Skip to main content
Log in

Vibrations of a nonlocal thermoelastic cylinder with void

  • Original Paper
  • Published:
Acta Mechanica Aims and scope Submit manuscript

Abstract

The present work is devoted to the investigation of the free vibrations of a homogeneous isotropic nonlocal thermoelastic cylinder with void. Time-harmonic variations are used to reduce the governing partial differential equations to a system of ordinary differential equations. The frequency equation for the continuation of vibrations for the mode numbers in the considered cylinder is deduced in closed form for traction-free and isothermal/thermally insulated boundary conditions. To observe the free vibration, the frequency equation is further studied by using the numerical iteration method with the help of MATLAB software. The numerically simulated results from the analytical solutions are shown graphically for the natural frequency, thermoelastic damping and the frequency shift against mode numbers for the nonlocal as well as the local thermoelastic cylinders in the presence and absence of the void.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Edelen, D.G.B., Laws, N.: On the thermodynamics of systems with nonlocality. Arch. Ration. Mech. Anal. 43, 24–35 (1971)

    MathSciNet  MATH  Google Scholar 

  2. Edelen, D.G.B., Green, A.E., Laws, N.: Nonlocal continuum mechanics. Arch. Ration. Mech. Anal. 43, 36–44 (1971)

    MathSciNet  MATH  Google Scholar 

  3. Eringen, A.C., Edelen, D.G.B.: On nonlocal elasticity. Int. J. Eng. Sci. 10, 233–248 (1972)

    MathSciNet  MATH  Google Scholar 

  4. Craciun, B.: On nonlocal thermoelasticity. Ann. St. Univ. Ovidus Constanta. 5, 29–36 (1996)

    MathSciNet  MATH  Google Scholar 

  5. Altan, B.S.: Uniqueness in the linear theory of nonlocal elasticity. Bull. Tech. Univ. Istanb. 37, 373–385 (1984)

    MathSciNet  MATH  Google Scholar 

  6. McCay, B.M., Narsimhan, M.L.N.: Theory of nonlocal electromagnetic fluids. Arch. Mech. 33, 365–384 (1981)

    MathSciNet  MATH  Google Scholar 

  7. Narsimhan, M.L.N., McCay, B.M.: Dispersion of surface waves in nonlocal dielectric fluids. Arch. Mech. 33, 385–400 (1981)

    MATH  Google Scholar 

  8. Eringen, A.C.: Theory of nonlocal thermoelasticity. Int. J. Eng. Sci. 12, 1063–1077 (1974)

    Article  Google Scholar 

  9. Eringen, A.C.: Nonlocal polar elastic continua. Int. J. Eng. Sci. 10, 1–16 (1972)

    Article  MathSciNet  Google Scholar 

  10. Eringen, A.C.: Memory-dependent nonlocal electromagnetic elastic solids and superconductivity. J. Math. Phys. 32, 787–796 (1991)

    Article  MathSciNet  Google Scholar 

  11. Eringen, A.C.: Nonlocal Continuum Field Theories. Springer, New York (2002)

    MATH  Google Scholar 

  12. Eringen, A.C.: On Rayleigh surface waves with small wave lengths. Lett. Appl. Eng. Sci. 1, 11–17 (1973)

    Google Scholar 

  13. Narendra, S.: Spectral finite element and nonlocal continuum mechanics based formulation for torsional wave propagation in nano-rods. Finite Elem. Anal. Des. 62, 65–75 (2012)

    Article  MathSciNet  Google Scholar 

  14. Yu, Y.J., Tian, X.G., Liu, X.R.: Size-dependent generalized thermoelasticity using Eringen’s nonlocal model. Eur. J. Mech. A Solids 51, 96–106 (2015)

    Article  MathSciNet  Google Scholar 

  15. Bachher, M., Sarkar, N.: Nonlocal theory of thermoelastic materials with voids and fractional derivative heat transfer. Wave. Random Complex Med. 29, 595–613 (2019)

    Article  MathSciNet  Google Scholar 

  16. Sarkar, N., Tomar, S.K.: Plane waves in nonlocal thermoelastic solid with voids. J. Therm. Stress 42, 580–606 (2019)

    Article  Google Scholar 

  17. Das, N., Sarkar, N., Lahiri, A.: Reflection of plane waves from the stress-free isothermal and insulated boundaries of a nonlocal thermoelastic solid. Appl. Math. Model. 73, 526–544 (2019)

    Article  MathSciNet  Google Scholar 

  18. Sarkar, N., De, S., Sarkar, N.: Waves in nonlocal thermoelastic solids of type II. J. Therm. Stress. 42, 1153–1170 (2019)

    Article  Google Scholar 

  19. Das, N., Sarkar, N., Lahiri, A.: Reflection of plane waves in generalized thermoelasticity of type III with nonlocal effect. Math. Method. Appl. Sci. (2019). https://doi.org/10.1002/mma.5947

    Article  Google Scholar 

  20. Malagu, M., Benvenuti, E., Simone, A.: One-dimensional nonlocal elasticity for tensile single-walled carbon nano-tubes: a molecular structural mechanics characterization. Eur. J. Mech. A Solids 54, 160–170 (2015)

    Article  Google Scholar 

  21. Narendar, S., Mahapatra, D., Roy, G.S.: Prediction of nonlocal scaling parameter for armchair and zigzag single-walled carbon nano-tubes based on molecular structural mechanics, nonlocal elasticity and wave propagation. Int. J. Eng. Sci. 49, 509–522 (2011)

    Article  Google Scholar 

  22. Othman, M.I.A., Hilal, M.I.M.: Effect of initial stress and rotation on magneto-thermo-elastic material with voids and energy dissipation. Multidiscipline Model Mater. Struct. 13, 331–346 (2017)

    Article  Google Scholar 

  23. Iesan, D.: Some theorems in the theory of elastic materials with voids. J. Elasticity 15, 215–224 (1985)

    Article  MathSciNet  Google Scholar 

  24. Iesan, D.: A theory of thermoelastic materials with voids. Acta Mech. 60, 67–69 (1986)

    Article  Google Scholar 

  25. Puri, P., Cowin, S.C.: Plane waves in linear elastic material with voids. J. Elast. 15, 167–183 (1985)

    Article  Google Scholar 

  26. Ciarletta, M., Scalia, A.: On the nonlinear theory of non simple thermoelastic materials with voids. J. Appl. Math. Mech. 73, 67–75 (1993)

    MATH  Google Scholar 

  27. Dhaliwal, R.S., Wang, J.: A heat flux dependent theory of thermoelasticity materials with voids. Acta Mech. 110, 33–39 (1993)

    Article  Google Scholar 

  28. Cicco, S.D., Diaco, M.: A theory of thrmoelastic materials with voids without energy dissipation. J. Therm. Stresses 24, 433–455 (2002)

    Google Scholar 

  29. Tomar, S.K.: Wave propagation in a micropolar elastic plate with voids. J. Vib. Control 11, 849–863 (2005)

    Article  Google Scholar 

  30. Sharma, K., Kumar, P.: Propagation of plane waves and fundamental solution in thermoelastic medium with voids. J. Therm. Stress. 36, 94–111 (2013)

    Article  Google Scholar 

  31. Heyliger, P.R., Pan, E.: Free vibration of layered magnetoelectroelastic spheres. J. Acoust. Soc. Am. 140, 988–999 (2016)

    Article  Google Scholar 

  32. Lamb, H.: On the vibrations of an elastic sphere. Proc. London Math. Soc. 13, 189–212 (1881)

    Article  MathSciNet  Google Scholar 

  33. Sharma, J.N., Sharma, D.K., Dhaliwal, S.S.: Three-dimensional free vibration analysis of a viscothermoelastic hollow sphere. Open J. Acoust. 2, 12–24 (2012)

    Article  Google Scholar 

  34. Sharma, J.N., Sharma, D.K., Dhaliwal, S.S.: Free vibration analysis of a rigidly fixed viscothermoelastic hollow sphere. Ind. J. Pure Appl. Math. 44, 559–586 (2013)

    Article  MathSciNet  Google Scholar 

  35. Sharma, D.K., Sharma, J.N., Dhaliwal, S.S., Walia, V.: Vibration analysis of axisymmetric functionally graded viscothermoelastic spheres. Acta. Mech. Sinica. 30, 100–111 (2014)

    Article  MathSciNet  Google Scholar 

  36. Keles, I., Tutuncu, N.: Exact analysis of axisymmetric dynamic response of functionally graded cylinders (or disks) and spheres. J. Appl. Mech. 78(061014), 1–7 (2011)

    Google Scholar 

  37. Abbas, I.A.: Analytical solution for a free vibration of a thermoelastic hollow sphere. Mech. Based Des. Struct. 43, 265–276 (2015)

    Article  Google Scholar 

  38. Sharma, D.K., Mittal, H.: Analysis of free vibrations of axisymmetric functionally graded generalized viscothermoelastic cylinder using series solution. J. Vib. Eng. Technol. (2019). https://doi.org/10.1007/s42417-019-00178-1

    Article  Google Scholar 

  39. Sharma, D.K., Mittal, H., Sharma, S.R.: Forced vibration analysis in axisymmetric functionally graded viscothermoelastic hollow cylinder under dynamic pressure. Proc. Natl. Acad. Sci India Sect. A. (2019). https://doi.org/10.1007/s40010-019-00634-3

    Article  Google Scholar 

  40. Sharma, D.K.: Free vibrations of homogenous isotropic viscothermoelastic spherical curved plates. J. Appl. Sci. Eng. 19, 135–148 (2016)

    Google Scholar 

  41. Lord, H.W., Shulman, Y.: A generalized dynamical theory of thermoelasticity. J. Mech. Phys. Solids 15, 299–309 (1967)

    Article  Google Scholar 

  42. Moosapour, M., Hajabasi, M.A., Ehteshami, H.: Thermoelastic damping effect analysis in micro flexural resonator of atomic force microscopy. Appl. Math. Model. 38, 2716–2733 (2014)

    Article  MathSciNet  Google Scholar 

  43. Dhaliwal, R., Singh, A.: Dynamic Coupled Thermoelasticity. Hindustan Publishing Corporation, Delhi (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitali Bachher.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, D.K., Thakur, P.C., Sarkar, N. et al. Vibrations of a nonlocal thermoelastic cylinder with void. Acta Mech 231, 2931–2945 (2020). https://doi.org/10.1007/s00707-020-02681-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00707-020-02681-z

Navigation