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Abstract This paper presents a novel semi-implicit scheme for elastodynamics andwavepropagation problems
in nearly and truly incompressible material models. The proposed methodology is based on the efficient
computation of the Schur complement for the mixed displacement-pressure formulation using a lumped mass
matrix for the displacement field. By treating the deviatoric stress explicitly and the pressure field implicitly, the
critical time step is made to be limited by shear wave speed rather than the bulk wave speed. The convergence
of the proposed scheme is demonstrated by computing error norms for the recently proposed LBB-stable
BT2/BT1 element. Using the numerical examplesmodelledwith nearly and truly incompressibleNeo-Hookean
and Ogden material models, it is demonstrated that the proposed semi-implicit scheme yields significant
computational benefits over the fully explicit and the fully implicit schemes for finite strain elastodynamics
simulations involving incompressible materials. Finally, the applicability of the proposed scheme for wave
propagation problems in nearly and truly incompressible material models is illustrated.

1 Introduction

Incompressible material models are commonly encountered in science and engineering for modelling soils,
clays, elastomers, rubbers, and biological soft tissues. In spite of the tremendous efforts towards the devel-
opment of finite element schemes for computational solid mechanics, accurate and computationally efficient
schemes for the simulation of elastodynamics under high-frequency loading conditions as well as wave propa-
gation in incompressiblematerials are still scarce.With the increased need for the simulation of elastodynamics
and wave propagation in biological soft tissues, for example, in elastography, see Sarvazyan et al. [48], Ophir
et al. [46], Bercoff et al. [2], Ye el al. [55], Li and Cao [35], and references therein, the need for accurate
and computationally efficient numerical schemes for incompressible material models has never been more
important.

For problems governed by high strain rates or high-speed loading, for example, blast and impact loads, and
wave propagation problems, explicit time integration schemes have proven to be computationally beneficial.
However, the fundamental issue associated with the explicit schemes when used in combination with the
nearly incompressible material models is the severe restriction on the critical time step posed by the bulk (or
compressional) wave speed. As the Poisson’s ratio, ν, approaches 0.5, the critical time step based on the bulk
wave speed (cκ ) decreases by several orders of magnitude in comparison to that based on the shear wave speed
(cμ), as shown in Table 1.

One common approach for alleviating this problem for pure displacement formulations based on selective
or reduced or selective-reduced integrations, see Malkus and Hughes [39] and Hughes [22], is selective mass
scaling inwhich the density is selectively adjusted to reduce the high frequencieswithout detrimentally affecting
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Table 1 Variation of the time step based on shear and bulk waves as Poisson’s ratio approaches 0.5

ν κ = E
3 [1−2ν] μ = E

2 [1+ν] cκ =
√

κ+4μ/3
ρ0

cμ =
√

μ
ρ0

�t (cμ)/�t (cκ )

0.300000 0.833333 0.384615 1.160239 0.716115 1.6
0.400000 1.666667 0.357143 1.463850 0.690066 2.1
0.480000 8.333333 0.337838 2.963745 0.671156 4.4
0.490000 16.666667 0.335570 4.136918 0.668900 6.2
0.499000 166.666667 0.333556 12.927158 0.666889 19.4
0.499900 1666.666667 0.333356 40.830272 0.666689 61.2
0.499990 16666.666667 0.333336 129.101166 0.666669 193.6
0.499999 166666.666662 0.333334 408.248835 0.666667 612.4

Here, μ is the shear modulus and κ is the bulk modulus. Young’s modulus, E = 1 and density, ρ0 = 1

the low-frequency modes [45, 53, 56]. However, the main issue with selective mass scaling is the difficulty
in computing the scaling parameter without compromising the accuracy and at the same time using lumped-
mass matrices. Furthermore, such techniques are not applicable for truly incompressible material models for
which hydrostatic pressure has to be computed as an additional solution variable in combination with the
displacements.

The absence of the pressure term in the constraint equation for the truly incompressible case makes it
impossible to develop a fully explicit numerical scheme for such models. For truly incompressible material
models, fully implicit finite element schemes, for example, Rossi et al. [47], Scovazzi et al. [49, 50], Liu
and Marsden [36, 37], and semi-implicit schemes based on fractional-step or projection methods which were
originally developed for fluid problems, see Chorin [10, 11], Temam [52], Kim and Moin [33], Guermond and
Quartapelle [17], Guermond et al. [16], Lovrić et al. [38] are the only techniques available for modelling truly
incompressible solids. In literature, Zienkiewicz et al. [59], Lahiri et al. [34], and Gil et al. [14] extended the
fractional-step schemes to computational elastodynamics, and Caforio and Imperiale [7] extended a projection
method to incompressible elastodynamics. While the implicit schemes become computationally expensive for
large-scale models due to the need for inversion of large-scale sparse matrices during the iterative solution
procedure at every time step, semi-implicit schemes offer several computational advantages over fully implicit
schemes due to the substantial reduction in the size of matrix systems to be solved for.

Nevertheless, although fractional-step and projection schemes have been successfully adapted for elasto-
dynamics problems modelled with incompressible materials, the fundamental problem associated with these
schemes, especially in the context of solid mechanics problems, is the uncertainty over boundary conditions
to be used during different steps of the projection schemes. Moreover, while the cost of computing correc-
tion terms for fractional-step schemes based on finite-difference based spatial discretisation is comparatively
low, such schemes require numerical quadrature, which is often computationally expensive, for finite ele-
ment schemes, especially for linear quadrilateral/hexahedral elements and higher-order triangular/tetrahedral
finite elements. Additionally, contact modelling using fractional-step schemes is still an open problem. To the
knowledge of the author, there is no published literature on modelling solid-solid contacts using fractional-step
or projection schemes.

Another motivation behind the proposed work is the computational cost associated with the fully implicit
scheme for elastodynamics usingmixed formulations. In the literature onmixed formulations for computational
solidmechanics, fully implicit schemes are well established, refer to Zienkiewicz and Taylor [61], Kadapa [28],
Scovazzi et al. [47, 49], and Janz et al. [24], and references therein. While these schemes do not pose severe
restrictions on the time step size, the fact that large matrix systems need to be solved for at every iteration of
each time stepmakes fully implicit schemes computationally very expensive, especially when the time step still
has to be chosen small enough to obtain accurate results for problems which undergo extremely large strains
which is often the case with hyperelastic material models. The proposed semi-implicit scheme also serves as
a computationally efficient alternative to the fully implicit schemes, particularly for problems discretised with
uniform meshes.

The proposed scheme is based on the mixed displacement-pressure formulation and exploits the lumped
mass matrices for the displacement field in efficiently evaluating the Schur complement. This work is an
extension of the unifiedfinite element formulations for computational solidmechanics based onBézier elements
proposed in Kadapa [27, 28]. In this scheme, deviatoric stress is treated explicitly and the pressure term
implicitly, thus lifting the severe restrictions on the critical time step posed by the bulk wave speed. Moreover,
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the proposed schemenot only utilises the samefinite element framework used for the implicitmixed formulation
but also poses no ambiguity over the boundary conditions to be used.Additionally, the extension of the proposed
scheme for modelling contacts using either Lagrange multipliers or penalty method or Nitsche method is
straightforward, see [54, 61] for details. The proposed formulation is equally applicable for mixed formulation
with LBB-stable elements [28, 29] as well as for equal-order elements with pressure stabilisation [8, 9, 40,
42, 43, 47, 49, 57], as long as the mass matrix for the displacement field can be approximated as a lumped
mass matrix. For the sake of simplicity, only the LBB-stable BT2/BT1 element proposed in Kadapa [28] is
considered in the present work.

The outline of the paper is as follows. The mixed displacement–pressure formulation and the proposed
semi-implicit scheme for problems in the small-strain regime are discussed in Sect. 2. The extension of the
proposed semi-implicit scheme to finite strain regime is presented in Sect. 3. Efficient solution of the coupled
matrix system using Schur complement is discussed in Sect. 4, followed by the discussion on the finite element
discretisation in Sect. 5. The stability of the semi-implicit scheme is presented in Sect. 6. The performance
of the proposed scheme and its applicability to elastodynamics and wave propagation in nearly and truly
incompressible materials are assessed in Sect. 7 using several numerical examples. The paper is concluded
with Sect. 8 by summarising the key features of the proposed work.

2 Mixed formulation in the small strain regime

2.1 Governing equations

For linear isotropic elastic material, the Cauchy stress, σ , is related to the infinitesimal strain tensor, ε, as

σ = 2μ εdev + κ tr(ε) I, with ε := 1

2

[∇Xu + [∇Xu]T
]

(1)

where μ is the shear modulus, κ is bulk modulus, εdev is the deviatoric component of ε, I is the identity tensor
of order two, and u is the displacement vector.

The above relation (1) between the Cauchy stress tensor (σ ) and the small-strain tensor (ε) produces
unphysical values for the incompressible case, i.e., for ν = 0.5 for which κ = ∞. Moreover, for the truly
incompressible case, the finite element formulation based on displacements alone is no longer a viable choice.
To overcome these issues, a mixed displacement-pressure formulation in which hydrostatic pressure (p) is
computed as an additional solution variable, is employed c.f. [26, 28, 29, 31, 32].

The main idea behind the mixed displacement-pressure formulation is to split the stress into deviatoric
and volumetric components and replace the volumetric part by an improved value. Accordingly, the modified
Cauchy stress tensor is defined as

σ̂ (u, p) = σ dev(u) + p I (2)

where

σ dev(u) = σ (u) − p I with p = 1

3
tr(σ (u)), (3)

and p is the independent approximation for hydrostatic pressure. For nearly incompressible materials in small
strains, p is related to the volumetric strain (εv) by the relation

εv = ∇X · u = p

κ
, (4)

which becomes

εv = ∇X · u = 0 (5)

for the truly incompressible case, i.e., when κ = ∞. Therefore, for the truly incompressible case, pressure
must be determined as an additional solution variable, together with displacement, for enforcing the volumetric
constraint (5) on the displacement field.

Using the above relations, the equations governing the elastodynamics of a solid body in the small strain
regime can be written as

ρ0(X, t) a(X, t) − ∇X · σ̂ (X, t) = f 0(X, t) ∀ X ∈ B0, t ∈ [0, T ], (6.1)
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∇X · u(X, t) = 1

κ
p(X, t) ∀ X ∈ B0, t ∈ [0, T ], (6.2)

u(X, t) = uD(X, t) ∀ X ∈ ∂BD
0 , t ∈ [0, T ], (6.3)

σ̂ (X, t) · n0 = t0(X, t) ∀ X ∈ ∂BN
0 , t ∈ [0, T ], (6.4)

u(X, 0) = u0(X) ∀ X ∈ B0, (6.5)

v(X, 0) = v0(X) ∀ X ∈ B0 (6.6)

where B0 is the domain of the solid in the original configuration; X is an arbitrary point in the domain B0;
t is the time variable; T is the total time span; ∇X is the original configuration gradient operator; ρ0 is the
density of the solid in the original configuration; v(= du

dt ) is the velocity vector; a(= d2u
dt2

) is the acceleration
vector; u0 is the initial displacement vector; v0 is the initial velocity vector; n0 is the unit outward normal on
the boundary, ∂B0, of B0; f 0 is the body force in the original configuration; uD is the prescribed displacement
field on the Dirichlet boundary ∂BD

0 ; and t0 is the prescribed traction force on the Neumann boundary ∂BN
0 .

The Dirichlet and Neumann boundaries are such that ∂B0 = ∂BD
0 ∪ ∂BN

0 and ∂BD
0 ∩ ∂BN

0 = ∅.

2.2 Finite element formulation

With w and q as the test functions for the displacement and pressure fields, respectively, the weak form for the
mixed displacement-pressure formulation can be written as

∫

B0

w · ρ0 a dV +
∫

B0

∇Xw : σ dev dV +
∫

B0

[∇X · w] p dV +
∫

B0

q
[
∇X · u − p

κ

]
dV

=
∫

B0

w · f 0 dV +
∫

∂BN
0

w · t0 dA (7)

where dV and dA are the elemental volume and area, respectively.
For the finite element analysis, the approximations for the displacement and pressure fields, u and p, and

their test functions w and q are taken as

w = Nu w; u = Nu u; q = Np q; and p = Np p, (8)

where u and w are the vectors of displacement degrees of freedom (DOFs), and p and q are the vectors of the
pressure degrees of freedom; Nu and Np are the matrices of basis functions, respectively, for the displacement
and pressure fields.

By using the discretisation in Eq. (8), the semi-discrete equations for the mixed formulation (7) may be
written as

Muu a + Fint
u = Fext

u , (9.1)

Fint
p = 0 (9.2)

where Muu is the mass matrix and a is the vector of accelerations at the displacement DOFs. The internal
force vector for the displacement DOFs, Fint

u , the external force vector for the displacement DOFs, Fext
u , and

the internal force vector for the pressure DOFs, Fint
p , are given by

Fint
u =

∫

B0

GT
X σ dev dV +

∫

B0

DT
X p dV, (10)

Fext
u =

∫

B0

NT
u f 0 dV +

∫ N

∂B0

NT
u t0 dA, (11)

Fint
p =

∫

B0

NT
p

[
∇X · u − p

κ

]
dV . (12)
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Here, DX and GX , respectively, are the divergence-displacement and gradient-displacement matrices with
respect to the reference configuration, which, for the ath basis function of an element are given by

DXa = [
∂Na
∂X

∂Na
∂Y

∂Na
∂Z

]
, (13)

GXa =
⎡
⎣

∂Na
∂X 0 0 ∂Na

∂Y 0 0 ∂Na
∂Z 0 0

0 ∂Na
∂X 0 0 ∂Na

∂Y 0 0 ∂Na
∂Z 0

0 0 ∂Na
∂X 0 0 ∂Na

∂Y 0 0 ∂Na
∂Z

⎤
⎦
T

. (14)

Accordingly, the Cauchy stress tensor is represented as a column vector as

σ = [
σxx σyx σzx σxy σyy σzy σxz σyz σzz

]T

= [
σ11 σ21 σ31 σ12 σ22 σ32 σ13 σ23 σ33

]T
. (15)

The mass matrix, Muu , can be either consistent-mass matrix, MCM
uu , or lumped-mass matrix, MLM

uu . The con-
sistent mass matrix is given as

MCM
uu =

∫

B0

ρ0 NT
u Nu dV, (16)

and the lumped-mass matrix, in this work, is computed using the row-sum lumping technique [60], according
to which

MLM
uu, i j =

{
0, if i 	= j∑n

k=1 MCM
uu, ik, if i = j

}
for i, j = 1, 2, . . . , n, (17)

with n as the rank of the matrix MCM
uu .

The semi-discrete equations (9) can be solved in time by using either a fully implicit or fully explicit
time integration scheme as presented in Kadapa [28]. While the fully explicit schemes are computationally
appealing because of their matrix-free implementations, their performance is hindered by severe restrictions
on the stable time step size due to bulk wave speed, especially when ν → 0.5, in addition to the fact that
fully explicit schemes are not valid for the truly incompressible case. On the other hand, although the fully
implicit scheme poses no such restrictions on the time step size, they become computationally expensive for
finite strain problems due to the need for matrix solvers for the solution of large-scale sparse matrix systems
during the iterative solution procedure at every time step, as will be demonstrated in the latter part of this paper.
Therefore, we propose a novel semi-implicit scheme for which the time step depends only on the shear wave
speed, and the size of the matrix system to be solved for is significantly lower than that of the fully implicit
scheme.

For the sake of completeness and also to highlight the similarities and subtle differences between the semi-
implicit scheme and the other two schemes, the fully implicit and fully explicit schemes are discussed briefly
in Appendices A, B, and C. Note that, although the material in small strain regime is assumed to be linear
elastic, the schemes are presented in the incremental form for the ease of extension to finite strain problems in
Sect. 3.

2.3 Proposed semi-implicit scheme

For the semi-implicit scheme, the contribution to the internal force Fint
u in Eq. (9.1) due to pressure is treated

implicitly while the contribution from the deviatoric stress is treated explicitly. Using the improved version of
the explicit scheme of Chung and Lee [12] as presented in [27], the system of equations for the semi-implicit
scheme for the mixed formulation (9) can be written as

MLM
uu an+αm +

∫

B0

DT
X pn+1 dV = Fext

u,n −
∫

B0

GT
X σ dev(un) dV, (18.1)

∫

B0

NT
p

[
∇X · un+1 − pn+1

κ

]
dV = 0, (18.2)

an+αm = αm an+1 + [1 − αm] an, (18.3)
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un+1 = un + �t vn + �t2
[[

1

2
− β

]
an + β an+1

]
, (18.4)

vn+1 = vn + �t
[
[1 − γ ] an + γ an+1

]
(18.5)

where �t is the time step size, and αm , β, and γ are the time integration parameters. In Eq. (18) and in the
subsequent parts of the paper, subscripts n and n + 1 refer to the previous and current time instants, tn and tn+1,
respectively. Using the spectral analysis [19], it can be shown that the explicit scheme is third-order accurate
for

γ = 1

2
+ αm, and β = αm + 1

12
. (19)

The free parameter αm provides the user with control over the amount of numerical damping. Unless stated
otherwise explicitly, αm = 1 in the numerical examples presented in this work.

Now, with

un+1 = un + �u, (20)

pn+1 = pn + �p, (21)

and by using the corresponding approximations from Eq. (8), the following matrix system results for the
incremental displacement DOFs, �u, and incremental pressure DOFs, �p, at time step n + 1:

[
Kuu Kup
Kpu Kpp

][
�u
�p

]
= −

[
Ru
Rp

]
(22)

where

Kuu = αm

β�t2
MLM

uu , (23)

Kup =
∫

B0

DT
X Np dV = KT

pu, (24)

Kpp = −
∫

B0

1

κ
NT

p Np dV, (25)

Ru = MLM
uu

[[
1 − αm

2β

]
an − αm

β�t
vn

]
+

∫

B0

GT
X σ̂ (un, pn) dV − Fext

u,n, (26)

Rp =
∫

B0

NT
p

[
∇X · un − pn

κ

]
dV . (27)

Equation (22) is in the exact block-matrix format of themixed formulation using the fully implicit scheme (A.1).
Therefore, the proposed semi-implicit scheme does not pose any additional requirements on the imposition
of boundary conditions similar to the ones faced during various steps of projection-based and fractional-step
schemes. Furthermore, with the proposed semi-implicit scheme, modelling of solid-solid contact using either
penalty or Nitsche or Lagrangemultiplier methods is straightforward, unlike fractional-step methods for which
modelling of contacts is unclear.
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3 Mixed formulation in finite strain regime

3.1 Kinematics, stress measures, and governing equations

With B0 and Bt , respectively, as the original/reference and current configurations of the solid body under
consideration, we can define the nonlinear deformation map that takes a point X ∈ B0 to a point x ∈ Bt as
X : B0 → Bt . Now, by making use of the definition of the displacement,

u := X (X) − X = x − X, (28)

the deformation gradient (F) is defined as

F := ∂X
∂X

= ∂x
∂X

= I + ∂u
∂X

. (29)

For modelling hyperelastic materials in the incompressible finite strain regime, the deformation gradient, F,
is decomposed into deviatoric and volumetric components [3] as

F = Fvol Fdev, (30)

where

Fvol := J 1/3 I, and Fdev := J−1/3F. (31)

Using the above definitions, modified versions of some important strain and stress measures are defined as

Deformation gradient, F := J−1/3 F, (32)

Right Cauchy-Green deformation tensor, C := F
T
F, (33)

Green-Lagrange strain tensor, E := 1

2

[
C − I

]
, (34)

First Piola-Kirchhoff stress tensor, P := ∂Ψ dev(C)

∂F
= Pdev, (35)

Cauchy stress tensor, σ := 1

J
P FT = σ dev (36)

where J = det(F), and Ψ dev is the deviatoric part of the energy function of the material under considera-
tion. The strain energy density functions for the material models considered in this work are assumed to be
decomposed into the deviatoric part, Ψ dev, and the volumetric part, Ψ vol(J ), as

Ψ (C, J ) = Ψ dev(C) + Ψ vol(J ). (37)

For the truly incompressible material models, the total volume change is zero, which can be represented
mathematically as

J = 1. (38)

The important consequence of the above relation is that the volumetric energy function (Ψ vol(J )) vanishes for
the materials that are truly incompressible. For such material models, the pressure field must be determined
as an additional solution variable that enforces the incompressibility constraint (38). For the comprehensive
details on finite strain continuum mechanics, the reader is referred to Bonet and Wood [3], Zienkiewicz and
Taylor [61], and Holzapfel [20].

For the mixed formulation in the finite strain regime, the effective first Piola-Kirchhoff stress is defined as

P̂(u, p) := Pdev(u) + p J F−T, (39)

where p is the independent approximation for hydrostatic pressure. From the above equation, the effective
Cauchy stress tensor becomes

σ̂ (u, p) = 1

J
P̂ FT = σ dev(u) + p I . (40)
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Now, using the above definitions for strain and stress measures, the governing equations for the elastodynamics
of incompressible material models in the finite strain regime can be written in the original configuration as

ρ0(X, t) a(X, t) − ∇X · P̂(X, t) = f 0(X, t) ∀ X ∈ B0, t ∈ [0, T ], (41.1)

ρ0(X, t) = ρ(X, t) J (X, t) ∀ X ∈ B0, t ∈ [0, T ], (41.2)

u(X, t) = uD(X, t) ∀ X ∈ ∂BD
0 , t ∈ [0, T ], (41.3)

P̂(X, t) · n0 = t0(X, t) ∀ X ∈ ∂BN
0 , t ∈ [0, T ], (41.4)

u(X, 0) = u0(X) ∀ X ∈ B0, (41.5)

v(X, 0) = v0(X) ∀ X ∈ B0 (41.6)

where ρ0 is the density of the solid in the original configuration B0; ρ is the density of the solid in the current

configuration Bt ; and v(= du
dt

∣∣
X ) and a(= d2u

dt2

∣∣∣
X
) are the material time derivatives of displacement (u).

3.2 Finite element formulation

The linearised consistent mixed displacement-pressure formulation recently proposed by the author for elasto-
static problems in Kadapa andMokarram [31] is extended to elastodynamics problems in this work. Following
[31], the semi-discrete equations for the mixed formulation in the finite strain regime can be written analogous
to Eq. (9) as

Muu a + Fint
u = Fext

u , (42.1)

Fint
p = 0 (42.2)

where Muu , a and Fext
u are the same as those in the small-strain formulation discussed in Sect. 2.2, and Fint

u
and Fint

p are given by

Fint
u =

∫

Bt

GT
x σ dev dv +

∫

Bt

DT
x p dv, (43)

Fint
p =

∫

B0

NT
p

[
J − Ĵ − ϑ̂ p

]
dV . (44)

The matrices Gx and Dx in Eq. (43) are the gradient-displacement and divergence-displacement matrices with
respect to the current configuration. Similar to (14), Gx for the ath basis function of an element is given as

Gxa =
⎡
⎢⎣

∂Na
∂x 0 0 ∂Na

∂y 0 0 ∂Na
∂z 0 0

0 ∂Na
∂x 0 0 ∂Na

∂y 0 0 ∂Na
∂z 0

0 0 ∂Na
∂x 0 0 ∂Na

∂y 0 0 ∂Na
∂z

⎤
⎥⎦
T

. (45)

The quantities Ĵ and ϑ̂ in Eq. (44) are evaluated as

Ĵ = Jn −
∂Ψ vol

∂ J

∣∣∣∣
Jn

∂2Ψ vol

∂ J 2

∣∣∣∣
Jn

; ϑ̂ = 1

∂2Ψ vol

∂ J 2

∣∣∣∣
Jn

(46)

where Jn is J evaluated from the displacement from the previously converged time step. Note here that Ĵ and
ϑ̂ are constants at the current load step. This approach results in a symmetric global matrix as demonstrated
in Kadapa and Mokarram [31]. Since the fully implicit scheme for the solution of nonlinear equations (42) is
not the primary focus of the proposed work, it is presented briefly in Appendix B for the sake of completeness.
The semi-implicit scheme proposed in this paper is discussed in the following Section.
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3.3 Proposed semi-implicit scheme

Similar to the semi-implicit scheme for the small strain problem as discussed in Sect. 2.3, the semi-implicit
scheme for the mixed formulation in finite strain regime can be written as

MLM
uu an+αm +

∫

Bt

DT
x pn+1 dv = Fext

u,n −
∫

Bt

GT
x σ dev(un) dv, (47.1)

∫

B0

NT
p

[
J (un+1) − Ĵ − ϑ̂ pn+1

]
dV = 0, (47.2)

which, after linearising and then using the approximations in Eq. (8), can be written in the form of a coupled
matrix system for the incremental displacement and pressure DOFs as

[
Kuu Kup
Kpu Kpp

][
�u
�p

]
= −

[
Ru
Rp

]
(48)

where

Kuu = αm

β�t2
MLM

uu , (49)

Kup =
∫

Bt

DT
x Np dv = KT

pu, (50)

Kpp = −
∫

B0

ϑ̂ NT
p Np dV, (51)

Ru = MLM
uu

[[
1 − αm

2β

]
an − αm

β�t
vn

]
+

∫

Bt

GT
x σ̂ (un, pn) dv − Fext

u,n, (52)

Rp =
∫

B0

NT
p

[
J (un) − Ĵ − ϑ̂ pn

]
dV . (53)

Remark 1 Note that the displacement and pressure DOFs at tn+1 for the semi-implicit scheme are computed
in a non-iterative manner and that the contribution from the linearisation of configuration-dependent terms,
for example, Dx in Eq. (47.1) to the matrix Kuu is ignored. The main reason behind this decision is to achieve
the demonstrated computational benefits by exploiting the lumped approximation for the mass matrix in the
efficient evaluation of the Schur complement, as discussed in Sect. 4. Moreover, due to the stability condition,
the time step sizes for the semi-implicit scheme are often small. Since the fully implicit scheme requires no
more than two or three iterations for such small time step sizes, ignoring the linearisation of the configuration
terms has no significant effect on the accuracy of the results, as demonstrated with the numerical examples.

4 Efficient solution of the coupled system using the Schur complement

The coupled matrix systems in Eqs. (22) and (48) can be solved using either a direct solver or an iterative
solver using block preconditioners as discussed in Benzi et al. [1]. However, such approaches for the solution
of the coupled systems become computationally expensive for large-scale problems in three dimensions. To
derive a computationally efficient scheme for the solution of the coupled matrix systems (22) and (48), in
this work the approach of Schur complement reduction [1] is adapted. The novelty of the proposed work lies
in the adaptation of the Schur complement, along with a lumped matrix, to solve the coupled matrix in a
computationally efficient manner.

Using the Schur complement reduction, the equations for the solution of incremental displacement and
pressure in (22) and (48) can be written as

�p = S−1 [−Rp + Kpu K−1
uu Ru

]
, (54.1)

�u = K−1
uu

[−Ru − Kup �p
]

(54.2)

where the Schur complement, S, is given as

S = Kpp − Kpu K−1
uu Kup. (55)
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Although evaluation of the Schur complement is an expensive operation in general, even with a sparse Kuu ,
it is worth highlighting at this point that it is not the case with the proposed semi-implicit scheme. The
computational complexity of evaluating the Schur complement is drastically simplified in this work, thanks to
the lumped-mass matrix MLM

uu which renders Kuu in Eqs. (22) and (48) as a diagonal matrix. Therefore, with
a diagonal Kuu , only sparse matrix multiplication and addition, which are significantly less expensive when
compared to the inversion of sparse matrices, are the matrix arithmetic operations required for evaluating the
Schur complement. Moreover, (i) sinceK−1

uu is a diagonal matrix, the Schur complement is still a sparse matrix,
and (ii) since the size of the Schur complement is considerably lower than that of the coupled matrix systems
(22) and (48), the computational cost of solving Eq. (54) is substantially lower than that of coupled systems,
as demonstrated with numerical examples in Sect. 7.2.

Remark 2 The condition number of the coupled matrix systems (22) and (48), (A.1) and (B.1) deteriorates as
the time step size is reduced. This ill-conditioning poses difficulties in adapting block preconditioners for the
saddle point problem, see [1]. However, since the incremental DOFs in the semi-implicit scheme are solved
using (54.1) and (54.2) in which the diagonal nature of the Kuu is exploited to efficiently invert the Schur
complement (S), and since the Schur complement is still symmetric, sparse and significantly reduced in size
when compared with the original matrix system, the reduced system can be solved efficiently using either a
sparse direct solver or Krylov iterative solvers with preconditioners, without worrying about the difficulties
associated with solving a saddle-point system.

5 Finite element spaces for displacement and pressure

The proposed semi-implicit scheme is applicable to any combination of finite element spaces for the displace-
ment and pressure fields for which the mass matrix for the displacement field can be approximated as a lumped
mass matrix. However, such compatible displacement-pressure combinations are limited considerably by the
inf-sup stability criterion for the saddle-point problems resulting from the mixed-formulations as well as the
suitability of the displacement basis functions for lumped mass matrices. For the discussion on finite element
spaces for the mixed formulations, the reader is referred to Brezzi and Falk [5], Brezzi and Fortin [6], and
Brezzi, and Bathe [4].

The widely used inf-sup stable elements for incompressible solid mechanics and incompressible fluid flow
problems are the Taylor-Hood family of elements [6, 51]. However, because of the difficulties posed by the
quadratic Lagrange elements for explicit schemes, the P2/P1 element is not a viable mixed element for the
proposed semi-implicit scheme. Some suitable displacement-pressure combinations for the proposed semi-
implicit scheme are: (i) the subdivision-stabilised NURBS proposed in Kadapa et al. [29] and (ii) the BT2/BT1
element proposed in Kadapa [28]. Because of the ease of mesh generation for complex geometries, see Kadapa
[27], the BT2/BT1 element is considered in the present work. The application of the proposed scheme to any
other suitable combination of displacement-pressure discretisation is akin to the BT2/BT1 element.

For the BT2/BT1 element, the displacement and pressure fields are discretised, respectively, with quadratic
Bézier triangle/tetrahedron and linear Bézier triangle/tetrahedron. Using the row-sum-lumping technique, the
lumped-mass matrices for the quadratic Bézier triangular and tetrahedral elements simplify to

MLM,e,tria
uu = ρ0 V e

0

6
diag[16 16], (56)

MLM,e,tetra
uu = ρ0 V e

0

10
diag[110 110 110] (57)

where V e
0 is the volume of the element in the original configuration, 16 = [1 1 1 1 1 1] and 110 =

[1 1 1 1 1 1 1 1 1 1].
Sparse matrix patterns for the Kpp matrix and the Schur complement matrix, S, for the BT2/BT1 element

are presented in Fig. 1b, c, respectively, for the unstructured tetrahedral mesh shown in Fig. 1a. As illustrated,
the Schur complement (55) resulting from the use of lumped-mass matrix, MLM

uu , is not a full matrix; the Schur
complement in the present work is a sparse matrix.
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Fig. 1 Sparse matrix patterns: a unstructured mesh with the BT2/BT1 element, b matrix pattern of Kpp matrix, and c matrix
pattern of the Schur complement, S. nnz in the titles of the matrix pattern plots indicates the number of nonzero entries in the
matrix, and the value inside the brackets is the percentage of fill-in for the sparse matrix

6 Stability of the semi-implicit scheme

For the fully explicit schemes, i.e., when both the deviatoric and the volumetric components in the internal
force vector in Eq. (10) are treated explicitly, the stable time step is determined by the time taken by the bulk
wave to travel through the smallest element in the finite element mesh [25, 28, 55]. However, since only the
deviatoric term is treated explicitly in the proposed scheme, and since deviatoric stress is a function of shear
modulus but not bulk modulus, the stable time step is limited by the propagation of the shear wave rather than
the bulk wave. To prove this, Eqs. (18.1) and (18.2) for the truly incompressible case, and under the absence
of external forces, can be written in the matrix form as

MLM
uu an+αm + KSS un + Kup pn+1 = 0, (58.1)

Kpu un+1 = 0. (58.2)

The matrix KSS is given by Eq. (A.5).
Owing to the absence of material parameters in Eq. (58.2), the critical time step for the proposed semi-

implicit scheme is controlled solely by the conditions for stability due to Eq. (58.1). By using Eq. (18.3) and
Eq. (18.4) in Eq. (58.1), we get

un+1 + β �t2

αm
MLM−1

uu Kup pn+1 = �t vn + [αm − 2β]�t2

2αm
an +

[
I − β �t2

αm
MLM−1

uu KSS

]
un . (59)

Following Joly [25], we have

‖MLM−1

uu KSS‖ ≤
(cμ

he

)2
(60)

where cμ(= √
μ/ρ0) is the speed of the shear wave and he is the element characteristic length. Now, using

the condition (60), the sufficient condition for the stability of the proposed semi-implicit scheme is

�t ≤ he

cμ

. (61)

Therefore, the critical time step for the proposed semi-implicit scheme depends only on the shear modulus but
not the bulk modulus.
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7 Numerical examples

The time step sizes for the semi-implicit and the full-explicit schemes are computed as

�tsemi-implicit = CFL
he

cμ

, �tfully-explicit = CFL he

cκ

(62)

where CFL is the Courant–Friedrichs–Lewy number which, in this work, also takes into account the parameters
αm , β, and γ in the time integration scheme as well as the nonlinear effects in the finite strain problems. For
all the numerical examples presented in this work, CFL = 0.5, and the characteristic length (he) is taken as
the half of the minimum edge length evaluated at the configuration corresponding to the previous time step.
The time step size for the fully implicit scheme is chosen appropriately for the comparisons provided in the
examples.

All the simulations presented in this work are performed using the in-house C++ code on a single Intel
i7-8750H CPU on a personal computer. For all the examples, the spectral radius for the fully implicit scheme is
taken as ρ∞ = 0. The free parameter for the semi-implicit scheme is αm = 1, unless stated otherwise explicitly.
The mass matrix used for the fully explicit and the semi-implicit schemes is the lumped-mass matrix while
the mass matrix for the fully implicit scheme is the consistent-mass matrix, if not specified otherwise.

7.1 Material models for finite strain problems

The proposed semi-implicit scheme for finite strain problems is applicable to any nearly or truly hyperelastic
material models, for example, Neo-Hookean, Mooney-Rivlin, Veronda-Westmann, Ishihara and Ogden, etc.,
that are used for modelling polymeric materials and biological soft tissues [18, 21, 41, 44]. However, for
the purpose of demonstration, the present work is limited to Neo-Hookean and Ogden material models. The
deviatoric part of the energy function, and the corresponding material properties used in the present work for
the Neo-Hookean and Ogden models are given as:

• Neo-Hookean model:

Ψ dev = μ

2

[
IC − 3

]
(63)

where IC = tr(C). Young’s modulus for this material model is assumed to be E = 1.2 × 106 Pa.

• Ogden model:

Ψ dev =
Ni∑
i=1

μi

αi

[
λ̄

αi
1 + λ̄

αi
2 + λ̄

αi
3 − 3

]
(64)

where

λ̄ j = J− 1
3 λ j , for j = 1, 2, 3. (65)

Here, λ1, λ2, and λ3 are the principal stretches. For the Ogden material, the shear modulus results from

2μ =
Ni∑
i=1

μi αi . (66)

The material parameters for this material model are taken as

Ni = 3, α1 = 1.37, α2 = 3.91, α3 = −1.56

μ1 = 0.54 × 106 Pa, μ2 = 5.19 × 103 Pa, μ3 = −2.15 × 104 Pa.

The volumetric energy function for the nearly incompressible case is assumed as

Ψ vol(J ) = κ

4

[
J 2 − 1 − 2 lnJ

]
. (67)
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7.2 Convergence studies

The ability of the proposed scheme in computing accurate numerical results is demonstrated by evaluating the
error norms in displacement, pressure, and stress using the example of a manufactured solution. The problem
domain consists of unit square/cube for 2D/3D problems with Dirichlet boundary conditions specified on all
the boundary conditions. The Young’s modulus and density of the material are assumed to be E = 100 and
ρ0 = 1. The analytical solution used for the 2D problem is

u = 0.001 sin(π x) cos(π y) sin(π t), (68)

v = −0.001 cos(π x) sin(π y) sin(π t), (69)

p = 0, (70)

and for the 3D problem is

u = −0.002 sin(π x) cos(π y) cos(π z) sin(π t), (71)

v = 0.001 cos(π x) sin(π y) cos(π z) sin(π t), (72)

w = 0.001 cos(π x) cos(π y) sin(π z) sin(π t), (73)

p = 0. (74)

The corresponding body force, f 0, is computed by evaluating the modified Cauchy stress (2) first and then
substituting it in the governing equation (6.1). Sample finite elementmeshes used for this example are presented
in Fig. 2. Results obtained with the proposed semi-implicit scheme are compared against the results obtained
with the fully implicit scheme.

L2 norms of error in displacement, pressure, and stress at t = 1.5 for the 2D and 3D problems with two
different values of Poisson’s ratio, ν = 0.499 and ν = 0.5, are presented in Fig. 3, along with the corresponding
values obtained with the fully implicit scheme. As illustrated, the solution obtained with the proposed semi-
implicit scheme converges with optimal convergence rates in displacement, pressure, and stress fields.

Fig. 2 Manufactured solution example: meshes with four elements per side for a 2D problem, and b 3D problem
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(a) (b)

(c) (d)

Fig. 3 Manufactured solution example: error norms for the 2D and 3D problems with two different values of Poisson’s ratio.
Here, h is the inverse of number of elements per side of the domain. FI and SI refer to the fully implicit and semi-implicit schemes.
Time step for the fully implicit scheme is �t = 0.002. The time step sizes for the semi-implicit scheme are of the order of 10−3

7.3 Twisting of a column: nearly incompressible case

In this example, the computational benefits of the proposed semi-implicit scheme over a fully explicit scheme
are assessed by studying the problem of twisting of a column modelled with the nearly incompressible Neo-
Hookean material model. The column is of size 2 cm × 12 cm × 2 cm and is clamped at its bottom end, and
it is excited with an initial velocity, v = 1500 sin(π y/12) (z, 0,−x) cm/s. This example is studied with two
meshes M1 and M2 shown in Fig. 4. The density is taken as ρ0 = 1.1 g/cm3 and simulations are performed
for different values of Poisson’s ratio using the fully explicit and semi-implicit schemes.

The performance is assessed by studying the evolution of Y-displacement of point A and the amount of time
required for each simulation to reach 10 ms. The Y-displacement of point A obtained with the proposed semi-
implicit scheme is in good agreement with the corresponding values obtained with the fully explicit scheme, as
presented in Fig. 5. The computational time required for the simulation to complete 10 ms for each mesh using
both the schemes and different values of Poisson’s ratio is presented in Table 2. As shown, the computational
cost of the semi-implicit scheme remains almost constant irrespective of the value of Poisson’s ratio while the
computational cost of the fully explicit scheme increases with increasing value of Poisson’s ratio; the cost of
the fully explicit scheme exceeds that of the semi-implicit scheme for ν ≥ 0.45, and for ν = 0.49999, the
fully explicit scheme is about 100 times computationally more expensive than the semi-implicit scheme. Even
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A

X

Z

Y

2
2

12

(a) Geometry (b) MeshM1 (c) MeshM2

Fig. 4 Twisting column: geometry and finite element meshes used for the analysis. Mesh M1 consists of 1821 elements and 3346
nodes; and mesh M2 consists of 12,083 elements and 19,634 nodes

(a) ν =0 .45 (b) ν =0 .499

Fig. 5 Twisting column: evolution of Y -displacement of point A with different values of Poisson’s ratio using the fully explicit
and the semi-implicit schemes

though the proposed semi-implicit scheme requires matrix-vector, matrix-matrix multiplications, and sparse
matrix solvers, significant computational benefits can be gained by using the proposed semi-implicit scheme
over the matrix-free fully explicit scheme.

7.4 Twisting of a column: fully incompressible case

In this example, the performance of the proposed semi-implicit scheme in comparison to the fully implicit
scheme is assessed by studying the column from the previous example using the truly incompressible Neo-
Hookean and Ogden material models.

The evolution of Y-displacement of point A using the fully implicit and the proposed semi-implicit scheme
for the neo-Hookean material model shown in Fig. 6 proves the convergence of the proposed semi-implicit
scheme as the mesh is refined. The difference in the numerical results between the fully implicit and semi-
implicit schemes obtained with the coarse mesh M1 is due to the use of consistent mass matrices in the fully
implicit scheme and the lumped mass matrix in the semi-implicit scheme, as demonstrated in the same Figure
with the solution obtained with the fully implicit scheme using the lumped mass matrix. Contour plots of
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Table 2 Twisting column: time taken in seconds for each simulation to reach 10 ms[15]

ν = 0.3 ν = 0.45 ν = 0.48 ν = 0.499 ν = 0.49999

Mesh M1
Fully explicit (FE) 10.8 17.6 27.4 119.2 1171.7
Semi-implicit (SI) 9.9 9.4 9.6 9.1 9.1
Ratio (FE/SI) 1.1 1.9 2.9 13.1 128.8
Mesh M2
Fully explicit (FE) 161.7 286.8 429.8 1857.4 17,838.1
Semi-implicit (SI) 199.1 188.3 185.9 183.0 183.0
Ratio (FE/SI) 0.8 1.5 2.3 10.1 97.5

The critical time step size for the semi-implicit scheme is of the order of 10−2 ms irrespective of the value of Poisson’s ratio
while that for the fully explicit scheme decreases from the order 10−2 ms to 10−4 ms as Poisson’s ratio is increased from 0.3 to
0.49999. The matrix solver used for the SI scheme is the SuperLU sparse direct solver called from the opensource C++ library
Eigen

(a) Mesh M1 (b) Mesh M2

Fig. 6 Twisting column: evolution of Y -displacement of point A with the truly incompressible neo-Hookean material model. CM
and LM refer to the use of consistent mass matrix and lumped mass matrix for the fully implicit scheme. The time step for the
fully implicit scheme is �t = 0.04ms. The stable uniform time steps for the M1 and M2 meshes for the semi-implicit scheme
are 0.04 ms and 0.02 ms, respectively

the pressure field presented in Fig. 7 for the M2 mesh using the neo-Hookean material model demonstrate
excellent agreement between the pressure fields obtained with the proposed semi-implicit scheme and the fully
implicit scheme. The results obtained with the Ogden material model, as shown in Figs. 8 and 9, illustrate the
applicability of the proposed semi-implicit scheme to generic hyperelastic material models.

7.4.1 Computational efficiency

The amount of time taken for each simulation to reach 10 ms using the semi-implicit scheme and the fully
implicit scheme with different time steps for both the meshes is presented in Table. 3, and the Y-displacement
plots obtained with different time steps with M2 mesh are presented in Fig. 10. From these results, it is evident
that the semi-implicit scheme outperforms the fully implicit scheme in terms of computational efficiency even
though the time step for the semi-implicit scheme is limited by the shear wave speed and the smallest element
size in the mesh.

The computational cost of the fully implicit scheme for computing the numerical results that are of compa-
rable accuracy to that of the semi-implicit scheme is an order of magnitude higher than that of the semi-implicit
scheme. From the results shown in Table. 3, it is also apparent that the computational cost of the fully implicit
scheme would be substantially higher for the same time step as that of the semi-implicit scheme. While this
might not be the case for problems consisting of non-uniform meshes in which element sizes vary by several
orders, the proposed semi-implicit scheme can still serve as an efficient alternative to the fully implicit scheme
for problems with almost uniformmeshes. The reason behind the computational efficiency of the semi-implicit
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Fig. 7 Twisting column: contour plots of pressure field at a t = 8ms, and b t = 20ms obtained with the truly incompressible
neo-Hookean material model

Fig. 8 Twisting column: evolution of Y -displacement of point A for the M2 mesh with the truly incompressible Ogden material
model

scheme is twofold: (i) absence of the iterative solution procedure at each time step, and (ii) a matrix system
that is significantly reduced in size when compared with the fully implicit scheme.

7.5 Stent model

This example is concerned with the application of the proposed scheme for modelling problems with complex
geometries. For this purpose, a stent model with the geometry as shown in Fig. 11 is considered. Due to the
symmetry, only 1/8th of the domain is considered for the analysis. The finite element mesh shown in Fig. 11
consists of 6815 nodes and 3113 elements. The material is assumed to be truly incompressible Ogden model.
The symmetry boundary condition is applied on all the outer faces parallel to the coordinate axes, and uniform
pressure of 5000 Pa is applied on the inner surface. The time step size is of order of 10−3 ms. The values of
the displacement and velocity of a corner point displayed in Fig. 12 show that the results obtained with the
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(a) (b)

Fig. 9 Twisting column: contour plots of pressure field at a t = 2ms, and b t = 6ms obtained with the truly incompressible
Ogden material model

Table 3 Twisting column: time taken in seconds for each simulation to reach 10 ms

Mesh M1 Mesh M2

SI 10 183
FI (�t = 1.0) 18 (1.8) 689 (3.7)
FI (�t = 0.4) 40 (4.0) 1459 (8.0)
FI (�t = 0.1) 126 (12.6) 4823 (26.4)
FI (�t = 0.04) 319 (31.9) 12884 (70.4)

The value in the brackets is the ratio of the time take by the FI scheme over the time taken by the SI scheme for the corresponding
mesh. The stable uniform time step sizes used for the M1 andM2 meshes for the SI scheme are 0.04 ms and 0.02 ms, respectively

proposed semi-implicit scheme match well with those obtained with the fully implicit scheme. Contour plots
of pressure overlaid on the deformed configurations of the stent at two different time instants, as shown in
Figs. 13 and 14, illustrate smooth pressure fields obtained using the proposed semi-implicit scheme. Thus,
this example showcases the applicability of the proposed semi-implicit scheme for performing elastodynamics
simulations of truly incompressible material models using unstructured tetrahedral meshes that can be readily
generated using the existing mesh generators.

7.6 Circular shear wave propagation

This example has been previously studied in Ye et al. [56]. The geometry of the problem consists of 60 × 60
mm2 square block, and it is studied using the plane-strain assumption and the small-strain formulation. Two
meshes, M1 and M2, with 60 × 60 × 4 and 120 × 120 × 4 BT2/BT1 elements, respectively, are considered
for this example. The M1 mesh and two points at which the response is evaluated are shown in Fig. 15a.
Homogeneous Dirichlet boundary conditions are applied on all the boundaries, and traction forces defined by
the following Ricker wavelet function are applied at the centre of the domain, as shown in Fig. 15b:

F(t) = A
[
1 − 2π2 f 2 [t − t0]2

]
exp(−π2 f 2 [t − t0]2) (75)
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Fig. 10 Twisting column: evolution of Y -displacement of point A for the M2 mesh with the truly incompressible Neo-Hookean
material model. FI refers to the fully implicit scheme and SI to the semi-implicit scheme. The uniform time step size used for the
SI scheme is 0.02 ms
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Fig. 11 Stent model: geometry and finite element mesh used for the analysis

where the frequency f = 300 Hz, t0 = 0.003 s, and the amplitude is A = 0.0002 N for mesh M1 and
A = 0.0004 N for mesh M2. The shear modulus is μ = 0.001 MPa and the density is ρ0 = 1000 kg/m3.
Two different values of Poisson’s ratio, ν = 0.49995 and ν = 0.5, are considered in order to illustrate the
applicability of the proposed semi-implicit scheme for simulating wave propagation in a nearly as well as a
truly incompressible elastic continuum.

Nearly incompressible case (ν = 0.49995) For this case, results obtained with the semi-implicit and fully
explicit schemes match well, as shown with the evolution of Y displacement at points A and B in Figs. 16 and
17, and the contour plots of shear stress in Fig. 19. The minor differences between the present results and those
published in Ye et al. [56] are attributed to the differences in the formulations, spatial discretisations, and the
time integration schemes used in the present work and Ye et al. [56].

For the fine mesh (M2), the computed solution is free from spurious oscillations, as shown in Figs. 17 and 19c,
d, and for the coarse mesh (M1) the semi-implicit scheme helps in reducing spurious oscillations in the vicinity
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Fig. 12 Stent model: evolution of X-displacement and X-velocity of a corner point on the left most face using fully implicit and
semi-implicit schemes

  -0.2    0.0    0.2  -0.5    0.5

pressure

Fig. 13 Stent: contour plots of pressure overlaid on the deformed configurations at t = 0.35229ms

   0.0    1.2    2.4    3.6  -1.0    5.0

pressure

Fig. 14 Stent: contour plots of pressure overlaid on the deformed configurations at t = 1.1457ms



Semi-implicit scheme for incompressible solids 2155

A B

(a)

X

Y

(b)

Fig. 15 Circular shear wave propagation: a M1 mesh (60× 60× 4 BT2/BT1 elements), and b traction forces at the centre zone.
Points A and B are located at (35, 0) and (45, 0), respectively

(a) At point A (b) At point B

Fig. 16 Circular shear wave propagation: evolution of Y displacement at a point A, and b point B, obtained with mesh M1 and
ν = 0.49995

of applied forces, as shown in Fig. 19a, b. For this case, the fully explicit scheme takes 153 and 3798 s for M1
and M2 meshes, respectively, while the semi-implicit scheme requires only 51 and 628 s. The computational
gains of the proposed semi-implicit scheme would be even more significant for 3D problems.

Truly incompressible case (ν = 0.5) For the truly incompressible case, the fully explicit scheme is not valid;
therefore, analysis is carried out only with the semi-implicit scheme. The evolution of Y displacement at points
A and B obtained with M2 mesh is presented in Fig. 18 along with the corresponding values obtained with
ν = 0.49995. As expected, the difference between the results obtained with nearly and truly incompressible
models is negligible. This case proves the applicability of the proposed semi-implicit scheme for computing
the numerical solutions for wave propagation in truly incompressible material models without the need for any
ad-hoc penalisation terms in approximating or imposing the incompressibility constraint (Fig. 19).
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(a) At point A (b) At point B

Fig. 17 Circular shear wave propagation: evolution of Y displacement at a point A, and b point B, obtained with mesh M2 and
ν = 0.49995

(a) At point A (b) At point B

Fig. 18 Circular shear wave propagation: evolution of Y displacement at a point A, and b point B, obtained with mesh M2 and
the semi-implicit scheme

7.7 Wave propagation in a complex elastic continuum

This example is concerned with wave propagation in a truly incompressible elastic continuum with voids
of different sizes and shapes, as depicted in Fig. 20a. Plane-strain condition is assumed, and the material is
considered as linear elastic with the material properties E = 10 GPa and ρ0 = 2500 kg/m3. The domain is
fixed on the left, bottom and right edges, and its top edge is traction free. The wave is initiated by applying
a constant force (F) of magnitude 105 N in the negative Y-direction at the centre of the domain (point O in
Fig. 20a) for a period of 0.2 s.

The finite element mesh used for the analysis is shown in Fig. 20b. The mesh consists of 31533 nodes
and 15496 elements. To minimise oscillations due to high-frequency modes, the parameter αm is chosen as
αm = 1.2. The displacement field and shear stress at four different time instants during the propagation of the
wave are illustrated, respectively, in Figs. 21 and 22. These contour plots show that the solution obtained with
the proposed scheme is free from any spurious oscillations. Thus, this example showcases the suitability of the
proposed semi-implicit scheme for simulating wave propagation in problems with complex geometries using
unstructured meshes that can be readily generated using existing mesh generators.
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(a) Mesh M1 - Fully-explicit scheme
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(b) Mesh M1 - Semi-implicit scheme
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(c) Mesh M2 - Fully-explicit scheme
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(d) Mesh M2 - Semi-implicit scheme

Fig. 19 Circular shear wave propagation: contour plots of shear stress obtained with ν = 0.49995
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Fig. 20 Wave propagation in a complex elastic continuum: a geometry and boundary conditions (all the dimensions are in km),
and b mesh used for the simulation
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Fig. 21 Wave propagation in a complex elastic continuum: displacement magnitude (in meters) at four different time instants.
The warp factor is 1000

8 Summary, conclusions, and future work

Anovel semi-implicit scheme is proposed for the simulation of elastodynamics andwave propagation problems
modelled with nearly and truly incompressible material models. The proposed scheme is based on the idea of
efficient evaluation of the Schur complement by using a lumped mass matrix for the displacement field. Since
the pressure field is treated implicitly, the critical time step is controlled by the shear wave speed rather than
the bulk wave speed. The optimal convergence of the proposed scheme is evidenced by using the LBB-stable
BT2/BT1 element.

The results obtained for the example of twisting of a column prove that the proposed semi-implicit scheme
yields significant computational gainswhen comparedwith both the fully explicit and the fully implicit schemes
in computing numerical solutions of elastodynamics problems modelled with incompressible material models.
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Fig. 22 Wave propagation in a complex elastic continuum: shear stress at four different time instants. The warp factor is 50

The applicability of the proposed scheme in performing elastodynamics simulations of problems with complex
geometries is illustrated using the example of a stent. With the examples of shear wave propagation in a simple
and a complex domain with voids, the suitability of the proposed scheme in simulating wave propagation in
nearly and truly incompressible elastic media is demonstrated.

In conclusion, the computational benefits of the proposed semi-implicit scheme make it a computationally
efficient alternative to the fully implicit and fully explicit schemes in computing accurate numerical solutions
of elastodynamics and wave propagation problems modelled with nearly and truly incompressible material
models. The present work enhances the capabilities of the finite element framework based on Bézier ele-
ments [27, 28] in computing computationally efficient solutions of elastodynamics and wave propagation in
incompressible materials.

The proposed work offers numerous possibilities for its extension to applications in soft as well as smart
materials because of their inherent incompressible nature. A straightforward extension of the proposed semi-
implicit scheme would be for the simulation of wave propagation in soft periodic structures for applications
in metamaterials [13, 23, 58].

Acknowledgements The author acknowledges the support of the Supercomputing Wales project, which is part-funded by the
European Regional Development Fund (ERDF) via the Welsh Government.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use,
sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original
author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other
third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit
line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To
view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://creativecommons.org/licenses/by/4.0/


2160 C. Kadapa

Appendices

Appendix A: Fully implicit scheme for small strain problems

By using the implicit time integration scheme of Kadapa et al. [30], the coupled matrix system for the fully
implicit scheme for the mixed formulation in the small-strain regime can be written as

[
Kuu Kup
Kpu Kpp

][
�u
�p

]
= −

[
Ru
Rp

]
(A.1)

where

Kuu = α2
m

α f γ 2�t2
Muu + α f KSS, (A.2.1)

Kup = α f

∫

B0

DT
X Np dV = KT

pu, (A.2.2)

Kpp = − α f

∫

B0

1

κ
NT

p Np dV, (A.2.3)

Ru = Muu

[
γ − αm

γ
an − αm

α f γ�t
vn + αm [γ − αm]

α f γ 2�t
u̇n

]
+

∫

B0

BT
X σ̂ (un, pn) dV − Fext

u,n+α f
, (A.2.4)

Rp =
∫

B0

NT
p

[
∇X · un − pn

κ

]
dV, (A.2.5)

Fext
u,n+α f

= α f Fext
u,n+1 + [1 − α f ] Fext

u,n, (A.2.6)

vn+1 = αm

α f γ�t

[
un+1 − un

]
+ α f − 1

α f
vn + γ − αm

γ α f
u̇n, (A.2.7)

an+1 = αm

α f γ 2�t2

[
un+1 − un

]
− 1

α f γ�t
vn + γ − 1

γ
an + γ − αm

α f γ 2�t
u̇n, (A.2.8)

u̇n+1 = 1

γ�t

[
un+1 − un

]
+ γ − 1

γ
u̇n (A.2.9)

with

Fext
u,∗ =

∫

B0

NT
u f 0,∗ dV +

∫

∂BN
0

NT
u t0,∗ dA, for any ∗ . (A.3)

The fully implicit scheme is second-order accurate in time if the parameters αm , α f , and γ are chosen such
that

α f = 1

1 + ρ∞
; αm = 3 − ρ∞

2 [1 + ρ∞]; γ = 1

2
+ αm − α f ; for 0 ≤ ρ∞ ≤ 1, (A.4)

where ρ∞ is the spectral radius at an infinite time step and it gives the user the control over the amount of
numerical damping. For comprehensive details on the implicit time integration scheme, the reader is referred
to the work of Kadapa et al. [30].

The stiffness matrix for the small strain case KSS in Eq. (A.2.1) is given as

KSS =
∫

B0

GT
X D̂ GX dV, (A.5)

where D̂ is thematrix representation of the fourth-ordermaterial tangent tensore. For the linear elasticmaterial,
the tensor e is given in index form as

ei jkl = μ [δik δ jl + δil δ jk], for i, j, k, l = {1, 2, 3}. (A.6)
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Appendix B: Fully implicit scheme for finite strain problems

The coupled matrix system at time step tn+1 and iteration k+1 for solving the nonlinear equations (42) using
the implicit time integration scheme of Kadapa et al. [30] can be written as

[
Kuu Kup
Kpu Kpp

][
�u
�p

]
= −

[
Ru
Rp

]
(B.1)

where

Kuu = α2
m

α f γ 2�t2
Muu + α f KFS, (B.2)

Kup = α f

∫

Bt

DT
x Np dv = KT

pu, (B.3)

Kpp = −α f

∫

B0

ϑ̂ NT
p Np dV, (B.4)

Ru = Muu akn+αm
+

∫

Bt

GT
x σ̂ (ukn+α f

, pkn+α f
) dv − Fext

u,n+α f
, (B.5)

Rp =
∫

B0

NT
p

[
J (ukn+α f

) − Ĵ − ϑ̂ pkn+α f

]
dV (B.6)

with

akn+αm
= αm akn+1 + [1 − αm] an, (B.7)

ukn+α f
= α f ukn+1 + [1 − α f ] un, (B.8)

pkn+α f
= α f p

k
n+1 + [1 − α f ] pn . (B.9)

The stiffnessmatrixKFS in Eq. (B.2), which accounts for thematerial stiffness as well as the geometric stiffness
contributions, is given as

KFS =
∫

Bt

GT
x D̂ Gx dv. (B.10)

For hyperelastic materials, the fourth-order material tangent tensor is given in index form [31] as

ei jkl = 1

J
Fi J

∂Pi J

∂FkL
FlL + p [δi j δkl − δil δ jk], for i, j, k, l, J, L = {1, 2, 3}. (B.11)

Appendix C: Fully explicit scheme

The important equations for the fully explicit scheme are given by

Muu an+1 = Fext
u,n − Fint

u,n, (C.1.1)

un+1 = un + �t vn + �t2
[[

1

2
− β

]
an + β an+1

]
, (C.1.2)

vn+1 = vn + �t
[
[1 − γ ] an + γ an+1

]
, (C.1.3)

Mpp pn+1 =
∫

B0

NT
p κ

[∇ · un+1
]
dV, for small strain problem, (C.1.4)

=
∫

B0

NT
p

∂Ψ vol

∂ J

∣∣∣∣
un+1

dV, for finite strain problem. (C.1.5)

Here, Mpp is the mass matrix for the pressure field, and it is also approximated as a lumped mass matrix, see
Kadapa [28] for the details.
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