformation and electric current density for the biaxial tensile test specimen according to Fig. 1 with u = 7.0mm,
Δφ1 = 0.1mV andΔφ2 = 0.0mV. The outline of the reference configuration is depicted in light grey colour and the deformation
of the microstructure shown for a quadrature point close to the centre of the specimen. Grey-coloured arrows indicate the direction
of the electric current

(a) (c)(b)

Fig. 4 a, b Three-dimensional macroscale boundary value problems. c Sectional view of FE-discretised microstructure featuring
a spherical void with a radius of 0.3 edge length

principal axes of the (spatial) conductivity tensor are found to align with the loading direction and the e2–
e3-plane. These observations are in good accordance with the two-dimensional simulation results discussed
in Sect. 5.2 but significantly differ from those of the simple shear test visualised in Fig. 6. In the case of the
simple shear test, the two principal axes of the spatial conductivity tensor in the e1–e2-plane are deformation
dependent, with one eigenvalue increasing and one eigenvalue decreasing. The third principal axis is aligned
with the e3-direction. The corresponding eigenvalue of the spatial conductivity tensor slightly increases with
the deformation.
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(a) (b)

Fig. 5 Directional conductivities according to (61) for the three-dimensional uni-axial tensile test sketched in Fig. 4a

(a) (b)

Fig. 6 Directional conductivities according to (61) for the three-dimensional simple shear test sketched in Fig. 4b

(a) (b) (c)

Fig. 7 Evolution of the spatial conductivity tensor near the centre of the specimen depicted in Fig. 1 for different representative
volume element discretisations. For each deformation state, given in terms of the prescribed displacement u, the distance of points
to the origin represents the projected conductivity κt p in the respective spatial direction ep
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6 Concluding remarks

Motivated by the fundamental theoretical developments on electro-mechanically coupled multiscale formula-
tions for electrical conductors presented in [19], this contribution focused on the thermodynamically consistent
extension of the proposed framework to a finite deformation setting. In particular, the set of partial differen-
tial equations governing the electro-mechanically coupled behaviour of electrical conductors in a finite strain
setting was discussed, and appropriate scale bridging relations were proposed that are in accordance with well-
established computational homogenisation procedures for mechanical problems, thermal problems, and elec-
trical problems of dielectric solids. In addition, a finite element-based implementation of the multiscale frame-
work was presented, and representative boundary value problems were studied in two- and three-dimensional
settings. More specifically speaking, the analysis of a biaxial tensile test specimen in a two-dimensional set-
ting revealed a severe influence of mechanically induced microscale deformations on the effective material
properties at the macroscale. These findings were further underlined by a study of three-dimensional uni-axial
tensile and simple shear tests where a deformation-induced evolution of the macroscale conductivity tensor
could be observed.

The fundamental developments presented in this contribution provide a basis for the understanding of the
influence of deformation processes, and especially of deformation-induced damage processes at themicroscale
on effective electrical material properties at the macroscale. Combined with more elaborated, irreversible
microscale material models these developments are expected to eventually contribute to the development of
non-destructive testing methods in the future.
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Appendix: Influence of the finite element discretisation

In this Appendix, the influence of the discretisation of the representative volume elements on the two-
dimensional boundary value problem studied in Sect. 5.2 is briefly discussed. To this end, the evolution
of the effective macroscale conductivity tensor for three different microscale discretisations is provided in
Fig. 7. It is observed that the influence of the finite element discretisation on the simulation results is negligible
compared to the influence of the microscale deformation for the load states and discretisations analysed.
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