Skip to main content
Log in

On the mechanism of the influence of medium density on the supersonic core length of an underexpanded jet

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

Exhaustion of a supersonic underexpanded air jet into air–helium and air–sulfur hexafluoride mixtures is studied experimentally. The air jet escapes from a convergent circular nozzle in the range of moderate Reynolds numbers covering the laminar and transitional regimes of the jet flow. The experiments are performed with “cold” and heated jets in a low-pressure jet setup, which allows the Reynolds number of the jet exhaustion from the nozzle, the jet pressure ratio, and the density of the gas surrounding the jet to be maintained independently. A Pitot tube is used to measure the supersonic core length of the air jet as a function of the density of the ambient medium whereto the jet exhausts. In addition, the spatial distributions of the amplitude–frequency characteristics of acoustic oscillations generated by the jet in the ambient space are measured by a moving sensor of pressure fluctuations. The effect of the ratio of the underexpanded air jet density to the ambient medium density on the supersonic core length is demonstrated. It is shown that the mechanism of influence of the ambient medium density is associated with a change in the conditions for the global instability of the underexpanded air jet and, in particular, the conditions for generation of the screech tone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Vulis, L.A., Kashkarov, V.P.: Theory of jets a viscous liquid. Hardcover Publisher, Moscow (1965)

    Google Scholar 

  2. Maslowe, S.A., Kelly, R.E.: Inviscid instability of an unbounded heterogeneous shear layer. J. Fluid Mech. (1971). https://doi.org/10.1017/S0022112071001654

    Article  MATH  Google Scholar 

  3. Brown, G.L., Roshko, A.J.: On density effects and large structure in turbulent mixing layers. J. Fluid Mech. (1974). https://doi.org/10.1017/S002211207400190X

    Article  MATH  Google Scholar 

  4. Bogdanoff, D.W.: Interferometric measurement of heterogeneous shear-layer spreading rates. AIAA J. (1984). https://doi.org/10.2514/3.8817

    Article  Google Scholar 

  5. Dimotakis, P.E.: Two-dimensional shear-layer entrainment. AIAA J. (1986). https://doi.org/10.2514/3.9525

    Article  Google Scholar 

  6. Koochesfahani, M.M., Frieler, C.E.: Instability of nonuniform density free shear layers with a wake profile. AIAA J. (1989). https://doi.org/10.2514/3.10328

    Article  Google Scholar 

  7. Hegde, U.G., Zinn, B.T.: Vortical mode instability of shear layers with temperature and density gradients. AIAA J. (1990). https://doi.org/10.2514/3.25230

    Article  Google Scholar 

  8. Chassaing, P., Harran, G., Joly, L.: Density fluctuation correlations in free turbulent binary mixing. J. Fluid Mech. (1994). https://doi.org/10.1017/S0022112094003903

    Article  MATH  Google Scholar 

  9. Soteriou, M.C., Ghoniem, A.F.: Effects of the free-stream density ratio on free and forced spatially developing shear layers. Phys. Fluids (1995). https://doi.org/10.1063/1.868451

    Article  MathSciNet  MATH  Google Scholar 

  10. Peroomian O.: Effect of density gradients in confined supersonic shear layers. I. Two-dimensional disturbances, Phys. Fluids (1996). https://doi.org/10.1063/1.868830

  11. Peroomian O.: Effect of density gradients in confined supersonic shear layers. II. Three-dimensional modes, Phys. Fluids (1996).3https://doi.org/10.1063/1.868831

  12. Abramovich, G.N., Yakovlevsky, O.V., Smirnova, I.P., et al.: An investigation of turbulent jets of different gases in a general stream. Astronautica Acta 14, 229–240 (1969)

    Google Scholar 

  13. Pitts, W.M.: Effects of global density ratio on the centerline mixing behavior of axisymmetric turbulent jets. Experimental Fluids (1991). https://doi.org/10.1007/BF00190288

    Article  Google Scholar 

  14. Favre-Marinet, M., Camano, E.B., Sarboch, J.: Near-field of coaxial jets with large density differences. Experimental Fluids (1999). https://doi.org/10.1007/s003480050268

    Article  Google Scholar 

  15. Schumaker, S.A., Driscoll, J.F.: Mixing properties of coaxial jets with large velocity ratios and inverse density. Phys. Fluids (2012). https://doi.org/10.1063/1.4711396

    Article  Google Scholar 

  16. Donaldson, C., Gray, K.E.: Theoretical and experimental investigation of the compressible free mixing of two dissimilar gases. AIAA J. (1966). https://doi.org/10.2514/3.3833

    Article  Google Scholar 

  17. Belan, M., de Ponte, S., Massaglia, S., et al.: Experiments and numerical simulations on the mid-term evolution of hypersonic jets. Astrophys. Space Sci. (2004). https://doi.org/10.1007/978-1-4020-2664-5_25

    Article  Google Scholar 

  18. Belan, M., de Ponte, S., Tordella, D.: Highly underexpanded jets in the presence of a density jump between an ambient gas and a jet. Phys. Rev. E (2010). https://doi.org/10.1103/PhysRevE.82.026303

    Article  Google Scholar 

  19. Tam, C.K.W.: Supersonic jet noise. Ann. Rev. Fluid Mech. (1995). https://doi.org/10.1146/annurev.fl.27.010195.000313

    Article  Google Scholar 

  20. Raman, G.: Supersonic jet screech: half-century from Powell to the present. J. Sound Vibration (1999). https://doi.org/10.1006/jsvi.1999.2181

    Article  Google Scholar 

  21. Sherman, P.M., Glass, D.R., Duleep, K.G.: Jet flow field during screech. Appl. Sci. Res. (1976). https://doi.org/10.1007/BF00411780

    Article  Google Scholar 

  22. Scroggs, S.D., Settles, G.S.: An experimental study of supersonic microjets. Experimental Fluids (1996). https://doi.org/10.1007/BF00189042

    Article  Google Scholar 

  23. Aniskin, V.M., Maslov, A.A., Mironov, S.G.: Effect of nozzle size on supersonic microjet length. Tech. Phys. Lett. (2011). https://doi.org/10.1134/S1063785011110198

    Article  Google Scholar 

  24. Aniskin, V.M., Maslov, A.A., Mironov, S.G.: Relaminarization in supersonic microjets at low Reynolds numbers. Tech. Phys. Lett. (2013). https://doi.org/10.1134/S1063785013080166

    Article  Google Scholar 

  25. Aniskin, V.M., Mironov, S.G., Maslov, A.A., et al.: Supersonic axisymmetric microjets: structure and laminar–turbulent transition. Microfluidics Nanofluidics (2015). https://doi.org/10.1007/s10404-015-1588-y

    Article  Google Scholar 

  26. Aniskin, V., Mironov, S., Maslov, A.: Investigation of the structure of supersonic nitrogen microjets. Microfluidics Nanofluidics (2013). https://doi.org/10.1007/s10404-012-1079-3

    Article  Google Scholar 

  27. Aniskin, V.M., Maslov, A.A., Mironov, S.G.: Flows of supersonic underexpanded jets on the range of moderate Reynolds numbers. Fluid Dyn. (2018). https://doi.org/10.1134/S0015462818010020

    Article  MathSciNet  MATH  Google Scholar 

  28. Aniskin, V.M., Mironov, S.G., Korotayeva, T.A., et al.: Effect of the Pitot tube on measurements in supersonic axisymmetric underexpanded microjets. Micromachines (2019). https://doi.org/10.3390/mi10040235

    Article  Google Scholar 

  29. Breshears, W.D., Blair, L.S.: Vibrational relaxation in polyatomic molecules: SF6. J. Chem. Phys. (1973). https://doi.org/10.1063/1.1679948

    Article  Google Scholar 

  30. Hodkinson, T.B., North, A.M.: Ultrasonic relaxation in gaseous sulphur hexafluoride and tungsten hexafluoride. J. Chem. Soc. A (1968). https://doi.org/10.1039/j19680000885

    Article  Google Scholar 

  31. Powell A.: On the mechanism of choked jet noise, Proc. Phys. Soc. London B66 (1953). https://doi.org/10.1088/0370-1301/66/12/306

  32. Tam, C.K.W., Seiner, J.M., Yu, J.C.: Proposed relationship between broadband shock associated noise and screech tones. J. Sound Vibration (1986). https://doi.org/10.1016/S0022-460X(86)80212-7

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by the Russian Science Foundation (Grant No. 17-19-01157).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey G. Mironov.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to report.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mironov, S.G., Aniskin, V.M. & Maslov, A.A. On the mechanism of the influence of medium density on the supersonic core length of an underexpanded jet. Acta Mech 232, 2751–2763 (2021). https://doi.org/10.1007/s00707-021-02964-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-021-02964-z

Navigation