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Abstract An Eulerian thermomechanical elastic–viscoplastic model with isotropic and directional hardening
is used to analyse the residual mechanical state resulting from the arc welding of a multi-pass weld. Details of
the weld test plate, weld filler material, and numerical implementation of the model are provided, including
integration algorithms and consistent tangent modulus. For the computational welding mechanics analyses,
the austenitic ASME stainless steel grade 316L was considered so that no phase transformations of solid states
needed to be considered. The maximum residual stresses were found to be about 500–600MPa, which is of
the order of the yield stress of the base material. Variations in the heat input and the resulting weld cooling
time had a significant influence both on the residual stress state and on the resulting geometry of the weld. The
predicted stress levels were compared to the experimental results. Overall, the proposed Eulerian framework
seems to be a promising tool for analysing melting/solidification processes and residual mechanical states.

1 Introduction

Within the context of an Eulerian formulation of constitutive equations, consistent thermomechanical equations
are proposed for modelling an elastic–viscoplastic material including isotropic and directional hardening. In
particular, the constitutive equations model the phase transformation between solid and fluid response during
melting and solidification. The implemented framework is applied to the challenging transient thermomechan-
ical problem of simulating a 2D multi-pass weld in a narrow grove of a plate with emphasis on prediction
of the residual mechanical state in the way of the weld. In welding mechanics simulations, the term Eulerian
sometimes refers to a fixedmesh in the numerical simulation with material flowing through the meshmuch like
a fluid (cf. [38,50]). In contrast, here the term Eulerian refers to the constitutive formulation which depends
only on state variables that characterize the current state of the material, without the need for a reference
configuration.

The standard Lagrangian formulation of plasticity for finite strains utilizes a multiplicative decomposition
of the deformation gradient (e.g. [6,24,26,33]), and use is made of reference and intermediate configurations.
That framework introduces an arbitrariness of reference and intermediate configurations as well as of total and
inelastic deformation measures which does not exist in the Eulerian formulation of the problem. The Eulerian
formulation adopted here is based on the works of Eckart [12] and Leonov [27], who proposed an evolution
equation for the elastic deformation directly. Earlier versions of the present Eulerian framework have also been
explored, e.g. Rubin [44,46], Rubin and Attia [47], and Kroon and Rubin [25].
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In addition to rate dependency, the Eulerian model proposed here includes isotropic and directional harden-
ing as well as the effect of thermal recovery. The model for isotropic hardening is adopted from Chan [9], who
proposed a model of hardening for processes where there is sufficient time for thermal recovery (annealing
effects) to influence the resistance to inelastic deformation rates.

Directional hardening is an alternative to kinematic hardening, which is usually included to account for such
phenomena as the Bauschinger effect [4], and the literature contains a vast number of models for kinematic
hardening (e.g. [2,8,57]). The model for directional hardening adopted here is one of the novelties of the
present work, where directional hardening is modelled using a single scalar-valued state variable. Hence, for
instance, the Bauschinger effect can be modelled using this state variable, which in a simplified way plays the
role of the back-stress tensor in many kinematic hardening models.

Another contribution of the present paper is the application of a novel 2D weld heat source model. The
2D heat source is derived from Goldak’s 3D heat source [15] and is applied to the simulation of a multi-pass
weld joint, which is a complex and challenging transient thermomechanical problem. Since about 1920, arc
welding is a very common manufacturing method and is nowadays often the most cost-effective ’off-the-
shelf’ solution available for joining metallic materials. Wire arc additive manufacturing (WAAM) is another
manufacturing process with similar physical phenomena involved. Arc welding and additive manufacturing
constitute complex, transient, and thermomechanically coupled processes, which involve such phenomena as
melting, solidification, and phase transformations between different solid states. During these processes, the
temperature can change by thousands of degrees during a few seconds, causing dramatic changes in both
thermal and mechanical properties of the materials involved.

In general, arc welding-based manufacturing processes leave the structure with significant geometrical
distortions or residual stresses in the base and weld metal materials, which can be of great importance, for
instance, with regard to the integrity of the structure. Accurate prediction of the residual stress state created in
such processes requires material models that are able to predict the hardening behaviour of the material in a
wide temperature range. In addition, material data for the same temperature range must be available, which is
a great challenge by itself.

Computational welding mechanics (CWM) has a history that goes back to the 1970s [1,13,19,54]. In
CWM, a few simplifications are usually made. For instance, the weld melt pool is, strictly speaking, in a
flowing liquid form but is approximated to be a viscoplastic solid with low yield strength. Overall, the arc
physics and the physics of the weld melt pool are simplified, such that only thermomechanical phenomena
of the pool are considered, where the weld heat input (arc energy) of the arc welding process is modelled
using Rosenthal’s and Rykalin’s solution [40,49] of the general heat conduction equation where the energy
loss of each single arc welding process is taken into account by the use of an empirical arc efficiency factor
[53]. Furthermore, rate of deformation effects (i.e. viscoplasticity) are often ignored, and a rate-independent
plasticity formulation is usually adopted.

The arc welding process is, strictly speaking, a transient coupled thermomechanical problem. However,
from a numerical point of view, it is sometimes convenient to ignore this coupling and instead solve the problem
by a sequentially coupled thermomechanical analysis (e.g. [11,14,55,58]), where the thermal and mechanical
problems are solved in sequence rather than in parallel. Lindgren [29] provides further information and an
overview of CWM.

The material model proposed here is applied in the simulation of a welding process. More specifically,
a gas tungsten arc welding (GTAW) process, applied to the manufacturing of a multi-pass weld in a narrow
grove in an austenitic stainless steel plate ASME grade 316L, is considered. The austenitic steel is considered
to avoid the need for modelling phase transformations between solid states. In addition, this is a material for
which the experimental results are available for calibration (e.g. [10,30,31,57]). The outcome of the numerical
analyses is the mechanical state resulting from the welding process.

The paper is organized as follows: In Sect. 2, the Eulerian theoretical framework and the constitutive model
to be used are introduced. The basic features of the proposed model are illustrated in Sect. 3, and a calibration
of the model and a comparison with the experimental results are performed in Sect. 4. The numerical example
of the welding simulation is provided in Sect. 5. Finally, Sect. 6 contains a discussion and some concluding
remarks.



An Eulerian thermomechanical elastic–viscoplastic model 191

2 Theoretical framework

2.1 Kinematics

The position of a material point in the present configuration at time t is denoted by x, and the velocity v is
given by

v = ẋ, (1)

where ˙(•) denotes the material time derivative. Also, the velocity gradient L and the rate of deformation tensor
D are defined by

L = ∂v/∂x , D = 1

2
(L + LT ) . (2)

2.2 Evolution equations for elastic deformations

Using the Eulerian formulation of viscoplasticity developed in [47], the inelastic deformation rate is isochoric,
so the elastic dilatation Je is determined by the evolution equation

J̇e
Je

= D : I = divv, (3)

where Q : R = tr(QRT), I is the second order unit tensor, and div(•) is the divergence operator relative to x.
Also, the elastic distortional deformation is a symmetric, positive definite, unimodular tensor B̄e determined
by the evolution equation

˙̄Be = LB̄e + B̄eLT − 2

3
(D : I)B̄e − Γ Āp, Γ ≥ 0, (4)

where Γ is a non-negative function that determines the rate of inelasticity and the direction of inelasticity is
determined by the tensor Āp, defined by

Āp = B̄e −
(

3

B̄−1
e : I

)
I. (5)

This tensor satisfies the condition

Āp : B̄−1
e = 0, (6)

which ensures that B̄e remains unimodular (i.e. det(B̄e) = 1).
In contrast to the standard multiplicative Lagrangian formulation of plasticity (e.g. [6,24,26]), the Eulerian

formulation of elastic–viscoplastic response is insensitive to arbitrariness of a reference configuration, an inter-
mediate stress-free configuration, a total strain measure, and an inelastic deformation measure. In particular, it
was shown in [45] that when this arbitrariness is removed from the multiplicative formulation, it must reduce
to the formulation for elastically anisotropic response proposed in [44].

2.3 Governing equations

Within the context of the thermomechanical theory of Green [17], the conservation of mass and balances of
linear momentum and entropy are proposed in the forms

ρ̇ + ρdivv = 0, (7.1)

ρv̇ = ρb + divT, (7.2)

ρη̇ = ρξ + ρs − divp, (7.3)

where ρ is the current mass density, b is the specific (per unit mass) body force, T is the symmetric Cauchy
stress, η is the specific entropy, ξ is the specific internal rate of entropy production, s is the specific external
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rate of entropy supply, and p is the flux of entropy per unit current area. The balance of angular momentum
requires T to be a symmetric tensor.

Also, the local form of the balance of internal energy is

ρε̇ = T : D + ρr − divq, (8)

where ε is the specific internal energy, r = θs is the external rate of supply of heat energy, q = θp is the heat
flux vector, and θ is the absolute temperature.

Next, the specific Helmholtz free energy, ψ , is introduced as

ψ = ε − θη, (9)

and the rate of material dissipation, ρθξ ′, defined in [43], is given by

ρθξ = −p · g + ρθξ ′, (10)

where g = ∂θ/∂x is the temperature gradient. Then, the balances of entropy and energy in (7.3) and (8),
respectively, can be used to write the rate of material dissipation in the form

ρθξ ′ = T : D − ρ(ψ̇ + ηθ̇) ≥ 0, (11)

which is required to be non-negative for all processes.

2.4 Constitutive equations for an elastically isotropic material

For an elastically isotropic material, the Helmholtz free energy is taken in the form

ψ = ψ(Je, α1, θ), α1 = B̄e : I, (12)

where α1 is a scalar pure measure of elastic distortional deformation.
For both rate-independent and rate-dependent material response, it is assumed that T and η are specified

by

T = −pI + T′, η = −∂ψ

∂θ
, (13)

where

p = −ρz
∂ψ

∂ Je
, T′ = 2ρ

∂ψ

∂α1
B̄′
e, (14)

where ρz is the zero-stress mass density at reference temperature θz .
Furthermore, it is noted that the tensors B̄e and B̄′

e introduced here correspond to B
′
e and B

′′
e , respectively,

in [47].

2.5 Specific thermoelastic constitutive equations

The Helmholtz free energy in [41] is modified to take the form

ρzψ = f1(θ) + K (θ) f2(θ)(1 − Je) + K (θ)(Je − 1 − ln Je) + μ(θ)

2
(α1 − 3), (15)

where f1(θ) controls the purely thermal dependence of ψ , f2(θ) controls thermal expansion, and K (θ) and
μ(θ) are the temperature-dependent zero-stress bulk and shear moduli, respectively. It then follows that

p(Je, θ) = K

(
1

Je
− 1 + f2(θ)

)
, T′ = μ

Je
B̄′
e. (16)

Also, the function f2(θ) is restricted by the condition

f2(θz) = 0, (17)
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which ensures that a zero-stress state at reference temperature is characterized by

Je = 1, B̄e = I, θ = θz . (18)

In addition, the von Mises stress σe is defined by

σe =
√
3

2
T′ : T′ = 2μ

Je
γe, γe = 1

2

√
3

2
B̄′
e : B̄′

e, (19.1,2)

where γe is the effective elastic distortional deformation.
For the numerical algorithm, the Kirchhoff stress, τ , is also introduced as

τ = JeT = K [Je(1 − f2(θ)) − 1] I + μB̄′
e. (20)

2.6 Specific constitutive equations for viscoplasticity

Anoverstressmodel (e.g. [32,37]) is used to characterize the rate-dependent inelastic responsewith the inelastic
distortional deformation rate controlled by the function Γ which is specified by the overstress form

Γ = a1 〈g〉 , a1(θ) ≥ 0, (21)

where a1 is a temperature-dependent function that controls rate dependence (with higher rate dependence
occurring for smaller values of a1), and the Macaulay brackets 〈g〉 are defined by

〈g〉 = max(g, 0). (22)

The yield function g is specified by

g = 1 − R(θ)Z

γe
, R(θ) ≥ 0, (23)

where R is a function of the temperature that influences the temperature dependence of the yield strength and
Z is a hardening variable that accounts for both isotropic and directional hardening defined by

Z = (1 + βU )κ, (24)

where κ and β are state variables accounting for isotropic and directional hardening, respectively. The variable
U accounts for the mode of loading and is a variant of the Lode parameter:

U = 27 det(T′)
2σ 3

e
= 27 det(B̄′

e)

16γ 3
e

. (25)

The stress states uniaxial tension, pure shear, and uniaxial compression correspond to U = 1, U = 0, and
U = −1, respectively.

Following thework in [20,21], let κ be a scalarmeasure of (isotropic) hardening determined by the evolution
equation

κ̇ = m1(θ)Γ (κs − κ) − m2(θ)(κ − κa),

m1 ≥ 0, m2 ≥ 0, κs > κa > 0. (26)

The first term in (26) accounts for work hardening. This term is proportional to the rate of plastic deformation,
Γ , m1 controls the rate of hardening, and κs determines the saturated value of hardening. The second term
accounts for thermal recovery at high temperatures, i.e. material softening, which is taken to be independent
of the inelastic deformation rate. The rate of thermal recovery is governed by m2, and the target hardening (or
rather softening) value for the thermal recovery process is κa. Both the hardening and thermal recovery rates
are taken to be functions of temperature.

Here, a new scalar form for directional hardening is proposed to determine the state variable β by the
evolution equation

β̇ = m3(θ)Γ (βsU − β) − m4(θ)β, m3 ≥ 0, m4 ≥ 0. (27)
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The first term accounts for work hardening, and the second term accounts for thermal recovery. As before, the
rate constants, in this case m3 and m4, are taken to be temperature-dependent, and βs governs the magnitude
or saturated value of β. Hence, the hardening variables are bounded according to

κa ≤ κ ≤ κs, −βs ≤ β ≤ βs. (28)

In order to characterize directional hardening, a variant of the Lode angle, ϑ , is introduced as

sin 3ϑ = U. (29)

Since U varies between −1 and 1, it is sufficient to consider the range ϑ ∈ [−π/6, π/6]. Following Rubin
[42], three special load cases are identified:

– triaxial extension (TXE), U = 1, ϑ = π/6,
– pure torsion (TOR), U = 0, ϑ = 0,
– triaxial compression (TXC), U = −1, ϑ = −π/6.

The loading state is often characterized by the stress tensor or the stress deviator. In the present case,
since use is made of a strain-based formulation of inelasticity, it is more convenient to consider the deviatoric
deformation tensor B̄′

e, whose eigenvalues are denoted by B̄ ′
e1, B̄

′
e2, and B̄ ′

e3, where B̄ ′
e1 ≥ B̄ ′

e2 ≥ B̄ ′
e3 is

understood. The three load states introduced above are then characterized by

– TXE: B̄ ′
e1 = 4γe

3 , B̄ ′
e2 = B̄ ′

e3 = − 2γe
3 ,

– TOR: B̄ ′
e1 = 2γe√

3
, B̄ ′

e2 = 0, B̄ ′
e3 = − 2γe√

3
,

– TXC: B̄ ′
e1 = B̄ ′

e2 = 2γe
3 , B̄ ′

e3 = − 4γe
3 .

2.7 Specific constitutive equations for heat conduction and convection

For Fourier heat conduction, the constitutive equation for the entropy flux is specified by

p = −k(θ)

θ
g, q = −k(θ)g, (30)

where k(θ) > 0 is the coefficient of heat conduction.
The boundary condition associated with heat convection from a (hot) solid structure to the surrounding air

is specified by the convection law

q · n = qs = αh(θs) (θs − θ∞) , (31)

where n is the unit outward normal vector to the boundary surface, qs is the normal component of the heat
flux vector on the surface of the structure, αh is the coefficient of heat convection, θs is the temperature at the
surface of the structure, and θ∞ is the temperature of the surrounding environment.

2.8 Numerical implementation of the constitutive model

The constitutive model above was implemented as a user subroutine in Abaqus, and details of the numerical
implementation are provided in Appendix A.

3 Parametric study

3.1 Prerequisites

Several of the basic features of the present model have been described in previous works (e.g. [20,21]). For
instance, the parameter R is intended to model the decrease in the yield strain with increasing temperature.
Furthermore, a1 accounts for the rate dependence of the material with lower values of a1 causing a higher rate
sensitivity of the material.
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Fig. 1 Normalized yield surfaces displayed in the τ3-τ1-plane for ϑ ∈ [−π/6, π/6] for different values of β. Curves are shown
for β = −0.3 (dotted magenta), −0.2 (dotted green), −0.1 (dotted red), 0 (solid blue), 0.1 (dashed red), 0.2 (dashed green), and
0.3 (dashed magenta) (colour figure online)

The scalar-based description of directional hardening, however, is a new feature that will be explored in the
present Section. In the following parametric study, the elastic properties of the material are given by Young’s
modulus E = 200GPa and Poisson’s ratio ν = 0.3, and the material is taken to be at room temperature,
so that f2 = 0. For the inelastic deformation rate and hardening, a1 = 105/s, R = 1 κ0 = κa = 0.0015,
and κs = 0.012 are assumed. The results are shown in terms of the Cauchy stress components Ti j vs. the
engineering strain components ei j = sym(∂ui/∂x j ) relative to fixed rectangular Cartesian base vectors ei .

3.2 Evolution of the yield surface for different load cases

The yield function may be illustrated by its contour in the synoptic (or octahedral) plane, whose unit normal is
given by the vector (p1 +p2 +p3)/

√
3, where pi are orthonormal eigenvectors of B̄′

e. Again, following Rubin
[42], two orthogonal unit vectors in the synoptic plane are defined as

ē3 = p1 − p3√
2

, ē1 = −p1 + 2p2 − p3√
6

. (32)

The yield surface can be described by the vector bs, defined as

bs = B̄′
e

[p1 + p2 + p3√
3

]
= 2

√
2 κ

3
(τ3ē3 + τ1ē1) , (33)

where

τ3 = (1 + βU ) cosϑ, τ1 = (1 + βU ) sin ϑ, (34)

and the angle ϑ was defined in (29). (It is noted that μbs/Je is the shearing component of the traction vector
applied to the synoptic plane.) With the specification γe = Z = κ(1 + βU ), the vector bs in (33) describes
the contour of the yield surface.
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(a) (b)

(c) (d)

Fig. 2 Parametric study of proposed viscoplastic model; a influence of m1 (m2,m3,m4 = 0); b influence of m3 (m1 = 0.002,
βs = 0.5, m2,m4 = 0); c influence of βs (m1 = 0.001, m3 = 0.5, m2,m4 = 0); d influence of m2 and m4 (m1 = 0.001,
m3 = 0.5, βs = 0.5)

The state variable κ governs the isotropic expansion (or contraction) of the yield surface in the synoptic
plane, whereas evolution of β causes directional hardening, i.e. different hardening for different loadingmodes.
Figure 1 shows contours of the normalized yield surface in strain space and in the τ3-τ1-plane for different
values of β. From this Figure, it can be seen that loading in uniaxial tension (TXE) causes an increase in β
and thereby increased hardening for loading modes with ϑ > 0 and softening for ϑ < 0. Loading in uniaxial
compression (TXC) causes the opposite tendency. This normalized yield surface is pivoting around the yield
point at ϑ = 0 (TOR), which remains unaffected by directional hardening.

3.3 Influence of directional hardening during cyclic uniaxial tension

In this Subsection, consider loading in uniaxial tension in the e1-direction of the material. A loading rate of
ė11 = 0.01/s is applied.
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Figure 2a–c shows graphs in terms of T11 vs. e11. In Fig. 2a, the influence of the hardening rate m1
is illustrated. In this case, directional hardening and thermal recovery have been deactivated. The material
response is relatively intuitive with the hardening rate increasing with increasing value of m1.

Figure 2b shows the influence of the rate of directional hardening, m3. The higher the value of m3, the
faster the hardening curve reaches the saturated level of directional hardening, i.e. β → βs. For the highest
value, m3 = 0.5/s, directional hardening saturates already at a strain of about 0.01–0.02. It should also be
noted how the model clearly has the potential to model a Bauschinger effect, since yielding during reversed
loading occurs at a smaller effective stress in compression compared to the previous yielding point in tension.

In Fig. 2c, variations in βs are considered. It can be clearly seen how an increasing value of βs adds more
potential for hardening to the material. The value of m3 chosen in these simulations again implies that the
hardening saturates after a strain of about 0.01 − 0.02.

Finally, Fig. 2d demonstrates the influence of thermal recovery, that is the influence of the rate constantsm2
and m4. In these simulations, m2 = m4 is applied. Since thermal recovery is a process that depends explicitly
on time, T11 is plotted vs. time, t . In this case, the material is loaded with a strain rate of ė11 = 0.01/s up to a
strain of e11 = 0.05. After this, the strain is held constant, implying that thermal recovery is the only potentially
active process. The simulation continues up to the time t = 100s, during which time thermal recovery causes
the hardening to decrease and thereby the stress to decrease. As can be seen from Fig. 2d, thermal recovery
causes a relaxation of the stress in the material. For the highest recovery rates, the hardening variables κ and β
have sufficient time to relax to their annealed values κa and 0, respectively, which is associated with the stress
stabilizing at about 220MPa.

4 Model calibration

4.1 Preliminaries

The purpose of the present Section is to calibrate the thermomechanical model, so that it can be used for pre-
diction of the residual mechanical state in the simulation of a multi-pass weld in the next Section. Temperature-
dependent thermoelastic and viscoplastic properties are determined on the basis of the experimental results
from literature.

In the remainder of this paper, the symbol T is used for the temperature in degrees centigrade (◦C), while
θ is used for the absolute temperature.

4.2 Model calibration: temperature-dependent thermal and elastic properties

The density of the material in a zero-stress state at room (reference) temperature, Tz = 20◦C, is ρz =
7, 966kg/m3. The temperature dependence of Young’s modulus, E , is illustrated in Fig. 3a and is adopted
from Lindström [31]. The bulk modulus was taken to be constant and independent of temperature. Assuming
that Poisson’s ratio at room temperature is ν(Tz) = 0.3, the bulk modulus was calculated as

K (T ) = K = E(Tz)

3(1 − 2ν(Tz))
= 160 GPa. (35)

The temperature-dependent shear modulus was then given by

μ(T ) = 3K E(T )

9K − E(T )
. (36)

Thermal expansionwas quantified by the function f2(T ), illustrated in Fig. 3b. The function f2(T ) vanishes
at T = Tz.

4.3 Model calibration: inelastic yielding during reversed loading

Information about the present material’s response during reversed loading is only available for room tempera-
ture (as far as the current authors have found). Hence, the Bauschinger effect of the austenitic steel at hand is
considered for room temperature. The inelasticity in the model is compared to data from Choteau et al. [10],
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(a) (b)

Fig. 3 a Young’s modulus, E , vs. temperature, T [31], and b thermal expansion, f2(T ), vs. temperature, T [31]

Fig. 4 Material response for tensile loading up to different maximum strains followed by reversed loading; data from Choteau et
al. [10] (symbols) together with the calibrated model responses (solid lines)

Table 1 Model parameters for reversed loading at room temperature

T [◦C] a1 [1/s] m1 [–] m2 [1/s] m3 [–] m4 [1/s]

20 105 0.0014 0 0.2 0

T [◦C] βs [–] κ0 [–] κs [–] R [–]

20 0.3 0.0015 0.012 1

who performed uniaxial tensile testing of the same type of austenitic steel. The testing consisted of an initial
stage of tensile loading up to varying maximum strains, followed by reversed loading down to an engineering
strain of −0.04. The data from Choteau et al. [10] are shown in Fig. 4 together with the calibrated model
response (solid lines).

The material response is shown in terms of the Cauchy stress component T11 vs. the engineering strain
component e11. The elastic properties of the material at room temperature, determined in the previous Subsec-
tion, were used, and only the model parameters associated with the inelastic behaviour were adjusted to the
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(a) (b)

Fig. 5 Experimental data (symbols) from Lindgren et al. [30] together with model calibrations (lines) at different temperatures.
Strain rates: 0.01/s (blue) and 10/s (green) (colour figure online)

data from Choteau et al. [10]. The model was calibrated manually, and the model parameters thus determined
are listed in Table 1.

4.4 Model calibration: temperature-dependent inelastic flow rate properties

The temperature-dependent inelastic flow rate properties were determined from uniaxial stress compression
tests performed at different strain rates and different temperatures [30]. The flow response was quantified in
terms of true (Cauchy) stress component T11 and the associated true (logarithmic) strain component ε11. The
tests were performed at constant engineering strain rates, and the plasticity model was calibrated using data
for ė11 = 0.01/s and 10/s.

To investigate the influence of directional hardening in the subsequent numerical examples, two versions
of the model were calibrated:

– Model A: only isotropic hardening activated (m3 = 0).
– Model B: both isotropic and directional hardening activated.

For Model B, a true distinction between isotropic and directional hardening was only possible at room
temperature, according to the model calibration in the previous Subsection. To generalize the results for
higher temperatures, it is assumed that the ratio m1/m3, i.e. the ratio between the hardening rates of
isotropic and directional hardening, is constant and independent of temperature. This means that the ratio
m3 = 0.2/0.0014m1 ≈ 143m1, determined at room temperature, is taken to hold for higher temperatures as
well.

It is also assumed that the thermal recovery rates for isotropic and directional hardening are the same
functions of temperature, i.e. m2 = m4. Finally, it is assumed that the maximum value of the state variable β
that governs directional hardening, i.e. βs, is constant and independent of temperature. The last assumption is
supported by the fact that the saturated value of isotropic hardening, κs, was found to be fairly independent of
temperature, see below.

In Figs. 5 and 6, the experimental data from Lindgren et al. [30] are shown together with the calibrated
model responses at the different temperatures. For the temperatures 20–700 ◦C, it was assumed that there was
not sufficient time thermal recovery to be active so m2 and m4 were set equal to zero.

In the calibrations, an accurate fit in the strain range ε11 ∈ [0, 0.3] was prioritized, since the strains in the
present applications were essentially confined to this regime. Lindgren et al. [30] also emphasized that in the
tests performed at the highest strain rates the relative temperature increase was significant in some of the tests
at the lowest temperatures. For this reason, in cases where the rate dependence in the experimental data is not
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(a) (b)

Fig. 6 Experimental data (symbols) from Lindgren et al. [30] together with model calibrations (Model A: solid lines; Model B:
dashed lines) at different temperatures. Strain rates: 0.01/s (blue) and 10/s (green) (colour figure online)

Table 2 Parameters for plastic flow in Model A

T [◦C] a1 [1/s] m1 [–] m2 [1/s] R [–]

20 105 0.0053 0 1
200 105 0.0052 0 0.6
400 105 0.0065 0 0.5
600 105 0.0075 0 0.5
700 105 0.0075 0 0.5
800 3 × 104 0.005 0.02 0.5
900 2 × 104 0.0075 0.04 0.3
1,100 1.5 × 104 0.003 0.2 0.25
1,300 1.5 × 104 0.002 0.35 0.14
1,500 1.5 × 104 0.002 100 0.01

consistent with the behaviour predicted by the model, priority is given to the data for the lowest strain rates,
since these data can be expected to be least affected by temperature variations.

In principle, the initial value κ0 of κ needs not be equal to the fully annealed value κa. However, during
the fitting procedure it was concluded that taking κ0 = κa enabled a good fit to the data, so the same value
was used for these two variables. Also, it was concluded that κa and κs could be taken to be independent of
temperature. For both models A and B, κs = 0.012 was adopted, whereas κa was set to 0.002 and 0.0015 for
models A and B, respectively. As indicated above, βs = 0.3 was specified for all temperatures.

The remaining model parameters of the inelasticity rate were fitted at each test temperature, and the
estimated parameters are listed in Tables 2 and 3.

The temperature changes continuously both in time and space, and for a specific temperature, the associated
model parameters were attained by linear interpolation between the discrete values as listed in Tables 2 and
3. The melting temperature was taken to be 1, 500◦C, and between 1,300◦C and 1,500◦C no data for the
flow properties were available. In the range 1,300◦C to 1, 500◦C, the properties corresponding to 1,300◦C
were therefore applied, except for the parameters R, m2, and m4. The melting process was accounted for by
letting R decrease to a low value, i.e. R(1, 500◦C) = 0.01. Also, the thermal recovery process was taken to be
accelerated at temperatures approaching themelting temperature, andm2(1, 500◦C) = m4(1, 500◦C) = 100/s
was therefore applied.

The following comments are based on the values recorded in Tables 2 and 3. The parameter a1 governs the
influence of the strain rate on the flow stress, with lower values increasing the strain-rate sensitivity. The strain
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Table 3 Parameters for plastic flow in Model B

T [◦C] a1 [1/s] m1 [–] m2 [1/s] R [–]

20 105 0.0035 0 1
200 105 0.0035 0 0.6
400 105 0.0035 0 0.55
600 105 0.004 0 0.55
700 105 0.0042 0 0.55
800 2 × 104 0.003 0.02 0.55
900 2 × 104 0.003 0.05 0.4
1,100 2 × 104 0.002 0.3 0.3
1,300 2 × 104 0.0012 0.6 0.2
1,500 2 × 104 0.0012 100 0.01

Fig. 7 Geometry of multi-pass weld to be simulated: a 3D structure; b 2D profile; c close-up of the weld region with domains
and dimensions

rate has a stronger influence on the flow stress at higher temperatures, which corresponds to lower values of
a1 at higher temperatures.

The parameterm1 governs the rate of work hardening. Although the variation is not completely monotonic,
the hardening rate does tend to decrease at high temperatures. Thermal recovery, quantified by m2 and m4,
kicks in at 800◦C and seems to increase exponentially with temperature. The parameter R starts at unity and
decreases monotonically with increasing temperature. This parameter controls the temperature dependence of
the yield strain, and R → 0 at 1,500◦C models melting. For numerical reasons, R = 0.01 was adopted as the
minimum value.

5 Numerical example: simulation of a 2D weld

5.1 Problem formulation

A numerical example is provided in the form of a transient, thermomechanical analysis of a multi-pass weld.
Figure 7a shows a full 3D image of the problem of arc welding. The geometry that was actually modelled
and analysed is the 2D profile, shown in Fig. 7b, with a close-up view of the weld joint region in Fig. 7c. The
dimensions are included in each of these Figures. The base material occupies the domain �0. The weld joint
is produced in two steps/runs. In the first run, the root weld, domain �1, is produced, and in the second run,
the second weld, domain �2, is produced, as indicated in Fig. 7c.

The welding process was simulated by introducing a prescribed heat source in the domains �1 and �2
during runs one and two, respectively. The two runs were simulated, and the output from the analysis yielded
2D distributions of the field variables.



202 M. Kroon et al.

5.2 Prerequisites for the numerical analysis

The finite element code Abaqus [18] was used for the numerical analysis. The elastic–viscoplastic model was
implemented as a user material (UMAT), using the implicit integration of the evolution equations outlined
above. Instead of solving the fully coupled energy equation (8), use was made of the approximate formulation
for heat conduction in Abaqus. Specifically, the heat conduction equation

ρcp(θ)θ̇ = ρr − divq, (37)

was solved with cp(θ) being the specific heat capacity at constant pressure.
The problem was analysed as a 2D problem, which seems to give sufficiently accurate results in terms of

the resulting residual stress state [29]. The computations were performed in parallel on 8 cores. In contrast to
many other CWM simulations, the coupled thermomechanical problemwas solved in parallel, i.e. no staggered
or sequential approach was used. For the out-of-plane dimension, generalized plane strain was assumed. (The
2D structure is then essentially constrained in the out-of-plane direction between two rigid blocks which are
themselves free to slide in the out-of-plane direction.) A constitutive thickness, H = 1mm, for the out-of-plane
dimension was specified.

Both the base andweldmaterials were taken to be the austenitic stainless steel 316L, and thematerial model
was calibrated using the experimental results from the literature [30,31], as shown in the previous Section.

The mechanical state at a material point was characterized by the state variable vector
[B̄e,11 B̄e,22 B̄e,33 B̄e,12 B̄e,13 B̄e,23 Je κ β], where B̄e,ij are the rectangular Cartesian components of B̄e,
and the initial value of this vector at room temperature was specified by [1 1 1 0 0 0 1 κ0 0].

5.3 Discretized geometry

The geometry was discretized, and the standard mesh used in the simulations is shown in Fig. 8. Symmetry
was utilized, such that only half of the 2Dmodel was analysed. The smallest elements in the refined zone close
to the boundary between the weld and the base material had a size of lrz = 0.2mm, and the maximum size
of the elements in the areas without any significant gradients was lcz = 5mm. Quadrilateral, hybrid elements
were used in the finite element analysis, i.e. quadratic and linear shape functions were used to interpolate the
displacement and temperature fields, respectively, and a linear variation in the pressure was enabled.

The mechanical boundary conditions applied are indicated in Fig. 8. Apart from the displacement con-
straints, indicated in Fig. 8, the boundaries were traction-free. Also, influences of inertia and gravity were
ignored.

Along the red dashed line, the boundary heat flux was governed by the convection law in (31). Heat
convection along the weld area was not modelled explicitly. This loss of heat from the weld pool was instead
accounted for by modifying the power input from the welding heat source, see below.

5.4 Implementation of the welding process

The welding process was implemented as a series of computational steps, as illustrated in Fig. 9. Heat was
supplied to the weld regions in two ways: first, the weld pool was given an elevated, prescribed temperature,
Twp = 2000 ◦C, which corresponds to a liquid state of the material; second, heat was supplied by an internal
heat source, rw, during a subsequent, transient analysis.

Before the beginning of the welding process, at t < 0, the whole geometry was in a zero-stress state at
the temperature Trm = 20 ◦C. At t = 0, the process for the root weld was initialized by instantly elevating the
temperature of the domains �1 and �2 to Twp. At the same time, the material in �1 and �2 was initialized by
assigning the values Je = 1/(1− f2(2000 ◦C)), κ = κ0, and β = 0, which approximates a thermally expanded
liquid at T = 2, 000◦C. In the subsequent transient analysis (0 < t < t1), the root weld was simulated and a
heat source, rw, was applied. The time t1 was chosen large enough, so that at t = t1 the whole model (including
�1) had virtually cooled down to Trm.

During 0 < t < t1, the domain �2 should, strictly speaking, be a void. This was approximated in the
following way: during the simulation of the root weld (0 < t < t1), the domain �2 was ascribed the properties
of a liquid by enforcing R = 0.01 in�2 (independent of the temperature). In this way,�2 was prohibited from
enacting any significant mechanical influence on the root weld or the base material. As indicated above, heat
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Fig. 8 Standard mesh used in the simulations with boundary conditions indicated

Fig. 9 Different computational steps of the weld simulations

convection from the weld surface to the surroundings was not modelled explicitly but was instead accounted
for by applying an effective (i.e. reduced) amplitude for the heat source.

The processing of the root weld was followed by a short time period t12, during which the conditions for
the second weld were set. During this period, the temperature of �2 was raised to Twp and the material in �2
was re-initialized by (again) assigning the values Je = 1/(1 − f2(2000 ◦C)), κ = κ0, and β = 0.

During the last part of the analysis, the second weld was simulated. A heat source, rw, was again applied,
but this time to �2, as indicated in Fig. 9.

In the present analysis, the values t1 = t2 = 105 s, and t12 = 0.001s were specified.

5.5 Heat source

The welding process was simulated by introducing a prescribed heat source, r = rw(X1, X2, t), in the domains
�1 and �2, see Fig. 10 where an orthogonal coordinate system with the coordinates X1, X2, and X3 has been
introduced. The heat source was confined to a region with the radius lw, as indicated in Fig. 10.
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Fig. 10 Heat sources used for simulating arc welding

Fig. 11 Example of a normalized heat source amplitude curve (cf = 1, ca = 3mm)

The heat source applied in the present analysis is a 2D version of the 3D heat source proposed by Goldak
et al. [15]. Specifically,

rw(X1, X2, t) =
{
rG2D(t), X2

1 + X2
2 ≤ l2w,

0, X2
1 + X2

2 > l2w,
(38)

where the function rG2D(t) is defined by

rG2D(t) = 2Pw
πl2w

rG3(X30, t). (39)

In this expression, Pw denotes the (effective) electric power input, and the function rG3(X30, t) is defined as

rG3(X30, t) =

⎧⎪⎪⎨
⎪⎪⎩

2
√
3√

π(cf + ca)
exp

[
−3 (X30 + vt)2

c2f

]
, X30 + vt ≤ 0,

2
√
3√

π(cf + ca)
exp

[
−3 (X30 + vt)2

c2a

]
, X30 + vt > 0,

(40)

where X30 is a constant, v is the velocity of the heat source (in the X3-direction), t denotes time, and cf and
ca define the profile of the heat source (in the X3-direction). In the full 3D analysis, the heat source would
move in the (negative) X3-direction with the velocity v. Since we consider a 2D analysis in the X1-X2-plane,
the shape of the heat source in the X3-direction determines the amplitude as a function of time for the 2D heat
source.

In Fig. 11, an example of a heat source amplitude is illustrated for the case cf = 1, ca = 3mm, and
X30 = −cf

√
ln 0.001/(−3). The value of X30 is chosen such that for t = 0 the amplitude function has a value

that is a fraction 0.001 of the maximum amplitude value.
Additional explanation of these expressions for the heat source is provided in Appendix B.
As indicated above, at the beginning of the analysis (t = 0), the weld pool is assigned the initial temperature

Twp, whereas the basematerial has the initial temperature Trm. The effective power amplitude of the heat source
may therefore be expressed as

Pw = Pw0 − veinρ0A
∗, (41)



An Eulerian thermomechanical elastic–viscoplastic model 205

Table 4 Standard heat source parameters used in the simulations [31]

Trm [◦C] Twp [◦C] Pw0 [W] lw [mm] cf [mm] ca [mm] v [mm/min]

20 2,000 837 2.357 1.0 3.0 41

Fig. 12 Paths along which stresses are evaluated (dashed red lines) and close-up zone for detailed results (colour figure online)

where Pw0 is the nominal electric power supply (without any preheating), ein is the energy (per unit mass)
required to raise the temperature of the weld pool material from Trm to Twp, and A∗ denotes the area in the
model that is given an elevated temperature at the beginning of a welding step. The areas of the domains �1
and �2 are specified by A1 = 13.4 and A2 = 17.765mm2, respectively. This means that for the root weld
in the two-step welding process A∗ = A1 + A2, whereas for the second step A∗ = A2. The nominal power
input, Pw0, is a reduced value in the sense that it also models the energy loss due to heat convection from the
weld surface. Additional discussion of (41) can be found in Appendix A.

Hence, the standard power values for the two-step analysis were Pw = 615W and Pw = 711W for the root
weld and for the second weld, respectively. These input values are consistent with the experimental conditions.

Table 4 lists the standard parameters used for the welding process in the simulations.

5.6 Numerical results: prerequisites

The results are shown in terms of temperature and stress distributions. The geometry of the analysed problem
is shown in Fig. 12, where the weld region is indicated by the black line. In most cases below, the results are
shown for the region in the vicinity of the weld, i.e. the blue dotted box in Fig. 12.

The predictions of stress entities along three specific paths are also considered, i.e. lines 1–3, as shown
in Fig. 12. Lines 1 and 3 are horizontal lines along the surface and at a distance of 3mm below the surface,
respectively, whereas line 2 is the vertical, interior symmetry line. Stress distributions along these lines may
be compared with the experimental results presented in [56]. The coordinates x1 and x2, associated with the
deformed configuration, are used to indicate the position along the different lines.

A convergence study was made for the spatial discretization, and the mesh adopted in the analyses below
enables the converged results, i.e. further mesh refinement does not significantly affect the outcome of the
analysis.

5.7 Numerical results: weld analysis with only isotropic hardening

In Fig. 13, the residual stress state from the two-step welding procedure is shown. The stress state is represented
by the effective vonMises stress, and the T11- and T33-components. Theweld domain is indicated by the dashed
black line.

The von Mises stress reaches a peak of about 700MPa in the base material close to the welding area. This
is higher than the initial yield stress, and it is clear that the material close to the weld has undergone plastic
deformation during the solidification process.

The stress in the horizontal direction, T11, does not reach as high a magnitude as the effective stress. The
magnitude is actually the highest for the compressive stresses that appear in the welding zone and above all at
some distance below the welding zone. These stresses are of the order of −300MPa.



206 M. Kroon et al.

Fig. 13 Residual stress state after the welding procedure with isotropic hardening only

The distribution of T33 shows that the out-of-plane stress component dominates the residual stress state
and is the main contributor to the residual effective stress. The T33 stress reaches its peak at the bottom of the
weld zone and just below it, with a peak stress of about 600MPa. Also, at a distance of about 20–30mm from
the weld zone there is a large area of material under compression at about −300MPa.

Figure 14 shows some sample images from the simulation for the evolution of the temperature field and
the associated effective stress. For clarity, only the region closest to the weld is shown.

At t = 0, the whole weld region (�1 and �2) is given the initial temperature T = Twp, and the structure
is stress-free. After a few seconds, the weld region is essentially stress-free but it has been heated by the heat
source. At this stage, the region surrounding the weld experiences a temperature gradient which introduces
distortions that cause an effective stress. At the end of the first step, the whole structure has cooled down to
room temperature, but there is a remaining residual stress state. As mentioned above, during this first welding
step, the domain �2 is (artificially) assigned liquid-like properties independent of its temperature, and for this
reason, �2 remains stress-free at the end of the first step.

At the start of the second welding step (t = t1 + t12), the temperature of the domain �2 has been raised to
Twp. The structure then undergoes a heat cycle similar to the first step with heating and cooling. At the end of
the second welding step, there is a significant residual stress state as seen at the bottom of Fig. 14. The peak
stress in the residual field exceeds 600MPa. It is clear from Fig. 14 that the effective residual stress after the
second step is higher than that after the root weld.

5.8 Numerical results: influence of heat input

The influence of changes in the heat power input, Pw0, is now investigated. The standard value, Pw0 = 837W,
was both increased and decreased by 25%, yielding the alternative power inputs 628 and 1046W. Simulations
of the two-step welding process were performed using these alternative power inputs, and the resulting stress
states are shown in Fig. 15.
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Fig. 14 Predicted evolution of temperature (left) and effective stress (right) during the welding procedure with isotropic hardening
only

Figure 15 shows the resulting distributions of the effective stress, σe, for the three different values of Pw0.
Only the region around the weld is shown. In and in the vicinity of the weld, the residual effective stress seems
to decrease somewhat with increasing power input. The reason for this tendency seems to be that when a plate
of finite size is infused with heat energy, the temperature distribution in the plate becomes more homogeneous
the more heat energy is infused into the plate. Hence, more heat input means that the intricate expansion
and contraction processes in the material and the cooling process take place under the influence of weaker
temperature gradients, which suppresses the formation of residual stresses. The maximum effective stress in
the vicinity of the weld is about 750, 700, and 630MPa for Pw0 = 628, 837, and 1,046W, respectively.

It is also noted that the resulting deformed geometry of the structure depends on the power input. The
highest power input produces a remaining bulge, whereas the lowest power input results in a small valley at
the weld. For the standard power input (Pw0 = 837W), a small bulge also remains at the end of the welding
process.

5.9 Numerical results: influence of hardening model

The solutions from the present analysis are now compared with the experimental results from the literature
[56]. In addition, some results from analyses using a Lagrangian constitutive model [31] have been included
for comparison. Lindström [31] performed FE simulations of the same problem as has been studied here. In
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Fig. 15 Influence of heat input on residual effective stress, σe, with isotropic hardening only

Fig. 16 Stress component T11 along line 1: model A (solid blue line), model B (dashed blue line), experimental results from
Wohlfahrt et al. [56] (symbols connected by dotted lines) (colour figure online)

that study, the welding problem was analysed using a thermomechanical, staggered coupled approach, and the
mechanical material model used was a nonlinear, thermoelastic-plastic model that used a mixture of isotropic
and kinematic hardening. Lindström [31] did not publish predictions for all stress contours that are discussed
below, but for the cases where they are available, they are included in the presentations below.

In Figs. 16, 17, 18, 19, and 20, numerical predictions of T11 and T33 along lines 1–3 are shown together
with the experimental results. When performing the experimental measurements, different laboratories were
involved, and different experimental techniques were used for the measurements, see Wohlfahrt et al. [56].
Therefore, different symbols have been used to denote the experimental results from each of the laboratories.

It is evident that the scatter in the experimental data is significant and that the differences in measurements
from different laboratories are sometimes dramatic. As discussed in [56], these differences may partly be
attributed to surface treatments performed in the laboratories before the residual stress measurements were
made.

Figure 16 shows the distribution of T11 along line 1 in Fig. 12. The peak stress in the experiments varies
between 300 and 400MPa. The difference between the models is not dramatic, but the models underestimate
the peak stress by almost 200MPa.Also, themain stress peak in the experiments appears closer to the symmetry
plane of the weld compared to the peak in the numerical predictions.
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Fig. 17 Stress component T33 along line 1: model A (solid red line), model B (dashed red line), solution from Lindström [31]
(green line), experimental results from Wohlfahrt et al. [56] (symbols connected by dotted lines) (colour figure online)

Fig. 18 Stress components T11 (blue) and T33 (red) along line 2: model A (solid lines), model B (dashed lines), experimental
results from Wohlfahrt et al. [56] (symbols connected by dotted lines). The T11 solution from Lindström [31] (green line) is also
included (colour figure online)

Figure 17 shows the distribution of T33 along line 1 in Fig. 12. The peak stress in the experiments ranges
between 250 and 500MPa, and the models predict a peak stress of about 500MPa (model A) and 400MPa
(model B). The peak stress in the solution from Lindström [31] is between that predicted by models A and B.
Also, the location of the stress peak is predicted fairly well by the simulations, i.e. between 5 to 10mm from
the symmetry line. In general, the models are able to predict the stress level in the weld region relatively well.
In the region closest to the weld, the model with both isotropic and directional hardening predicts a stress level
that is about 100MPa lower than the model with only isotropic hardening.

In Fig. 18, stress contours for the vertical symmetry line (line 2) are shown. Starting with the results for
T11, it is noted that all of the model predictions agree fairly well with the experimental data. For this case, the
results are available from Lindström [31]. In particular, all three numerical simulations predict a peak stress
of about 150MPa, which agrees well with at least one of the experimental sets. The location of the peak is
also relatively well predicted by the numerical models. In general, the solution from Lindström [31] seems to
followmore closely to model B, which is natural, since both of these models account for directional hardening.

With regard to the distribution of T33, the model predictions clearly overestimate the peak stress compared
to the experimental measurements. Model A overestimates the peak stress by several hundred MPa, and the
peak stress in model B is about 150MPa lower. Hence, in the predictions of T33 there is a significant influence
of directional hardening.

The distribution of T11 is shown in Fig. 19 along line 3 in Fig. 12. The results from the models have been
extended to the negative side assuming symmetry. The experimental results are ambiguous. However, it may
be concluded that there seem to exist stress peaks at a distance of about 5mm from the central line of the



210 M. Kroon et al.

Fig. 19 Stress component T11 along line 3: model A (solid blue line), model B (dashed blue line), experimental results from
Wohlfahrt et al. [56] (symbols connected by dotted lines) (colour figure online)

Fig. 20 Stress component T33 along line 3: model A (solid red line), model B (dashed red line), solution from Lindström [31]
(green line), experimental results from Wohlfahrt et al. [56] (symbols connected by dotted lines) (colour figure online)

structure, and the magnitude of these peaks seems to be of the order of 100MPa. The magnitude of this peak is
well predicted bymodel A, whereas model B predicts a somewhat lower peak stress. The location of the peak is
predicted by the models to be about 15mm from the central line, which is about 10mm from the experimental
results.

Finally, the distribution of T33 is considered in Fig. 20 along line 3 in Fig. 12. Both of the models from the
present study as well as Lindström’s solution overestimate the stress level in the vicinity of the weld region.
Bothmodels and experimental estimates suggest the existence of a peak stress at about 5–8mm from the central
line, the magnitude being somewhat lower in the experiments (250–300MPa) compared with the numerical
predictions (480–580MPa). There is again a significant difference between the predictions frommodels A and
B, where the peak stress in model B is about 150MPa lower than in model A. The predictions of model B and
from Lindström both have a peak stress of about 450MPa. Again, there is a significant influence of directional
hardening.

6 Discussion and concluding remarks

The process of welding is relatively complex one from a thermomechanical point of view because it includes
such phenomena asmelting, solidification, and phase transformations. The large changes in temperature during
the process cause dramatic changes in the elastic and viscoplastic properties of the materials involved. The
combination of these factors determines the resulting residual stress state, which is often of great interest for
predicting the risk of fatigue in welded structures.

The present work uses an Eulerian formulation of elastic–viscoplastic response which is thermomechan-
ically consistent. In contrast to standard Lagrangian formulations for large deformations, the Eulerian for-
mulation proposes an evolution equation directly for a second-order unimodular tensor that measures elastic
distortional deformations. In particular, this Eulerian formulation is not sensitive to arbitrariness of choices of
the reference configuration, an intermediate configuration, a total deformation measure, or an inelastic defor-
mation measure. Since there is no need for an inelastic deformation measure, there is also no need for a plastic
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potential. However, it is possible to introduce a scalar measure of equivalent plastic strain from the initial state
for engineering analysis. Also, the constitutive equation for the rate of inelastic deformation Γ allows for a
smooth transition from viscoelastic fluid-like response in the melted region to elastic–viscoplastic response
of the solidified material. It is expected that this feature of the model is particularly appropriate for modelling
residual stresses in the weld material, which has experienced melting and solidification.

Overall, the Eulerian elastic–viscoplastic formulation adopted here seems to be able to handle the complex
processes in welding well. However, the numerical simulations are not fully able to predict the experimental
measurements in terms of residual stresses. Quantitatively, there were discrepancies in peak stress levels and
the locations of these peak stresses. There may be several reasons for these discrepancies. First, it must be
noted that there are notable differences in measurements between different laboratories, which suggests that
there are significant uncertainties in the measurements themselves. Second, it might simply be that the 2D
representation of the problem employed here is too simplistic and that a full 3D representation is needed.
For example, it is evident that the out-of-plane stress component T33 is the dominant stress component in the
residual stress state, and the generalized strain boundary condition may not represent the 3D situation well
enough (cf. [5,34]). Third, the present study is the first attempt to apply this Eulerian viscoplasticity framework
to this type of problem. The constitutive model was calibrated using a relatively detailed set of the experimental
results. The simulation of the welding process and the resulting residual mechanical state was truly a pure
prediction without any attempts to fine-tune the framework in order to optimize the outcome with regard to
the experimental measurements of residual stresses. Fourth, the modelling of the heat source and the thermal
process may also introduce errors in the numerical predictions. Unfortunately, separate measurements for the
thermal process are not available to validate this part of the simulation.

Previous attempts at predicting the residual stress state in the present type of material and for the same
type of welding process (e.g. [35,52]) also show the difficulty of accurate predictions. The study by Smith and
Smith [52] points to the need for fine-tuning of the modelling framework for accurate numerical predictions
of the residual stress state. In particular, the out-of-plane stress component is difficult to accurately reproduce
in simulations.

It is clear that introducing directional hardening is of significant importance, and the difference between
the model predictions of stress levels for isotropic hardening only and combined isotropic and directional
hardening was about 150–200MPa in the most extreme cases. The same trend was observed by Lindgren [28]
for kinematic hardening. The influence of the hardening model seems to come into play primarily during the
cooling phase of the welding cycle, as the material in the vicinity of the weld is subjected to reversed plastic
yielding. Proper treatment andmodelling of reversed plastic loading thus seem to be very important. In general,
it seems that introducing combined hardening brings the model predictions closer to the experimental results.
Additional new features can be added to this Eulerian framework to improve the numerical predictions further.

The importance of the choice of the hardening model (isotropic, kinematic) has been investigated in other
studies, for instance by Bammann and Ortega [3] and Muransky et al. [35], who investigated the effect of
assuming isotropic and/or kinematic hardening. These studies also confirm that the choice of the hardening
model has a very strong influence on the predicted residual stresses close to the weld.

The predictions of peak stresses and the associated measurements suggest that the residual stresses are
of the order of the yield stress of these materials at room temperature. The residual stress state is therefore
expected to strongly affect such phenomena as fatigue crack growth. Furthermore, variation in heat power input
was considered, and it was demonstrated that a relative change of 25% in heat power input may significantly
affect both the residual stress state and the resulting weld geometry. In this regard, it is noted that varying the
heat power input is equivalent to varying the welding speed, see (41), so the cooled residual stress state and
shape of the weld might be optimized by controlling the welding speed.

Within the context of CWM, there is no consensus as to how to apply the heat to the weld area. In the
present study, heat was supplied by a combination of a prescribed temperature and a prescribed heat flux, using
a 2D version of the heat source proposed by Goldak et al. [15]. It should be mentioned that other models of
heating during the welding process have been proposed, see for example [7,16,23,39].

In many material models used in CWM, residual stress release at elevated temperature (annealing) is
accounted for by a reduction or removal of accumulated plastic strains. The elastic–viscoplastic model used in
this study does not use a plastic deformation measure. Instead, it accounts for thermal recovery and annealing
by allowing the state variable κ (which models hardening) to decrease continuously at increased temperatures.

In summary, an Eulerian elastic–viscoplastic formulation has been applied to the analysis of a welding
process. The residual stress state was quantified in terms of the normal Cauchy stress components and the
effective stress, and the maximum residual stresses were found to be of the order of the yield stress of the
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material at room temperature. Variations in the heat input had a significant influence both on the residual stress
state and on the resulting geometry of the weld. It was also clear that the choice of the hardening model has a
significant influence on the residual stress state, especially on the peak levels of stress.
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Appendix A: Numerical implementation of the thermomechanical model

Consider an arbitrary time step which starts at t = t1, ends at t = t2 = t1 + Δt with time increment Δt . At
t = t1, the set of values {Je(t1), B̄e(t1), κ(t1), β(t1)} is known. The numerical integrator proposes values of
these quantities at the end of the time step, i.e. {Je(t2), B̄e(t2), κ(t2), β(t2)}. In addition to the necessary state
variables, the auxiliary variable εep is updated from εep(t1) to εep(t2).
Following the work in [36,48,51], it is possible to develop an implicit robust and strongly objective numerical

algorithm for integrating the evolution equations by introducing the relative deformation gradient, Fr, which
is introduced as

Fr = F(t2)F(t1)
−1. (42)

Also, the relative dilatation is defined by Jr = detFr, and F̄r = J−1/3
r Fr is the unimodular part of Fr.

In the following, the notation ‘(t2)’ is omitted in most cases for clarity. Hence, the values of state variables
at the end of the time step, i.e. t = t2, are intended, unless otherwise specified.
It can be shown that the deviatoric part of the evolution equation (4) becomes (cf. [46])

˙̄B′
e = LB̄e + B̄eLT − 2

3
(D : B̄e)I − 2

3
(D : I)B̄′

e − Γ B̄′
e. (43)

Then, the exact solution of (3) is given by

Je = Jr Je(t1). (44)

Furthermore, it is convenient to introduce the elastic trial solutions B̄∗
e and B̄

′∗
e by the expressions

B̄∗
e = F̄rB̄e(t1)F̄T

r , B̄′∗
e = B̄∗

e − 1

3
(B̄∗

e : I)I, (45.1,2)

with B̄′∗
e satisfying the evolution equation

˙̄B′∗
e = LB̄∗

e + B̄∗
eL

T − 2

3
(D : B̄∗

e)I − 2

3
(D : I)B̄′∗

e . (46)

The evolution in (43) is then approximated by

˙̄B′
e = ˙̄B′∗

e − Γ B̄′
e, (47)

which guarantees an exact solution for elastic response (Γ = 0).
Using a backward Euler approximation of the derivative, the solution of (47) is written in the implicit form

B̄′
e = λB̄′∗

e , (48)

http://creativecommons.org/licenses/by/4.0/
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with

λ = 1

1 + ΔΓ
, ΔΓ = ΔtΓ, (49.1,2)

where Γ = Γ (t2) [20,21]. Then with the help of (19.2) and (48), it follows that

γe = λγ ∗
e , γ ∗

e = 1

2

√
3

2
B̄′∗
e : B̄′∗

e . (50)

The evolution equation for κ in (26) is discretized, and an implicit estimate of κ at the end of the time step
yields

κ = κ(t1) + m1ΔΓ κs + m2Δtκa
1 + m1ΔΓ + m2Δt

. (51)

Also, discretization of (27) and assuming implicit integration yields

β = β(t1) + m3βsUΔΓ

1 + m3ΔΓ + m4Δt
, (52)

where

U = 27 det(B̄′∗
e )

16γ ∗3
e

. (53)

Then, insertion of

Γ = a1

〈
1 − RZ

γe

〉
(54)

into Eq. (49.2) gives a nonlinear function that implicitly defines ΔΓ , which can be solved by an iterative
solution procedure. In the solution procedure, trial values of the state variables are first computed, i.e. values
assuming elastic deformation (ΔΓ = 0). In addition to B̄′∗

e , the other trial values are evaluated according to

κ∗ = κ(t1) + Δtm2κa

1 + Δtm2
, (55)

β∗ = β(t1)

1 + m4Δt
, (56)

Z∗ = (
1 + β∗U

)
κ∗. (57)

Hence, ΔΓ and the updated values of the hardening parameters κ and β are determined by the numerical
scheme below:

– Evaluate trials: B̄′∗
e , γ

∗
e (B̄′∗

e ), κ∗, β∗, Z∗
– If γ ∗

e ≤ RZ∗ then
– ΔΓ = 0, B̄′

e(t2) = B̄′∗
e , κ(t2) = κ∗, β(t2) = β∗

– Else
– While |δ(ΔΓ )| > tolerance
– Evaluate κ , β, Z for ΔΓI

– fΓ = ΔΓI − a1Δt

(
1 − RZ

λγ ∗
e

)

–
d fΓ

d(ΔΓ )
= 1 + a1Δt R

λγ ∗
e

(
dZ

d(ΔΓ )
+ λZ

)

– δ(ΔΓ ) = − fΓ /(d fΓ /d(ΔΓ ))
– ΔΓI+1 = ΔΓI + δ(ΔΓ )
– End
– End



214 M. Kroon et al.

In the scheme above,

dZ

d(ΔΓ )
= (1 + βU )

dκ

d(ΔΓ )
+ κU

dβ

d(ΔΓ )
, (58)

where

dκ

d(ΔΓ )
= m1(κs − κ)

1 + m1ΔΓ + m2Δt
, (59)

dβ

d(ΔΓ )
= m3(βsU − β)

1 + m3ΔΓ + m4Δt
. (60)

Once ΔΓ has been determined, B̄′
e(t2) is determined using (48). Finally, B̄e(t2) is expressed in the form

B̄e(t2) = B̄′
e(t2) + α1

3
I, (61)

where α1 is determined by the condition detB̄e(t2) = 1, which is a cubic equation with a closed form solution
[47].
The Kirchhoff stress is given by (20) and is a function of Fr and θ . The variation of τ is given by

δτ = (∂τ/∂Fr) : δFr + ∂τ

∂θ
δθ = [

(∂τ/∂Fr)FT
r

] : (
δFrF−1

r

) + ∂τ

∂θ
δθ, (62)

see Jabareen (cf. [22]). The consistent tangent moduli, C and c, can then be identified as

C = 1

Je
(∂τ/∂Fr)FT

r , c = 1

Je

∂τ

∂θ
= ∂T

∂θ
. (63)

For the mechanical part, the stiffness

C = 1

Je

[
K (1 − f2(θ))I ⊗ ∂ Je

∂Fr
+ μ

(
∂B̄′

e/∂Fr
)]

FT
r (64)

needs to be determined. Recalling that the current value of Je is given by Je = Je(t1)Jr, it follows that

∂ Je
∂Fr

= Je(t1)
∂ Jr
∂Fr

= Je(t1)JrF−T
r = JeF−T

r . (65)

The second derivative needed is given by

(
∂B̄′

e/∂Fr
) = ∂

(
λB̄′∗

e

)
∂Fr

= −λ2B̄′∗
e ⊗ ∂(ΔΓ )

∂Fr
+ λ

(
∂B̄′∗

e /∂Fr
)
. (66)

Differentiation of (45.2) yields

(
∂B̄′∗

e /∂Fr
) = −2

3
B̄∗
e ⊗ F−T

r + 1

J 2/3r

∂
(
FrB̄e(t1)FT

r

)
/∂Fr, (67)

where

∂
(
FrB̄e(t1)FT

r

)
/∂Fr = (I � Fr + Fr ⊕ I) B̄e(t1), (68)

and the notation (Q � R)i jkl = Qik R jl and (Q ⊕ R)i jkl = Qil R jk has been introduced for convenience.
Differentiation of (49.2) and some restructuring then yields

∂(ΔΓ )

∂Fr
= N2 : (

∂B̄′∗
e /∂Fr

)
, (69)
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where N2 is defined by the entities

ζ1 = a1Δt RZ

λγ ∗
e

, ζ2 = m1(κs − κ)

1 + m1ΔΓ + m2Δt
, (70)

ζ3 = m3(βsU − β)

1 + m3ΔΓ + m4Δt
, ζ4 = m3βsΔΓ

1 + m3ΔΓ + m4Δt
, (71)

ζ5 = Z + ζ1 [λZ + (1 + βU )ζ2 + κUζ3] , (72)

N1 = U

(
B̄′∗−1
e − 9

8γ ∗2
e

B̄′∗
e

)
, (73)

N2 = ζ1

ζ5

(
3Z

8γ ∗2
e

B̄′∗
e − κ(β +Uζ4)N1

)
. (74)

It then follows that

(
∂B̄′

e/∂Fr
) = λ

∂B̄′∗
e

∂Fr
− λ2B̄′∗

e ⊗ N2 : (
∂B̄′∗

e /∂Fr
)

= (
λI − λ2B̄′∗

e ⊗ N2
) : (

∂B̄′∗
e /∂Fr

) = H : (
∂B̄′∗

e /∂Fr
)
, (75)

where I is the fourth-order unit tensor. Furthermore, a fourth-order tensor D is defined as

D = (
∂B̄′∗

e /∂Fr
)
FT
r

= I � B̄∗
e + B̄∗

e ⊕ I − 2

3

(
I ⊗ B̄∗

e + B̄∗
e ⊗ I

) + 2

9

(
B̄∗
e : I) I ⊗ I. (76)

Finally, the total mechanical stiffness is given by

C = K (1 − f2(θ))I ⊗ I + μ

Je
H : D. (77)

With regard to the derivation of c, it is emphasized that the thermomechanical analysis is coupled, and a number
of model parameters depend on the temperature, θ , i.e. K = K (θ), μ = μ(θ), etc. Thus, differentiation of the
stress components in (16) with respect to θ yields

c = ∂T
∂θ

= dK

dθ

(
1 − 1

Je
− f2

)
I − K

d f2
dθ

I + 1

Je

dμ

dθ
B̄′
e + μ

Je

dλ

dθ
B̄′∗
e =

=
[
dK

dθ

(
1 − 1

Je
− f2

)
− K

d f2
dθ

]
I + 1

Je

[
λ
dμ

dθ
+ μ

dλ

dθ

]
B̄′∗
e . (78)

Appendix B: Heat source

Goldak et al. [15] proposed a 3D welding heat source with a pseudo-ellipsoidal shape of the form

rG = Pw · rG12(X1, X2) · rG3(X3, t), (79)

where Pw is the electric power input, and the functions rG12(X1, X2) and rG3(X3, t) take on the forms

rG12(X1, X2) = 6

πab
exp

[
−3

(
X2
1

a2
+ X2

2

b2

)]
,

− ∞ < X1 < ∞, −∞ < X2 < 0, (80)

and

rG3(X3, t) =

⎧⎪⎪⎨
⎪⎪⎩

2
√
3√

π(cf + ca)
exp

[
−3 (X3 + vt)2

c2f

]
, X3 + vt ≤ 0,

2
√
3√

π(cf + ca)
exp

[
−3 (X3 + vt)2

c2a

]
, X3 + vt > 0.

(81)
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Above, v is the speed of the heat source that is moving in the (negative) X3 direction, t denotes time, and a,
b, cf , and ca determine the shape of the heat source.
The total power input into the X1-X2-plane (for a given value of X3 and t) may then be computed as

r̄G3(X3, t) = PwrG3(X3, t)
∫ 0

X2=−∞

∫ ∞

X1=−∞
rG12(X1, X2)dX1dX2 =

= PwrG3(X3, t). (82)

In the present 2D analysis, the heat source is located within a half-circle with radius lw, as indicated in Fig. 10.
Within this half-circle, the intensity is taken to be constant and to be given by

rG2D(t) = r̄G3(X30, t)

πl2w/2
= 2Pw

πl2w
rG3(X30, t), (83)

where X30 is a position where initially (i.e. at t = 0) the intensity is very low.
With regard to the initial temperature of the weld pool, it is noted that raising the temperature of the weld

pools in the domains �1 and �2 from room temperature, Trm, to the weld pool temperature, Twp, requires an
energy input of

E∗
in = ρ0A

∗Hein, (84)

where A∗ is the area of the preheated domain that was defined in Sect. 5, H is the thickness of the 2D model,
and

ein =
∫ Twp

Tr
cp(T )dT . (85)

The energy supplied from the heat source to the weld pool during the subsequent, transient simulation is

Etr = HPw

∫ ∞

t=−∞
rG3(X30, t) dt = H

Pw
v

. (86)

Since the total energy input in the simulation must correspond to the energy input in the experiments, the
amplitude of the heat source is decreased to account for the initial energy of the weld pool. Hence, energy
considerations require that

Etr0 = E∗
in + Etr, (87)

where Etr0 = Pw0H/v is the reference heat supplied by the heat source during a transient simulation with no
preheating of the weld pool. From (87), it may be deduced that the power amplitude, Pw, must take the form

Pw = Pw0 − veinρ0A
∗. (88)
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