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Abstract The vibration of a rotor with variable mass as a one-mass system with two degrees of freedom
is investigated. An analytical procedure for solving of the system of two coupled second-order differential
equations with slow time variable parameters is developed. The trajectory of the rotor center for various initial
conditions is obtained. The method developed in the paper is applied for determining the vibration of the work
piece during turning operation. The analytically obtained results show the influence of mass variation, cutting
parameters and cutting force on the dynamic properties of the work piece. A decrease in mass of the work
piece increases the amplitude of vibration. The amplitude increase is faster if the cutting velocity is higher.
The obtained results are compared with experimentally obtained ones. The correlation between vibration and
surface roughness is determined.

1 Introduction

‘A rotor with variable mass’ is a mass variable body rotating around its axis. This type of rotor is the fundamental
working element of many machines and devices in the textile, cable, or paper industry, but also in process
industry and machining. The efficiency of these machines is directly connected to the rotation speed of rotors:
for higher velocity, the productivity of machines is higher. However, in rotors rotating with high speed and
having mass variation, vibration occurs, as a side effect. It is found that vibrations are harmful, shorten the
working life of machines and tools and have a negative influence on the quality of products. Therefore,
investigation on vibration of rotors with variable mass is of special interest.

Usually, the rotor with variable mass is assumed as a two-degree-of freedom system and vibration of the rotor
is described by a system of two coupled differential equations. In general, there is not a closed form solution
for the system of equations with time variable parameters and only an approximate solution is calculated.
Based on approximate analytic methods (see [1-8]) developed for one-degree-of freedom oscillators with time
varying mass, various methods for solving the equations of motion for rotors with time variable parameters
are developed [9-12]. Utilizing these methods the approximate analytic solutions are obtained. Comparing the
analytical solutions with numerical ones and experimentally measured values it is observed that a difference
exists.

The aim of the paper is to improve the mathematical model of the rotor and also to give a procedure for
obtaining a more appropriate solution. In the model the gyroscopic force [13, 14] is included. The suggested
solution method is an extended version of the Krylov-Bogolubov procedure modified for equations with
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complex numbers [15]. In this paper, the analytically developed method is applied for vibration analysis of the
work piece during the turning operation.

It is known that due to dynamic interaction between the cutter and the work piece, during the turning
operation vibrations occur. A vast number of research works is devoted to the study of causes of vibrations and
its minimization. Most of the investigations are done experimentally by measuring and recording vibration data
and cutting force for various cutting parameters. It is concluded that during machining the forced vibrations,
excited by unbalance, misalignment, etc., and also self-excited vibration, like chatter due to instabilities in the
cutting process, occur. Investigation done by Ganguli [16] and Das and Hazarika [17] shows that the main
cause of vibration and chattering instability is the lack of dynamic stiffness of the whole machine tool system.
In the most of publication it is assumed that work piece is rigid and the cutting tool is elastic [18] and [19].
This model is suitable for analysis of the chatter vibration which is believed to be the cause of the roughness
of the cutting surface [20-22]. The correlation between vibration of the cutting tool and the surface roughness
is investigated [23-27]. Piotrowska et al [28] improved the turning operation model. The elastic properties of
the cutting tool, but also of the work piece are introduced into consideration ([29-31]). Turning operation is
described with a system of two coupled differential equations. Simulation of certain numerical examples is
done. It is obtained that there is the difference between numerically calculated and experimentally measured
vibration properties. To overcome the problem, further improvement of the model is necessary.

The aim of this paper is to improve the dynamic model of turning operation by taking into account the fact
that the mass of the working piece is decreasing in time. Vibration of the working piece due to a single point
radial cutting force and the reactive force, caused by mass decrease, is investigated. Vibration model of the work
piece has two-degrees-of freedom and is described with two coupled equations with time variable parameters.
Using the aforementioned method developed in this paper, the vibration properties of the work piece are
calculated. Analytically obtained results are compared with those obtained experimentally by measuring on
a real work piece. On the work piece the roughness is measured. Connection between analytically obtained
vibration and experimentally measured surface roughness is determined.

2 Motion of the rotor with time variable mass

In general, the model of the rotor is considered as a Jeffcott two-degrees-of-freedom shaft-disk system with
time variable mass [14]. The disk with mass m(¢) is settled in the middle of the massless elastic shaft with
rigidity k(¢) supported in two layers. The mathematical model of the rotor center is

m(Z +k(t)z —ig®)Qz = Z(z, z) — m()z, (1)

where z = x + iy is the complex deflection, x and y are coordinates of the mass center, i = +/—1 is imaginary
unit, g(¢) is the gyroscopic coefficient [13], €2 is the angular velocity of the rotor, Z(z, z) = X +iY is a function
which depends on z and z (X and Y are projections in the x and y direction) due to physical and geometric
nonlinearity of the rotor. The last term on the right hand side represents the reactive force which is caused
by mass variation in time. For the case when the parameter variation is slow in time, i.e., the parameters are
functions of the ‘slow time’ v = ¢t, where ¢ << 1 is a small parameter, Eq. (1) is

m(T)Z +k(t)z —ig(r)Qz = eZ(z, 2) — em'()Z, (2)
where m’(t) = dm/dt and £ Z(z, 7) is a small function. After some modification of (2) we have

m (T)i, 3)

FK(T)z—iG(D)Q% = ——Z(2,3) — ¢
m(T) m(7)

where K(t) = k(r)/m(r) and G(tr) = g(r)/m(r). Equation (3) is a differential equation with complex
function and slow time variable parameters. There is not a closed form solution for (3). An analytic procedure
for solving Eq. (3) is developed in the following.
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3 Analytical solution method

Separating the real and imaginary parts in (3), we obtain

P+ K(Ox+GmQy =——x — MO (4)
m(t) m(t)

- : € m'(t) -

y+ K@)y —G(r)Qx =——Y —¢ y. (®)]
m(T) m(T)

It is obvious that the right hand side terms are small (multiplied with ¢). The parameters in the equation are
functions of the slow time 7 . Equations (4) and (5) are the perturbed version of the linear equations with
constant parameters

x+Kx+GQy =0, (6)
y+Ky—GQx =0, (7

where for ¢ = 0 the parameters K and G are constant values. The assumption is that the solution of (4) and
(5) has to be the perturbed version of the solution for (6) and (7).
The assumed solutions for the coupled second-order differential equations (6) and (7) are

x = Acoswt, y = Bsinwt, )

where A, B and w are unknown constant values. Substituting (8) into (6) and (7), the frequency equation follows
as

(K — 0*)? — G*Q*0* = 0. 9)

Solving (9), two frequencies of vibration of the system are obtained

G GQ [ G2
(T)2+K, 6()2:—7"" (T)2+K (10)

The corresponding shape coefficients are
B _ a)% —K _

_ Bz_a)%—K_
T A GQow

= = =—1. 11
Ar GQwy
Using (8), (10) and (11), the closed form solution of (4) and (5) with its derivative follows as

K1 K2

x =Ajcosy + Ay cos ¥, (12)
y =Ajsiny; — As sin Y, (13)

and
X =— Ajw; sin | — Arws sin Yy, (14)
y =A|w cos ¥r; — Arwy cos Yy, (15)

with
Y1 = w1t + 6y, Yo = wnt + 02, (16)

where A1, Aj, 61 and 6, are arbitrary constants.

Due to the method suggested in the paper, the solution and the first derivative of the solution (4) and (5) are
assumed in the form (12)—(15), but with time variable amplitudes A1(¢) and A, (#)and phases 61(¢) and 6,(),
1.€.,

x =A1(t)cos 1 (t) + Ax(t) cos yYra(t), (17

y =A1(1) sin (1) — Aa(t) sin ¥2(2), (18)
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and
x == A1(Dw1(7) sin 1 (1) — Aa(t)wa(T) sin Ya(2), (19)
y =A1(H)wi () cos Y1(1) + Az(t)wa(t) cos Ya(1), (20)

with
Y1) = w1(T) +01(1), Y1) = (1) + 62(0), (21

and
w1(7) = G(;)Q + \/(G(;)Qﬂ +K(T), wy=-— G(;)Q + \/(G(;)Q)Z +K(0). (22)

Comparing the first time derivative of (17) and (18) with ( 19) and (20) two constraints are obtained
(Aycos Y — A1) sin ) + (Az cos Yo — Arb sin ) =0, (23)
(Aysinyy + A6 cos ) — (A sin ¥y + A6, cos yr2) =0, (24)

where (') = d/dt, A] = A(t), Ay = Ax(1), 01(T), 62(7), ¥1(7) and ¥»(7). Using the first derivative of (19)
and (20) and relations (17) and (18), Egs. (4) and (5 ) are transformed into

w1(A1sinyy + A1) cos Y1) + wa(As sin ¥y + Az cos ¥)
= —8[% + %(Ala)l sin lﬁl + Arwy sin lﬂz) (25)
+H(A o) sin Yy + Ayo) sin 1,1,2)],

wi (A1 cos Y — A1y sinyry) — wa(Az cos Yo — A26, sin )

Y mw
=¢| — — —(Ajw1 cos Y| — Arwy cos Yrp)
m m

— (A0 cos Y| — Arw) cos wz):|, (26)

where X = X(x,y,x,y)and ¥ = Y(x,y, x, y) with (17)-(20). Equations (23)—(26) are four first-order
differential equations which correspond to (4) and (5). Introducing the notation

P = Ala)/l sin ¥y + Aza)/z sin ¥,

P2 = Ala)l sin 101 + Aza)z sin 1//2,

Q1 = A1 cos Y| — Asw) cos ¥y,

02 = Ajwj cos Y1 — Arwa cos Y, 27)

into (23)—(26) and after some modification it is

. . & X m
Aj sin Yy + Azb cos Yy = — (—+—P2+P),
w]+wy m m
. . & X m
Aysinyr + A0 cos Yy = — (—+—P2+ P),
w]+wy m m
. . e Y w
A2 Ccos 102 - A292 sin Iﬂz = — —(— - —QZ - Ql)a
wl+wr m  m
. . € Y m
Ajcosyp — A0 siny) = (== —02— 0. (28)
w)+wy m m

Finally, after separation of variables we have

. &
Al =—

X m . Y m
[(—=+—P2+ P)sinyy — (= — — Q02— Q1)cos Y],
w]+wy m m m m
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. ) X m Y w .
A0 = — [(—=+—P+ Ppcosyry +(— — — Qo — Q) sinyr],
wl1+twy m m m m
. € X w . Y w
Ay =— [(=+—P+ Pp)sinyp +(— — — 02 — Q1)cos Y],
ol +wy m m m m
. ) X w Y w .
Arly = — [((=+—Py+P)cosyp —(— — — 0> — Q1)sinyn]. (29
wl+wy m m m m

To solve the system of coupled nonlinear differential equations is not an easy task. It is the reason that the
averaging procedure over the period of the periodic functions with argument | and yr, are introduced. The
averaged equations of motion are

. 3 , m’ X . Y
Al =— [A(0] +@1—) +{—siny ) — ( — cos ¥y
w1 + wy m m m

/

— Ax(wh + 0)2%)(005(1/’1 + )],

. & X Y ) , m’ .
Ao = — [{ —cosyry) +{—sinyy ) + Ax(wy + wr—){sin(3fry + ¥2))],
w1 +wy \m m m
. € , m’ X . Y
Ay =— [A2(w) +wy—) +(— sinyry ) +{ — cos ¥
w] +w) m m m

— A1) + oy %)(coswn + ).

. e X Y .
Arf) = — [<— CcoS W2> — <— sin ¢2>
w1 +wy \m m
+ A1) + w1 %)(sinm + )], (30)

where (-) is the notation for averaging. For (cos(i1 + ¥2)) = 0 and (sin(¢r; + ¥»)) = 0 the averaged equations
are

. € , m’ X . Y
Al =— [Aj(w] + w1 —) +(—sinyy ) — { — cos )],
w1 + wy m m m
. € X Y |
A0 = — [<— cos lﬁ1>+<— Slnlﬁ1>],
wi+wy \m m
; € , m’ X . Y
Ay = — [A2(wy + wp—) 4+ (—sinyn ) +{ — cosyn )],
w1 + m m m
. € X Y .
Arfy = — [<— cos W2> — <—sm ¢2>]. 3D
w]+wy \m m

Integrating Eqs. (31) for Ay, A», 61 and 6, and substituting into (17) and (18) the averaged solution of (4) and
(5), i.e., (3) is obtained.
3.1 Discussion for the linear rotor

For the linear rotor (nonlinearity is zero) the averaged differential equations are

/

A= — (0] +o1—),
w1 + w
A6 =0,
€A2 !
Ay =— () + wr—),
w1 + w

Ar6, =0. (32)
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For initial conditions A;(0) = Ajg, A2(0) = Ajpg, 01(0) = 619, 02(0) = 09 the solution of (32) is

T
/!

A1 =Ajpexp —/ (w} +w1£)df , 01 =06,
w1 + w2 m
0
T
m/
Ay =Asoexp —/ (a)/z +wy—)dt |, 6r = Oyp.
w1 +wy m
0
Substituting (22) into (33), it follows that
T t
Al =A / 2K dm Wi = 010+ / (1)dt
=Apexp| — | ————|, = T)dt,
1 10 €Xp 4K + QZGZ m 1 10 w1
0 0
T t
Ay =A / 2K dm Vs = b + / (1)t
= X — —_— . = .
2 20 €Xp 4K+QZG2 m 2 20 (T
0 0

Finally, the vibration of the rotor is according to (17) and (18)

4K +Q2G2 m

T
2K dm
x=exp|— | =5~ (A1 cos yr; + Azg cos ¥r2),
0

T
2K dm . .
y=ep| = | itk a2 m (Ajosinyry — Appsin ),
0
1.€.,

2K dm . .
Z = eXp —/ —? (A10 eXp(llﬂl) + A2() eXp(—llﬁz)).
0

3.1.1 Special cases

(33)

(34)

(33)

(36)

a) If the gyroscopic effect is neglected (g = 0), the frequency w1 = wy = VK and the relations (35) simplify

into
mo .
x =,/ —(Aiccos(wt) — Apg sin(wt)),
m
mo .
y =,/ —(Azs cos(wr) + Aae sin(wr)),
m
where

A1 = AjgcosBig+ Ao cos by, Ay = Ajqpsin g + Apg sin b,

Aore. = AqgcosBig — Apgcos by, Aoy = Aqgsinfig — Apg sin byg.

The trajectory of the rotor center is an ellipse with slow time varying parameters
2 2 _ Mo 2
(Azex + A1sy)” + (Aogx — Aey)” = ;(AISAZS +AjcAze)”

b) For g = 0 and initial conditions 619 = 69 = 0 solutions ( 37) modify into

2= 040 explior) + Ay exp(—iwt))
m

(37)

(38)

(39)

(40)
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and the trajectory of the rotor center is a central ellipse with variable parameters:

2 2
- 41)
(A0 + A20) (Ajg— Ay) m(7)

¢) For g = 0 and initial conditions 819 = 629 = 0 and A9 = 0 the solution (40) simplifies into

[mo .
z =,/ —Aexp(iy1), (42)
m

and the trajectory is a circle with time variable radius:
m
ey’ = ?OA%O. (43)

d) For g = 0 and initial conditions 6190 = 69 = 6 and A9 = A0 = A the rotor center is vibrating along a

line with time variable amplitude, i.e.,
x =247 cos(wt +6). (44)
m

The aforementioned cases were previously discussed for the rotor with constant mass [32]. Comparing the
results for obtained for the rotor with variable mass and those for the rotor with constant mass, it is seen that
there is a difference between trajectories due to the fact that for the first ones the parameters are dependent on
slow time.

4 Vibration of the work piece during turning operation

In Fig. 1a the model of the work piece and the cutting tool for turning operation is shown. On the work piece,
which is fixed to the spindle and pin mounted at the tailstock, a cutter tool acts. The cutting force acts radially
on the work piece [17]. The cutting force is proportional to the frontal area of the cutted chip, which is the
product of the chip thickness % (equal to the cutting depth) and the width of the cut a,

F = kcah(t), (45)

where k. is the cutting coefficient. The work piece is rotating with the constant angular velocity €2, while the
cutting tool is translatory moving along the work piece with constant velocity v. During turning the geometric
and mass properties of the work piece are varying. Mass and moment of inertia of the work piece are changing
in time. It causes the change of the rigidity of the work piece. Due to mass variation the reactive force acts,
which in addition to the cutting force causes the working piece to vibrate.

For further analysis it is necessary to define the mass and the rigidity of the work piece.

4.1 Mass variation of the work piece

The work piece is modeled with two coaxial cylinders: one with radius Rp, which corresponds to the case
before cutting, and the other with radius R, after cutting (Figs. la, b).

The total mass m of the work piece is the sum of masses m | and m of the already cut and of the unmachined
piece, respectively, i.e.,

m=mqy+mi, (46)
where
mo = Aol —vt)p, mp = A1(vt)p, 47)

p is material density, Sy is the surface of work piece before turning, S; is the surface after turning and / is the
length of the work piece. If the initial radius of the work piece is Rg and the cutting depth is %, the surfaces
before and after cutting are

2

2 o o B h h
So = Ry, Si=Rim =(Ro—h)'m=S8(1-2—+ —2). (48)
Ry RO
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/

(a) (b)

Fig. 1 a Workpiece-cutting tool model, b Geometry of the work piece

Substituting (47) with (48) into (46), the mass of the work piece is obtained as a function of time:

v h v h?
= 1 —2——1t+——1). 49
m = mo( I Ry + ] R(z) ) 49)

4.2 Variable rigidity of the work piece

During cutting the rigidity of the work piece varies due to variation of its geometry. Namely, the rigidity of
the part obtained by cutting and the rigidity of the remaining part of the work piece are different. Due to
Hook’s law, the elastic stress o and strain e relations in the parts of the work piece before and after cutting are,
respectively,

oo = Eep, 01 = Eey, (50)
where E is the modulus of elasticity and for the deformations sy and s1 along the work piece the strains ey and
e] are

50 51

— , = —. 51
[ — vt el vt D

€0

In addition, for an axial force P the axial stresses in the unmachined and machined work piece are

P P
oy = S—O, o] = S_1 (52)
According to relations (52) and (50) it follows that
P = koso, P = kisq, (53)
where rigidities of the working piece parts are
ko = lS—OIit’ ki = % (54)
Let us introduce the equivalent rigidity £ which satisfies the relation
P —ks, (55)

where s is the total displacement

s = 80+ S1. (56)
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Substituting (53)—(55) into (56) the equivalent rigidity is

11 N 1 57)
k ko ki’
1.e.,
SoS1E
o= (58)
Sovt + S1(I — vt)
Finally, due to (48) and (58) we have
| =2 4 12
SoE R 2
_ 0 0 Ry (59)

5 .
! (1—21%+Z—3)+%(2—%)¥f

Analyzing relations for mass (49) and rigidity variation (59) it is seen that they depend on the relation 2/ Ry. It
is known that during tuning the parameter ratio s/ Ry is small. Introducing the notation of the small parameter
& << 1 and the slow time, respectively,

&= —, T = &t, (60)

mass and rigidity variation are

AoE 1

l 2—e v
1+ 1—2e+e2 [

(61)

m(t) = mp — @(2 —or, k() =

Neglecting the terms with higher order of small parameter ¢ the approximate mass and rigidity values are as
follow

m(t) = mo(l — 2%), k(t) = SOTE(l _ 2%). (62)

The time derivative of mass variation (62) is

i(t) = —28@. (63)

It is a constant which depends on the velocity of the cutting tool v.

4.3 Mathematical model

The model of the work piece is assumed as a rotating mass—spring system with concentrated mass m(t)
the spring with equivalent rigidity k(7). Motion of the mass is in plane (Fig. 2). The system is rotating with
constant angular velocity 2.

If the coordinates of rotor center are X and y and if the angular velocity of the work piece is €2, the kinetic
energy is

1 .
T = om@(X =y +(+ X7, (64)
and the potential energy
1 2.2
V= Ek(r)(X + ). (65)

The Lagrange differential equations of motion in x and y direction are

m()X — 2m(0)QLy + k()X = — F — m(7)(X — Qy),
m(o)¥ + 2m(0)QX + k(x)y = — m(x)(y + 2X), (66)
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Y
O >
Q
i k(1)
m(T)
X
Y
Fig. 2 Model of the work piece
1.€.,
.. . k() F m .
X -2Qy+ —X =— —e——(X — Qy),
m(t) m(t)  m(t)
N . k(T) m
y+2QX + y=—¢ (y+ QX). ©7)
m(7) m(7)
For simplification let us introduce the new variable
F
x=X+—". (68)
k(t)

Substituting (68) and its derivative into (67) and assuming the terms up to the first-order of small value &, we
obtain

/

Fo2Q9 4+ Kx = — s (5 — Qy),
m(t)
V+2Qx% + K m/('+§2 +QF) (69)
X =—c¢ X+ —),
Y Y m(z)” k(2)
where
SoE
K="20"_ const. (70)
mol

Utilizing the previously mentioned solving procedure Eqs. (69) are rewritten into four first-order equations
with new variables A, A», 61, 6>:
0=(A1cosy — A0 siny1) + (As cos Yo — Ar6 sin yn),
0 =(A;sin ¥ + A16; cos Y1) — (As sin Y + A6, cos ),
w1(A; sin ¥ + A1) cos 1) + wa(As sin Y + Az6 cos ¥n)
/
= — ™ (A1 + Q) sin gy + As(wr — Q) sin )
m
— (A1) sin Y| + A} sin ¥2),
wi(A1 cos Y1 — A1y sinYry) — wa(As cos Y2 — A26 sin o)

/

m QF
=—¢e¢—(A1(w1 + Q)cos Y| — Azx(wy — Q) cos Y + —)
m k(7)

— (A1) cos Y1 — Arw) cos ¥2)), (71)
where

0l =—-Q+VR2—K, w=Q+VQI+K. (72)
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After some modification of (71) we obtain
(w1 + w2)A| =Py sin Y1 + P> cos g,
(w1 +@2)A16) =Py cos ¥y — Pysiny,
(w1 + w2)Ay =Py sin Yy — P3 cos ¥,
(@1 + w2)A26r =Py cos Yy + Py sin 2, (73)
where

P =

—&(Apsiny + Axg sin ),

m'QF
P, = —e(A1pcosy; — Axgcosyn +

kD" "
m’ , m’ ,
p=—(w1 + Q)+ 0w, q = —(w2 — Q)+ w,.
m m

(75)
Averaging the equations over the period of the trigonometric functions ¥; and v, the averaged equations
follow as
. A .
A= g—lp, A6 =0,
w1 + w2
. eA .
Ay=—220 0 44 =o. (76)
w1 + wy
Substituting (72) and (75) into (76) it is obtained
/
Al - SAI o él 01
2m
. m/ N
A2=—8A2—, 9] =0.
2m

(77)
Integrating (77) and using the initial conditions A1(0) = Ajg, A2(0) = Ay, 01(0) = 019, 62(0) = 619, we
have

m m
A=Ay — Ar = Ay —2 01 =010, 02 = 0.
m(1) m(T)

(78)
For (78) the averaged solution of Eq. (69) is

x= /%(Am cos(W Q2+ K — Q)t +610)
m(T
+ Apg cos((V Q2+ K+ Q)t + 6>9)),

(79)
y= /%(Alo sin(VQ2 + K — Q)1 +610)
m(T
— Ao sin(VQZ + K + Q)1 + 620)). (80)
Finally, the approximate solution of (67) is
F
X=—+ | 2% (Ajgcos(VQ2+ K — Q)1 +610)
k(t) m(T)
+ Ago cos(VQ2 + K + Q)1 + 6a)), (81)

y=, %(AIO sin(V Q2+ K — Q)t +010)
— A sin((V Q2 + K + Q)1 + 62)), (82)
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Z:S()E(] 21}_’:) ﬂ 1 _21) (A]O(Cxpl(("92+——Q)[+010))
+ Az exp(— l((‘l Q%+ _l + Q)t + 62))). (83)
mo

For the initial conditions which satisfy the relation

Ao exp(itho) = Azoexp(ifio) = Ao exp(ifo), (84)

1.€.,

the motion of the work piece center is

F 1 SoE
= +2 Ag exp(ifp) exp(i2t) cos(t +—). (85)
SE(Q —23 iy T\ 1—2v puroexp Vo mo

If the mass variation of the work piece is neglected the vibration reduces to

F . . SoE
75 = <= +2A¢ exp(ith) exp(i Q1) cos(t, [ Q22 + )- (86)
S(;E m()l

Comparing (85) and (86) it is obvious that the deflection of the work piece due to the cutting force and the
amplitude of vibration is smaller if it is calculated without taking into account the mass variation.

4.4 Discussion of the result

The expression (85) has two parts: one is the relation between the cutting force and the parameters of the
work piece with variable mass, and the other shows the effect of the reactive force which occurs due to mass
variation of the working piece during turning. The first term gives the deflection of the working piece center
and the second the oscillation of the system.

If the initial amplitude of the work piece is zero, i.e., Ag = 0, there is only the deflection which depends
on the cutting force, velocity of the cutting tool and depth of cutting:

= d (87)
SE =250
An increase in the cutting force causes an increase in the deflection of the work piece. If the length of the
machined part is longer in comparison to the length of the unworked piece, the deflection is higher. For the
work piece with larger radius before machining, the deflection of the work piece is smaller. However, the
deflection is larger for higher cutting velocity and higher cutting depth. According to (87) it is evident that
the deflection depends also on the rigidity of the working piece: for a higher value of SoE, the deflection is
smaller.
For one rotation of the working piece, when the width of the cut is a = 2w v/ 2, and using the definition
of the cutting force, the vibration of the working piece is

keah

SE0 =24

ZF = (88)

The relation (88) shows that for higher width of the chip the deflection of the working piece is higher and tends
to the limit value (k.I>Ro/2SoE) which depends on the rigidity, length and radius of the working piece.
The vibration of the work piece center has the amplitude

1 SoE
A, =249 Tk, cos(t 24 —) (89)
1 27 R—[ mO
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Fig. 3 Experimetnal rig for measuring of the surface roughness

The amplitude of vibration has the tendency to increase over time. The higher the amount of mass eliminated
from the work piece, the higher is the amplitude of vibration. Compared with the case when the mass variation
is neglected, it is seen that the amplitude of vibration is higher than for the unmachined work piece. The
amplitude of vibration is higher for a higher value of the chip width, higher cutting velocity and higher cutting
depth. The longer the machined part of the work piece in comparison to the total length of the work piece is
the higher is the amplitude of vibration. The frequency of vibration depends on the angular speed and rigidity
of the working piece. For higher angular velocity and rigidity of the working piece, the period of vibration is
shorter.

4.5 Comparison of the analytic and experimental data

At the University of Obuda the surface roughness of the work piece after tuning was measured (Fig. 3). The
surface roughness tester positioned in the radial direction of the machined work piece and the roughness was
measured and recorded. The parameters of cutting operation and the geometric and physical characteristics
of the work piece were as follows: Ry = 0.05m, / = Im, F = 824.67N, E = 2.110''Pa, @ = 2.5mm,
h = 1.2mm. In Fig. 4 the recorded diagram is shown. It is obvious that the diagram is a periodic function with
almost constant amplitude and short period.

Using the analytically obtained relations (87) and (89) and the aforementioned numerical data, the vibration
properties of the work piece are calculated. It is obtained that the displacement (87) of the work piece center
has the value zg = 0.5 pm. For the initial amplitude Ag = 1 pwm. the magnitude of amplitude variation (89 )
is

A, = 2.0001 cos(5188.7¢),

while the period is T = 1.2109 x 1073 s. In Fig. 5 the amplitude-time diagram is shown.

Comparing diagrams in Figs. 4 and 5 it is shown that there is a direct correlation between vibration and
the surface roughness. Prediction of the surface roughness is possible to be done by using the vibration of the
working piece.

5 Conclusion

In the paper a method for solving a system of two coupled second-order differential equations with slow
time variable parameters which describes the motion of the one-mass body with two degrees of freedom is
developed. It is a perturbation procedure, where amplitude and phase of vibration are assumed to be time
variable. The approximate solution based on averaging is determined and discussed. Trajectories of the rotor
center for various initial conditions are determined. It is concluded that the trajectory of the rotor with slow
time variable parameters is the perturbed version of the trajectory of the rotor with constant parameters. In
general, the trajectory of the rotor center is of elliptic type with time variable parameters.
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Fig. 5 X — t (full line) and Ap — ¢ (dotted line) diagrams obtained analytically

The analytical consideration given in the paper is applied for obtaining the vibration of the working piece
during turning operation. Assuming that the working piece is elastic, the motion of the mass center of the body
is determined. Using the analytical and experimentally obtained results it is concluded that mass variation in
turning operation has a significant influence on the vibration properties of the working piece and is necessary
to be included into consideration. By increasing the cutting time, when the mass of the working piece is
decreasing, the amplitude of vibration is increasing. The faster the mass decrease is, the faster is the increase
in the amplitude of vibration. For higher cutting velocity, mass decrease is faster and the vibration amplitude
increase is greater. The depth of cut and the width of the chip have a more prominent effect on vibration. A higher
cut depth produces greater vibration magnitude. However, the influence of mass variation in turning operation
on the frequency of vibration is quite small and can be omitted. In addition, comparison of the analytically
obtained vibration results and experimentally obtained measured results have shown good correlation between
the work piece vibration and surface roughness. It is concluded that the vibration measure can be used as
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a control of the finish surface of the work piece and for prediction of the surface roughness during turning
operation.
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