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Abstract The paper is devoted to simply supported beams under three-point bending. Their mechanical
properties symmetrically vary in the depth direction. The individual shear deformation theory for beams of
such features is proposed. Based on the principle of stationary total potential energy the differential equations
of equilibrium are obtained. The system of the equations is analytically solved, and the shear coefficients and
deflections of example beams are calculated. The solution is compared with other analytical results obtained
with the use of another deformation function.Moreover, the bending problemof these beams is also numerically
studied using the finite element method. Results of analytical and numerical studies are presented in Figures
and Tables.

1 Introduction

The shearing effect occurring in bent constructions was noticed already in the nineteenth century, and studied
in detail for homogeneous and layered constructions in the twentieth century. Assumption of a proper theory
of deformation of the straight line normal to the neutral surface makes a basis for analytical modeling of
heterogeneous structures, especially those with mechanical properties varying in the wall thickness direction.

Reddy [1] developed a theoretical model of bending of functionally graded rectangular plates considering
the shearing effect. Detailed analysis is made taking into account the first and third order shear deformation
theory. Zenkour [2] presented a generalized shear deformation theory and its application to the analysis of
functionally graded rectangular plates subjected to uniformly distributed load. The transverse shear effect is
studied in detail. Aydogdu [3] proposed a new shear deformation theory for laminated composite plates. This
theory exactly meets the conditions for zeroing shear stresses on the upper and lower surface of the plate.
Reddy [4] presented a reformulation of the classical and shear deformation beam and plate theories taking into
account the nonlocal differential constitutive relations of Eringen and the von Kármán nonlinear strains. The
equilibrium equations of the nonlocal beam theories and the classical and first-order shear deformation theories
of plates are formulated. Carrera et al. [5] described in detail classic and advanced theories, including: the basics
of the theory of deformable bodies, Euler–Bernoulli and Timoshenko theories of beams, non-linear theories,
e.g. the parabolic, cubic, quartic, and n-order beam theories, as well as modeling of beamsmade of functionally
graded materials. Meiche et al. [6] presented a new hyperbolic shear deformation theory on the example of
buckling and free vibration analysis of thick functionally graded sandwich plates. This theory is more perfect
in relation to the simple shear deformation theories of Mindlin and Reissner. Moreover, it provides parabolic
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variation of the transverse shear stresses across the thickness, and also their zeroing on external surfaces. Thai
and Vo [7] developed various higher-order shear deformation theories for testing bending and free vibration of
functionally graded beams. These theories account for higher-order variation of transverse shear strain in the
depth direction of the beam, and satisfy the stress-free boundary conditions on the upper and lower surfaces
of the beam. Thai and Vo [8] developed a new sinusoidal shear deformation theory for functionally graded
rectangular plates. This theory describes the sinusoidal distribution of the transverse shear stress and meets
the conditions for zeroing shear stress on the outer surfaces of the plate. Detailed tests concerning bending,
buckling, and vibration of these plates have been performed.

Akgöz and Civalek [9] presented a new higher-order shear deformation analytical beammodel with consid-
eration of the strain gradient elasticity theory. This model describes the microstructural and shear deformation
effects without the need of shear correction factors. The problems of static bending and free vibration of
simply supported microbeams are investigated. Grover et al. [10] proposed a new inverse hyperbolic shear
deformation theory of laminated composite and sandwich plates. This theory is formulated based on the shear
strain shape function and validated by numerical studies of the bending and buckling problem of rectangular
plates. Sahoo and Singh [11] proposed a new inverse trigonometric zig-zag theory for laminated composite and
sandwich plates. This theory ensures the continuity conditions at the layer interfaces and zeroing shear stress
on the outer surfaces of the plate. The effective finite element model is developed for numerical studies of static
problems of these plates. Xiang [12] improved the n-order shear deformation theory with consideration of the
condition for zeroing shear stress on the outer surfaces of the functionally graded beam. The free vibration
problems of this beam are analyzed. Kumar and Chakraverty [13] proposed four new inverse trigonometric
shear deformation theories allowing to study the free vibration of isotropic thick rectangular plates. The the-
ories ensure meeting the transverse stress boundary conditions on both plate surfaces. A test of convergence
and validation was carried out with the cases from the available literature. Mahi et al. [14] presented a new
hyperbolic shear deformation theory describing bending and free vibration of isotropic, functionally graded,
sandwich and laminated composite plates. The approach does not require a shear correction factor. Based on
Hamilton’s principle the energy functional of the system was obtained. The accuracy of the method was shown
by comparisons with the numerical solution of the problem.

Darijani and Shahdadi [15] proposed a new deformation plate theory with consideration of the shear defor-
mations. The transverse shear stresses vary across the plate thickness according to a power-law relationship.
The upper and bottom surfaces of the plate are free of shear stress. The governing equations and boundary
conditions of the plate are derived with the use of Hamilton’s principle. The results are comparable to those
obtained using higher-order theories. Lezgy-Nazargah [16] considered the thermo-mechanical phenomena in
the beams made of a functionally graded material. A refined high order theory was used for this purpose, while
the in-plane displacement field was depicted by polynomial and exponential expressions. The numerical results
so obtained were compared with the solutions of other authors. Sobhy [17] used a new four-variable shear
deformation plate theory to depict vibration and buckling of functionally graded sandwich plates supported
by elastic foundations. The equations of motion were derived based on Hamilton’s principle. The validity of
the theory was verified by comparison of the obtained results with the previous ones. Sarangan and Singh
[18] developed several new shear deformation theories applicable to analyzing the static, buckling, and free
vibration behaviour of laminated composite and sandwich plates. The theories ensure zeroing of the transverse
shear stresses at the plate’s outer surfaces. The accuracy of the models was positively verified by comparison
with the results of 3D elasticity solutions and existing theories. Chen et al. [19] investigated the free and
forced vibration of functionally graded porous beams. The Timoshenko beam theory with consideration of the
effect of transverse shear strain allowed to derive the equation of motion. The approach enabled the effective
calculation of natural frequencies and transient dynamic deflections for the porous beams subjected to vari-
ous loading conditions. Singh and Singh [20] dealt with laminated and three dimensional braided composite
plates. The authors developed two new shear deformation theories for this purpose. The governing differential
equations were formulated based on the virtual work principle. The results obtained with the use of the finite
element method confirmed good effectiveness of both proposed theories. Shi et al. [21] formulated a new shear
deformation theory applicable for free vibration and buckling analysis of laminated composite plates. The
theory ensures disappearance of the shear stresses at the surfaces of the plates. Moreover, the shear correction
factors are not required. The solutions available in the literature confirmed high accuracy and efficiency of
the new method. Thai et al. [22] presented a simple beam theory used for the analysis of static bending and
free vibration of isotropic nanobeams. The governing equation was derived based on the equilibrium equa-
tions of elasticity theory. Analytical solutions were obtained for nonlocal beams, imposing various types of
boundary conditions. Verification has shown good accuracy and effectiveness of the theory. Pei et al. [23]
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worked out a modified higher-order theory of functionally graded beams using the principle of virtual work.
The theory draws a distinction between the centroid and the neutral point of the cross section. In addition, the
relation with the traditional higher-order theory is explained, which simplifies a comparative study on various
higher-order beam theories. Kumar et al. [24] analyzed functionally graded material plates using two own new
higher order transverse shear deformation theories. The energy principle was used to derive the governing
differential equation of the plate. The obtained results of deflection and stresses were compared with other
published data. The effects of various load types, span to thickness ratio, and grading index were investigated.
Magnucki and Lewiński [25] considered simply supported beams with symmetrically varying mechanical
properties in the depth direction, subjected to various load types—from uniformly distributed to concentrated
one. The deformation of a beam planar cross section after bending was determined based on an own nonlinear
“polynomial” hypothesis. The differential equation of equilibrium was formulated based on the definitions of
bending moment and shear transverse force and then solved for several beam examples. Magnucki et al. [26]
proposed a new formulation of the functions determining the variation of mechanical properties of a beam in
the depth direction. The approach consists in a generalization enabling to describe homogeneous, nonlinearly
variable and sandwich structures with the use of an universal analytical model. The equations of motion were
derived based on Hamilton’s principle and analytically solved. The results were verified by FEM computa-
tion. Katili et al. [27] proposed a higher-order two-node beam element developed to solve the static and free
vibration problems. The Timoshenko beam theory was modified with a view to proper consideration of the
transverse shear effect. Effectiveness of the approach was verified by comparison with other data published in
the literature. Lezgy-Nazargah [28] developed a global–local shear deformation theory accurately predicting
the static and dynamic behaviour of thin and thick layered curved beams. Variation of the shear stress in the
beam thickness direction is approximated by a parabolic function. Zeroing of the shear stress on the beam
boundary surfaces is ensured without the need for a shear correction coefficient. The results obtained from
static and free vibration computations are positively validated by the ones calculated with FEM.

The main goal of the present paper consists in improving the shear deformation theory of bending in case
of symmetrically varying mechanical properties of the material in the depth direction of the cross section.
The individual nonlinear function of deformation of the planar cross section is proposed. The improved shear
deformation theory is applied to the exemplary beams, the analytical model of which is developed. The
analytical model of these beams is developed. The analytical results are compared with those obtained by a
FEM numerical approach. The presented problem of bending beams with consideration of the shear effect is
a continuation of the research submitted by Magnucki and Lewinski [25] and Magnucki et al. [26].

2 Analytical modelling of the beam bending with consideration of the shear effect

The subject of the study is a simply supported beam of symmetrically varying mechanical properties in the
depth direction. The beam of length L and rectangular cross section of depth h and width b is subjected to
three-point bending and situated in the Cartesian coordinate system xyz (Fig. 1).

Taking into account the papers byMagnucki and Lewinski [25] andMagnucki et al. [26], the symmetrically
varying Young’s modulus in the depth direction of the beam is assumed in the following form:

E (η) = E1 fe (η) , (1)

where the dimensionless function of the symmetrically varying Young’s modulus is

fe (η) = e0 + (1 − e0)
(
8η2 − 16η4

)ke
, (2)

Fig. 1 Scheme of the beam under three-point bending
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and e0 = E0/E1—dimensionless parameter, ke—exponent (positive real number), η = y/h—dimensionless
coordinate.

An example graph of the dimensionless function of the symmetrically varying Young’s modulus in the
depth direction of the beam is shown in Fig. 2.

The deformation of a planar cross section after bending of the beam is shown in Fig. 3. The upper and lower
surfaces of the beam are free from shear stresses, therefore, the line depicting the shape of this deformation is
perpendicular to these surfaces.

The longitudinal displacement according to Fig. 3 takes the following form:

u (x, η) = −h

[
η
dv

dx
− fd (η)ψ (x)

]
, (3)

where ψ (x) = u1 (x)/h—dimensionless longitudinal displacement of the points located on the upper and
lower surfaces, fd (η)—dimensionless function of the deformation (DFD) of a planar cross section of the
beam.

Fig. 2 Example graph of the dimensionless function (2) for e0 = 1/4, ke = 3

Fig. 3 Scheme of the deformation of a planar cross section of the beam
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The conditions for the DFD fd (η) according to Fig. 3 are as follows:

fd

(
∓1

2

)
= ∓1, and

d fd
dη

∣
∣∣∣∓ 1

2

= 0. (4)

Therefore, the strains are

εx (x, η) = ∂u

∂x
= −h

[
η
d2v

dx2
− fd (η)

dψ

dx

]
, (5.1)

γxy (x, η) = ∂u

∂y
+ dv

dx
= d fd

dη
ψ (x) , (5.2)

and consequently the stresses in accordance with Hooke’s law are

σx (x, η) = −E1h

[
η
d2v

dx2
− fd (η)

dψ

dx

]
fe (η) , (6.1)

τxy (x, η) = E1

2 (1 + ν)

d fd
dη

fe (η)ψ (x) . (6.2)

Taking into account the paper [18] the Poisson’s ratio value ν of the beam is assumed to be constant. The elastic
strain energy of the beam with consideration of the expressions (5.1), (5.2), (6.1), (6.2) and after integration
in the depth direction is in the following form:

Uε = 1

2
E1bh

3

L∫

0

{

Cvv

(
d2v

dx2

)2

− 2Cvψ

d2v

dx2
dψ

dx
+ Cψψ

(
dψ

dx

)2

+ Cψ2

2 (1 + ν)

ψ2 (x)

h2

}

dx, (7)

where

Cvv =
1/2∫

−1/2

fe (η)η2dη, Cvψ =
1/2∫

−1/2

fd (η) fe (η)ηdη, Cψψ =
1/2∫

−1/2

f 2d (η) fe (η)dη,

Cψ2 =
1/2∫

−1/2

(
d fd
dη

)2

fe (η)dη.

Therefore, the first variation of the elastic strain energy is

δUε = E1bh
3

L∫

0

{[
Cvv

d4v

dx4
− Cvψ

d3ψ

dx3

]
δv +

[
Cvψ

d3v

dx3
− Cψψ

d2ψ

dx2
+ Cψ2

2 (1 + ν)

ψ (x)

h2

]
δψ

}
dx . (8)

The shear effect arising in the beam, especially in case of three-point bending, is significant (Fig. 4.)
The work of the load according to Fig. 4 and its first variation are as follows:

W =
L∫

0

T (x)
dv

dx
dx, δW = −

L∫

0

dT

dx
δvdx, (9)

where T (x)—shear force—transverse force.
Therefore, based on the principle of stationary total potential energy δ(Uε – W ) =0, the system of two

differential equations of equilibrium of the considered beam is obtained in the following form:

Cvv

d4v

dx4
− Cvψ

d3ψ

dx3
= − 1

E1bh3
dT

dx
, (10.1)
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Fig. 4 Scheme of the shear effect arising in the beam

Cvψ

d3v

dx3
− Cψψ

d2ψ

dx2
+ Cψ2

2 (1 + ν)

ψ (x)

h2
= 0. (10.2)

Taking into account the bending moment Mb (x) = ∫

A
yσx (x, y)dA and the expression (6.1), after simple

transformation one obtains the equation

Cvv

d2v

dx2
− Cvψ

dψ

dx
= −Mb (x)

E1bh3
. (11)

The differential equations of fourth order (10.1) and second order (11) are equivalent. Therefore, Eqs. (11)
and (10.2) are governing equilibrium equations of the bending beams with consideration of the shear effect.
This system, after simple transformation, is reduced to one differential equation in the following form:

d2ψ

dξ2
− (αλ)2 ψ (ξ) = − Cvψ

CvvCψψ − C2
vψ

λ2
T (ξ)

E1bh
, (12)

where: ξ = x/L—dimensionless coordinate,λ = L/h—relative lengthof thebeam,α =
√

1
2(1+ν)

CvvCψ2

CvvCψψ−C2
vψ

-

dimensionless coefficient.
The shear-transverse force of the three-point bending is as follows:

T (ξ) =
⎧
⎨

⎩

F/2 for 0 ≤ ξ < 1/2
0 for ξ = 0
−F/2 for 1/2 < ξ ≤ 1

. (13)

The solution of the Eq. (12) for the first interval of the shear-transverse force (0 ≤ ξ < 1/2) is in the following
form:

ψ (ξ) = C1 sinh (αλξ) + C2 cosh (αλξ) + (1 + ν)
Cvψ

CvvCψ2

F

E1bh
, (14)

where the integration constants: C1 = 0 result from the condition dψ/dξ |0 = 0, and C2 =
− (1+ν)

cosh(αλ/2)
Cvψ

CvvCψ2

F
E1bh

results from ψ (1/2) = 0.
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Thus, the dimensionless longitudinal displacement of the upper and lower surfaces of the beam for the first
interval (0 ≤ ξ < 1/2) is as follows:

ψ (ξ) = (1 + ν)

{
1 − cosh (αλξ)

cosh (αλ/2)

}
Cvψ

CvvCψ2

F

E1bh
, (15)

and for the second interval (1/2 < ξ ≤ 1)

ψ (ξ) = − (1 + ν)

{
1 − cosh [αλ (1 − ξ)]

cosh (αλ/2)

}
Cvψ

CvvCψ2

F

E1bh
. (16)

The DFD of the planar cross section of the beams or DFD of the straight line normal to the neutral surface
of the plates and shells are a basis for consideration of the shear effect. The DFD for bending beams with
symmetrically varying mechanical properties in the depth direction of the cross section is assumed in the
following form:

fd (η) = 1

C0

∫ (
1 − 4η2

)ks

fe (η)
dη, (17)

where C0 =
1/2∫

0

(
1−4η2

)ks

fe(η)
dη—coefficient, ks—unknown exponent (positive real number).

This function satisfies the conditions (4). The analytical model of the beam bending is formulated with
consideration of the shear effect pertains to three-point bending.

3 Analytical study of bending of the beams with symmetrically varying mechanical properties

The bending moment for the first interval (0 ≤ ξ < 1/2) is Mb = ξFL/2, therefore, Eq. (11) after integration
takes the following form:

Cvv

dṽ

dξ
= C3 + Cvψψ (ξ) − 1

4
ξ2λ2

F

E1bh
, (18)

where ṽ (ξ) = v(ξ)
L —relative deflection, C3 = 1

16λ
2 F
E1bh

—integration constant calculated from the condition
d ṽ/dξ |1/2 = 0.

Equation (18) after integration is as follows:

ṽ (ξ) =
{

C4 + (1 + ν)

[
ξ − sinh (αλξ)

αλ cosh (αλ/2)

] C2
vψ

CvvCψ2
+ 1

16

(
ξ − 4

3
ξ3

)
λ2

}
1

Cvv

F

E1bh
, (19)

where C4 = 0—integration constant calculated from the condition ṽ (0) = 0.
Consequently, the maximum relative deflection of the beam is

ṽmax = ṽ

(
1

2

)
=

(
1 + Cs

λ2

)
λ2

48Cvv

F

E1bh
, (20)

where the dimensionless maximum deflection is

v̄max =
(
1 + Cs

λ2

)
λ2

48Cvv

, (21)

and the shear coefficient is

Cs = 24 (1 + ν)max
ks

[
1 − 2

αλ
tanh

(
1

2
αλ

)] C2
vψ

CvvCψ2
. (22)

The shear stress (6.2) with consideration of the functions (15) and (17) for the first interval (0 ≤ ξ < 1/2) is
as follows:

τxy (ξ, η) = 1

2C0

(
1 − 4η2

)ks
[
1 − cosh (αλξ)

cosh (αλ/2)

]
Cvψ

CvvCψ2

F

bh
. (23)
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Therefore, the dimensionless shear stress for ξ = 0 is

τ̄xy (0, η) = 1

2C0

(
1 − 4η2

)ks cosh (αλ/2) − 1

cosh (αλ/2)

Cvψ

CvvCψ2
. (24)

The shear-transverse force T (ξ) = ∫

A
τxy (ξ, η)d A with consideration of the expressions (6.2), (15) and (16)

after simple transformation takes the form

T (ξ) =
⎧
⎨

⎩

1
2

{
1 − cosh(αλξ)

cosh(αλ/2)

}
CvψCψ1
CvvCψ2

F for 0 ≤ ξ ≤ 1
2

− 1
2

{
1 − cosh[αλ(1−ξ)]

cosh(αλ/2)

}
CvψCψ1
CvvCψ2

F for 1
2 ≤ ξ ≤ 1

, (25)

where Cψ1 = 1
C0

1/2∫

−1/2

(
1 − 4η2

)ksdη.

Example calculations are carried out for nine selected beams with symmetrically varying Young’s modulus
(Fig. 5a for e0 = 1/3, Fig. 5b for e0 = 1/5, Fig. 5c for e0 = 1/50).

The results of the calculations, i.e. the values of the exponent ks of the deformation function (17), the shear
coefficient Cs (22), and the dimensionless maximum deflection v̄max (21), for nine selected beams of relative
length λ = 10 and Poisson’s ratio ν = 0.3, are specified in Tables 1, 2, and 3.

The graphs of the dimensionless shear stresses (24) in the depth direction of the selected beams (B-1-1,
B-2-2, B-3-3) are shown in Fig. 6.

The shapes of the deformations of planar cross sections—the function (17) of the selected beams are shown
in Fig. 7.

The graph of the shear-transverse force (25) for the example beam B-2-2 is shown in Fig. 8. The shear
force diagrams for the other eight beams are similar to the above diagram (Fig. 8).

It may be noticed that in the particular case of a homogeneous beam e0 =1, and in the result the exponent
ks =1, shear coefficient Cs =3.085, dimensionless maximum deflection v̄max = 25.771, and maximum
dimensionless shear stress (24) τ̄max = 0.75.

4 Comparative analysis—analytical approach

Taking into account the paper by Magnucki and Lewinski [25] similar analytical studies are carried out for
comparative purposes for example beams, with consideration of the deformation function developed in this
paper in the form

fd (η) = 1

1 − β

[
1 − β

(
3η − 4η3

)ksc] (
3η − 4η3

)
, (26)

where: β =1/(1+ksc)—parameter, ksc—even exponent (2 ≤ ksc)—natural number.

Table 1 The results of calculations for the beams of dimensionless parameter e0 = 1/3

Selected beams B-1-1 B-1-2 B-1-3

ks 0.70811 0.55472 0.69615
Cs 5.3526 4.4789 3.6673
v̄max 31.073 45.244 61.840

Table 2 The results of calculations for the beams of dimensionless parameter e0 = 1/5

Selected beams B-2-1 B-2-2 B-2-3

ks 0.64484 0.41637 0.55085
Cs 8.9884 6.4581 4.2698
v̄max 32.732 53.778 86.056
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Consequently, the derivative of the function is

d fd
dη

= 3

1 − β

[
1 − (

3η − 4η3
)ksc] (

1 − 4η2
)
. (27)

The maximum relative deflection of the beam with consideration of the deformation function (26) is consistent
with the expression (20), therefore

ṽ(c)
max = ṽ

(
1

2

)
= v̄(c)

max
F

E1bh
, (28)

B-1-1 B-1-2 B-1-3

ke=1 ke=10 ke=100 

B-2-1 B-2-2 B-2-3

ke=1 ke=10 ke=100 

B-3-1 B-3-2 B-3-3

ke=1 ke=10 ke=100 

Fig. 5 Graphs of the dimensionless function (2) for selected beams of a e0 = 1/3 (beams B-1-x), b e0 = 1/5 (beams B-2-x),
c e0 = 1/50 (beams B-3-x)
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Table 3 The results of calculations for the beams of dimensionless parameter e0 = 1/50

Selected beams B-3-1 B-3-2 B-3-3

ks 0.49310 0.10373 0.08527
Cs 23.007 39.130 18.279
v̄max 39.629 91.233 202.442

B-1-1 B-2-2 B-3-3

0. 596max =τ 0. 726max =τ 0. 635max =τ

Fig. 6 Graphs of the dimensionless shear stresses (24) in the depth direction of the selected beams

B-1-1 B-2-2 B-3-3

ks=0.70811 ks=0.41637 ks=0.08527

Fig. 7 Graphs of the deformations of planar cross sections of the selected beams

Fig. 8 The graph of the shear-transverse force (25) for the example beam B-2-2

where the dimensionless maximum deflection is

v̄(c)
max =

(
1 + Csc

λ2

)
λ2

48Cvv

, (29)

and the shear coefficient is

Csc = 24 (1 + ν)max
ksc

[
1 − 2

αλ
tanh

(
1

2
αλ

)] C2
vψ

CvvCψ2
. (30)
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Table 4 The results of calculations for the beams of dimensionless parameter e0 = 1/3

Selected beams B-1-1 B-1-2 B-1-3

ksc 4 112 1500
Csc 5.2343 4.7728 3.6442
v̄

(c)
max 31.038 45.232 61.827

Table 5 The results of calculations for the beams of dimensionless parameter e0 = 1/5

Selected beams B-2-1 B-2-2 B-2-3

ksc 2 46 1500
Csc 6.8201 6.4042 4.2078
v̄

(c)
max 32.681 53.751 86.005

Table 6 The results of calculations for the beams of dimensionless parameter e0 = 1/50

Selected beams B-3-1 B-3-2 B-3-3

ksc 2 6 200
Csc 13.6378 38.004 16.923
v̄

(c)
max 36.610 90.495 200.121

The shear stress (6.2) with consideration of the functions (15) and (27) for the first interval (0 ≤ ξ < 1/2) is
as follows:

τ (c)
xy (ξ, η) = 3

2 (1 − β)
fe (η)

[
1 − (

3η − 4η3
)ksc] (

1 − 4η2
) [

1 − cosh (αλξ)

cosh (αλ/2)

]
Cvψ

CvvCψ2

F

bh
. (31)

Therefore, the dimensionless shear stress for ξ = 0 reads

τ̄ (c)
xy (0, η) = 3

2 (1 − β)
fe (η)

[
1 − (

3η − 4η3
)ksc] (

1 − 4η2
) cosh (αλ/2) − 1

cosh (αλ/2)

Cvψ

CvvCψ2
. (32)

The results of the calculations, i.e. the values of the exponent ksc of the deformation function (26), the shear
coefficient Csc (30), and the dimensionless maximum deflection v̄max (29), for nine selected beams of relative
length λ = 10 and Poisson’s ratio ν = 0.3, are specified in Tables 4, 5, and 6.

The graphs of the dimensionless shear stresses (32) in the depth direction of the selected beams (B-1-1,
B-2-2, B-3-3) are shown in Fig. 9.

Comparison of the dimensionless values of themaximumdeflection of both series of the results (Tables 1, 2,
3, 4, 5, 6) gives evidence of their perfect compliance (the differences below 1%), except for the case of the
beam B-3-1 (8.2%). The difference between the versions B-1-1, B-2-1, and B-3-1 is due to the fact that the

B-1-1 B-2-2 B-3-3

Fig. 9 Graphs of the dimensionless shear stresses (32) in the depth direction of the selected beams
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Young’s modulus of the middle part of B-3-1 is very small, and, in consequence, the deformation function (26)
does not represent the beam behaviour correctly. This is the case since the value ksc must not be less than 2.

What concerns the shear stresses, their plots (Figs. 6 vs 9) differ significantly. This allows to conclude that
the function (26) does not depict the shear stresses properly.

5 Numerical FEM study of bending of the beams with symmetrically varying mechanical properties

The beams are modelled using the SolidWorks software. The model of the B-2-2 beam is shown in Fig. 10.
Symmetry of the beams and their loads allow to take into account a quarter of the whole structure. The model
is divided into the layers distinguished by different Young’s modulus values. In case of the B-2-2 beam its
mechanical properties in the relatively large middle part remain unchanged. Young’s modulus significantly
varies only in the parts located in the vicinity of the beam’s outer surfaces. Therefore, ten relatively thin layers
are just there located, each of them having different Young’s moduli.

The B-2-2 model is composed of over 5 million 3D tetrahedral finite elements with 4 Jacobian points.
The number of the nodes reaches nearly 7 million. Additionally, a finer mesh was used with a view to find
whether the computation accuracy is sufficient. The results so obtained were equal to the primary ones with
the accuracy of five significant figures. These numbers of the finite elements and nodes are smaller for the
other eight beams. A part of the B-2-2 meshes is shown in Fig. 10. The mesh being coarse in the middle part
becomes much finer as it approaches the surfaces.

The beam is located in the Cartesian coordinate system, the origin of which is situated at the beginning of
the beam neutral axis. The x-axis coincides with the neutral axis, the y-axis points down, the z-axis is normal
to the longitudinal middle plane of the beam.

The following boundary conditions are imposed, with a view to ensure proper behaviour of one fourth of
the beam:

(i) The beam model is simply supported at its edge (i.e. for x =0), hence, the y displacements of the wall
coinciding with the yz —plane are zero.

(ii) The x displacements of themiddle surface of themodel, being perpendicular to the x-axis (i.e. for x = L/2)
and invisible in Fig. 10, are zero, too.

(iii) The z displacements of the model surface coinciding with the xy—plane (for z = 0, the longitudinal plane
of symmetry of the beam) are zero.

The model is loaded with the force 1/4F downward directed and applied to the surface mentioned in the
point 2 above (Fig. 11).

The FEM calculation has been carried out with the following data: E1 = 2 · 105 MPa, ν = 0.3, L = 1000
mm, b = 60 mm, h = 100 mm.

Fig. 10 The FEM-model of the quarter of the beam—variant B-2-2
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Fig. 11 The examples of the B-2-2 mesh (confined approximately to the part marked with the dotted circle in Fig. 10) a the
primary mesh; b the finer mesh for verification purposes

B-1-1 B-2-2 B-3-3

max 0.678τ = max 0.622τ = max 0.544τ =

Fig. 12 Graphs of FEM calculated dimensionless shear stresses in the depth direction of the selected beams

Table 7 Values of FEM calculated maximum dimensionless deflections of the beams for e0 = 1/3

Selected beams B-1-1 B-1-2 B-1-3

v̄
(FEM)
max 31.14 45.26 61.74

The dimensionless shear stresses shown in Fig. 12 for three variants of the beam are plotted along the AB
line (Fig. 10).

Maximum values of the shear stress (for η = 0) are very close to those of Fig. 6. The difference does not
exceed 2.5%. Moreover, the respective graphs are very similar to each other. It should be noticed that in the
FEM approach Young’s modulus takes discrete values, different in each of the layers, instead of the continuous
pattern depicted in Fig. 5a–c. This is the reason for these differences.

The values of the dimensionlessmaximumdeflection determined FEMnumerically for nine selected beams
of relative length λ = 10 and Poisson’s ratio ν = 0.3 are specified in Tables 7, 8, and 9.

The deflection results obtained analytically with consideration of the deformation function (17) (Tables 1,
2, 3) and numerically comply very well to each other. The maximum difference between them amounts to 1%
in the case of the B-3-3 beam.
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Table 8 Values of FEM calculated maximum dimensionless deflections of the beams for e0 = 1/5

Selected beams B-2-1 B-2-2 B-2-3

v̄
(FEM)
max 32.82 53.76 85.74

Table 9 Values of FEM calculated maximum dimensionless deflections of the beams for e0 = 1/50

Selected beams B-3-1 B-3-2 B-3-3

v̄
(FEM)
max 39.96 91.88 200.40

6 Conclusions

The presented analytical studies of bending beams with symmetrically variable mechanical properties in their
depth direction allow to formulate the following conclusions:

• The assumed function of symmetrically varying Young’s modulus (1) describes a family of beams with
the structures from homogeneous to approaching the three-layer.

• The assumed function of deformation of the planar cross section (DFD) of the beams in the form (17) is
original and generalizes the theory of beams. This function meets the condition of zeroing shear stresses
on the upper and lower surfaces of beams.

• This function may be used in analytical modeling of the plates and shells to describe the deformation of a
straight line normal to the neutral surface.

The proposed individual shear deformation beam theory formulated based on the function of deformation of
a planar cross section (17) accurately describes the distribution of shear stress in the depth direction of the
beam.

Comparison with the FEM numerical study gives evidence of good compliance of the results.
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