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Abstract Resonance phenomena in impacting systems can be defined as an amplitude increasing during
periodically applied impacts. Thewave cancellation phenomenon is defined as application of certain conditions
to cancel the wave fully. The double impact system is defined as the application of the first impact with a certain
duration τ and then the application of a counter impact in a certain time τ1 such that the vibrations caused
by the first impact are fully disappearing. In the current contribution this phenomenon is first studied for the
simplest 1D bar vibration. The response function is introduced as a characteristic for such a phenomenon and,
by studying its properties, it is possible to find both an impact duration time τ and an application time τ1 for
the counter impact leading to the wave cancellation. The result is generalized for any arbitrary homogeneous
linear non-dissipative mechanical structure described by a semi-elliptic operator Lu. The counter impact can
be determined in the same way as in the opposite direction. This general result is numerically illustrated for
various operators Lu possessing relatively simple analytical solutions: for a simply supported and a clamped
Bernoulli beam, for a fixed membrane and for a Kirchhoff plate. Three potential applications are discussed
at the end: a set of verification examples for further analysis of time integration numerical schemes with the
energy conservation property; straightforward transfer of cancellation conditions for the double impact to any
convenient numerical method in mechanics, e.g. finite element method, iso-geometric method etc.; application
of the result in engineering design of impacting devices (hammering etc.) in order to prevent recoil.

1 Introduction

The structural resonance phenomenon is well known as an increase of the vibration amplitude if the frequency
of the exciting force is approaching the eigenfrequency of the structure. In non-dissipative system it leads
to a linear increase of the amplitude. Many monographs in dynamics describes this example, see e.g. more
earlier [18] and more recent [29]. Various aspects of the impact in mechanical systems are studied in the
monographs [2,4,10,12,15,17]. Various aspects of the resonance phenomena are investigated in [8,23,24,27,
31] and including impact in [16].

An opposite to the structural resonance is the wave cancellation phenomenon—application of such con-
ditions including active force, moment etc. when the first wave produced in the structure is canceled fully or
is strongly decreased. Conditions allowing to strongly decrease the first wave came into practice within the
last decades as the so-called active noise control in acoustic. Chung and Crocker [6] proposed the acoustic
wave cancellation induced by the monopole radiator. The acoustic wave was induced by the vibration of the
simply supported beam. Approximated conditions have been found for the dipole radiators. Yang [36] consider
vibration of simple beams due to trains, in which moving loads have been represented via compositions of
Dirac delta functions and Heaviside functions. Both wave cancellation and resonance conditions have been
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derived in closed analytical form. Also, comparisons of the results with finite element solutions have been
performed. The wave cancellation conditions have been studied in closed form for discrete two mass points
system by Dingyue et al. [9]. Yang et al. [35] considered the mechanism of the resonance and cancellation
for train-induced vibrations in a bridge. The bridge is modeled by the simply supported beam on the elastic
foundation. Loads are represented by the series of Delta functions pulse moving loads. The exact condition for
the moving load is found to cause ether resonance or cancellation conditions. Yau et al. [37] implemented tuned
mass dampers (TMD) for cable-stayed bridges in order to decrease the vibration amplitude during the passing
of a high speed train as an example of combination of active and passive control. It is shown that the larger the
number of stay cables of a cable-stayed bridge, the smaller the impact response of the bridge. The moving load
is represented by the pulse Dirac function. Among the active vibration control in structural systems one can
select rather special cases allowing a closed form for the wave cancellation. Zhang and Chen [38] have found
the wave cancellation condition for a moving string being implemented as an additional tensioner. The effect
is shown due to the the additional tensioner for the string rather than due to superposition of waves. Zhang et
al. [39] considered a piezoelectric actuator for the wave cancellation induced in a simply supported cylindrical
Kirchhoff type shell. The solution was formulated in analytical form via sinusoidal harmonics. Schoeftner
and Juergen in [26] illustrated for the Bernoulli–Euler beam, that bonding piezoelectric layers with attached
electric circuits can be used as a passive method for wave cancellation as a single point control (SPC). Both
semi-analytical numerical computations and finite element computations in ANSYS were employed for the
model verification. The active control of noise and vibration methods were widely developed and implemented
in various fields of engineering practice, see the review in Kuo and Morgan [20] and more recent monograph
of Colin et al [13]. Auersch in [1] proposed a combined finite-element boundary-element method (FEBEM)
where the response of the infinitely long plate is calculated by a numerical integration in the frequency-wave-
number domain. Conditions for the wave reductions were shown. Vankata Rao et al. [32] applied the finite
element method to model Mindlin type plates and studied piezoelectric actuators for the vibration control.
Futhazar et al. [11] proposed active cloaking which allows to cancel waves in a specific finite domain of the
infinite Kirchhoff plate. The sources as well as scatters are pulsed forces represented by Delta functions. Teo
and Fleming in [30] developed further an active damping control, the integral force feedbackmethod (IFF). It is
shown experimentally that the improved IFFmethod can achieve arbitrary damping for any mechanical system
by introducing a feed-through term. There are also recent active noise control methods. The reconstruction
of forces generated by multiple impacts occurring in linear elastic structures has been considered in [25] in
which, in addition, statistical methods have been involved. The wave boundary control method of large net
structures was considered by Zuo et al. [40]. In this article a net structure was modeled as a set of intersecting
orthogonal strings, described by 1D wave equations. This representation of the net structure allows to derive
various control laws in the closed forms. Lee et al. [21] described experimental investigations demonstrat-
ing that the incident beams of ultrasonics waves can be canceled by using an elastic phononic crystal prism.
Huang and Xu in [14] proposed an active control method used for electromagnetic wave cancellation based
on generation of a periodic signal in order to cancel the radar target echo. Three conditions should be satisfied
for the cancellation. The source signal is represented by the Delta function. Lu et al. [22] described resonance
and cancellation conditions caused by the equidistant moving pulse loads in a pile-supported viaduct. Spans
of the bridge are modelled as a simply supported beam loaded by the moving pulse load. It has been found
that if the time lag between two neighboring moving loads is satisfying certain conditions with regards to the
resonance frequency then either resonance or cancellation conditions may occur.

The novelty of the current contribution is the formulation of the wave cancellation conditions for the double
impact system for an arbitrary structure. The double impact system is defined as a mechanical structure in
which the first impact of finite duration enforces the vibrations in a structure and the second impact leads to
cancellation of the vibrations in the whole structure. The second impact is specially constructed with the help
of the introduced response function such that the vibrations induced by the first impact will be fully canceled.

Properties of the response function allows to construct the second impact satisfying the wave cancellation
condition for any arbitrary mechanical structure subjected to the double impact problem. The main character-
istics of the double impact problem are:

– The first impact of final duration τ is forcing the structure to vibrate. The energy is supplied and remains
constant.

– The second impact of the same duration τ is applied at the specially determined time τ1 depending on the
structure, namely of eigenfrequencies. This time can be selected a-priory larger than any given real number
tLarge, i.e. τ1 > tLarge. The second impact can be applied in the same direction as well as in the opposite



Wave cancellation conditions for the double impact 2775

Fig. 1 Bar loaded with longitudinal force F of duration τ1

direction and necessarily leads to the wave cancellation caused by the first impact. The whole structure is
standing still and the energy is becoming zero.

The article is organized as follows:

1. The double impact problem is shown, first, for the simple 1D bar problem in the closed form solution, in
which the response function is introduced.

2. All properties of the response function are studied. This allows to formulate wave cancellation conditions
for the second impact.

3. The wave cancellation conditions for the double impact problem are studied via the response function for
an arbitrary linear dynamics problem described with a linear semi-elliptic operator Lu:

ρ
∂2u

∂t2
= Lu(x) + q(x, t), x ∈ �.

4. Since the general result is applicable for a large number of mechanical problems—e.g., various beam and
shell models for engineering structures, wave propagation in 2D and 3D continuum etc.—the double impact
is shown selectively for models possessing relatively simple analytical solutions:
– a simply supported Bernoulli beam;
– a cantilever Bernoulli beam;
– a membrane;
– a Kirchhoff beam.

2 Double impact in 1D bar

Here, we consider the statement of the double impact problem for a 1D bar. The closed form solution is
obtained in the form of generalized Fourier series via the combination of several solution methods for partial
differential equations (PDE), see [13,33,34], and includes the following steps:

– Fourier series method in order to obtain solution of the homogeneous PDE;
– Fourier seriesmethod to in order obtain the fundamental solution ofPDE, satisfying all boundary conditions;
– Representation of the impact of duration τ via the Heaviside functions for the non-homogeneous ODE;
– Solution of the non-homogeneous PDE in the form of convolution with the fundamental solution of the
PDE.

The first two methods are standard methods for graduate courses and are presented in Appendix A for
completeness. The combination of the last two methods leads to the response function which is studied in
detail in order to construct wave cancellation conditions caused by the second impact.

2.1 Statement of the double impact problem for the 1D-bar

Consider a homogeneous bar with length L , with a constant cross section area A, density ρ and Young’s
module of elasticity E . The bar is fixed on the left side, and the right end is free, see Fig. 1. At the beginning,
the bar is in an idle state.

Motion of the bar—longitudinal vibrations—u(x, t) satisfies the following partial differential equation
(PDE):

ρA
∂2u

∂t2
− E A

∂2u

∂x2
= q(x, t) (1)

with corresponding boundary conditions

u(0, t) = 0, − fixed end,
∂u

∂x
(L , t) = 0, ∀ t > 0− free end, (2)
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and initial conditions
⎧
⎨

⎩

u(x, 0) = 0, for [0 ≤ x ≤ L]− no initial displacements,
∂u

∂t
(x, 0) = 0, for [0 ≤ x ≤ L]− no initial velocity.

(3)

The first impact of the finite duration is defined as follows: at time t = 0 the bar is loaded at the free end
with the constant force F and time duration of τ . The first impact is causing the longitudinal vibration u(x, t)
and wave distribution starting from the free end. In order to describe this impact, the distributed along the line
external force q(x, t) with physical dimensions [N m−1] is formulated via the Dirac and Heaviside functions.
The second impact with the force F1 and time duration of τ will be applied at time τ1. The double impact is
formulated as a combination of the first and the second impact of the same duration τ .

2.1.1 Formulation of the various impacts of duration τ via the Dirac and Heaviside functions for the
non-homogeneous ODE

The distributed force q(x, t) can be specially configured in order to describe the impact force F applied at the
end of the bar x = L using the Dirac function δ(x) for the longitudinal coordinate x . The time duration τ for
the application of the impact force F is implied via the composition of Heaviside functions H(t) − H(t − τ).
The expression for such an external force is written as

qτ (x, t) = Fδ(x − L)[H(t) − H(t − τ)]. (4)

The impact force of zero time duration can be written via the Dirac function for the time variable δ(t) as
follows:

qδ(x, t) = Fδ(x − L)
dH(t)

dt
= Fδ(x − L)δ(t). (5)

The double impact is constructed as a composition of the first impact F in Eq. (4) at time t = 0 and the
second impact F1 of duration τ at time τ1:

q(FF1)(x, t) = Fδ(x − L)[H(t) − H(t − τ)] + F1δ(x − L)[H(t − τ1) − H(t − τ − τ1)]. (6)

2.1.2 Solution of the non-homogeneous PDE in the form of convolution with the fundamental solution of PDE

The solution of the non-homogeneous PDE will be obtained if we solve the corresponding non-homogeneous
ODE in Eq. (97) with an arbitrary right side. The solution—following steps 1, 2, 4 in Sect. 2—is written in the
form of Fourier series employing the standard results represented in Appendix A. Another similar technique
is employing the Duhamel integral and is widely used in control mechanics, see: [13,22,35]:

u(x, t) =
∞∑

n=0

Tn(t)Xn(x) =
∞∑

n=0

Tn(t) sin

(
(2n + 1)π

2L
x

)

,

where

Tn(t) = sin(ωnt)

ωn
H(t) ∗ 〈q(x, t) · Xn(x)〉

ρA‖Xk(x)‖2 H(t); (7)

here the eigenfrequencies ωn are written as

ωn = cλn =
√

E

ρ

[(2n + 1)π]
2L

, n = 0, 1, 2, ... (8)

In order to study the double impact problem and formulate wave cancellation conditions, we introduce a
response function.
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2.2 Response function and its properties

First, we introduce nth eigen period value for the structure Pn , based on its eigenfrequency ωn .

Definition 1 the nth eigenperiod is defined as

Pn = 2π

ωn
. (9)

Then, we introduce the response function (see also in [13]) in order to construct the second counter impact
satisfying the wave cancellation condition.

Definition 2 The response function is defined as the convolution of the fundamental solution in Eq. (96) with
a single unit impact in Eq. (4):

Φn(t, τ, τ1) = T f (t) ∗ [H(t − τ1) − H(t − τ − τ1)]

= sin(ωnt)

ωn
H(t) ∗ [H(t − τ1) − H(t − τ1 − τ)]

= 1

ωn

∫ ∞

−∞
[sin(ωnu)H(u)[H(t − τ1 − u) − H(t − u − τ1 − τ)]] du

= 1

ω2
n

(
[1 − cos(ωn(t − τ1))] H(t − τ1)

− [1 − cos(ωn(t − τ1 − τ))] H(t − τ1 − τ)
)
. (10)

The response function is, therefore, the solution of the single impact problem in terms of functions
Φn(t, τ, τ1) = Tn(t) (see Eq. (7)) for the unit force F = 1 with time duration τ and applied at time t = τ1.

Superposition of two response functions is reflecting the double impact situation. Some properties are
necessary to study this situation for various structures. All properties are defined after the application of the
second impact, i.e. for t > τ1 + τ .

Property 1 (Sum of two impacts in the same direction) For t > τ1 + τ the following transformation is valid:

Φn(t, τ, 0) + Φn(t, τ, τ1) = 1

ω2
n

[
[1 − cos(ωnt)] − [1 − cos(ωn(t − τ))]

+ [1 − cos(ωn(t − τ1))] − [1 − cos(ωn(t − τ1 − τ))]
]

= 1

ω2
n

[
cos(ωn(t − τ)) − cos(ωnt)

+ cos(ωn(t − τ1 − τ)) − cos(ωn(t − τ1))
]

the sum of cosines formula is applied

to the 1st plus 3rd and 2nd plus 4th terms

= 2

ω2
n

[
cos

(
ωn(t − τ − τ1

2
)
)

− cos
(
ωn(t − τ1

2
)
) ]

cos
ωnτ1

2
the difference of cosines formula leads to

= 4

ω2
n

[
sin

(

ωn
2t − τ − τ1

2

)

sin
(ωnτ

2

)]
cos

ωnτ1

2
. (11)

Property 2 (Sum of two impacts in the opposite direction)
For t > τ1 + τ the following transformation is valid:

Φn(t, τ, 0) − Φn(t, τ, τ1) = 1

ω2
n

[
[1 − cos(ωnt)] − [1 − cos(ωn(t − τ))]

− [1 − cos(ωn(t − τ1))] − [1 − cos (ωn(t − τ1 − τ))]
]
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applying the corresponding

trigonometric transformations

= 4

ω2
n

[
cos(ωn

4t − τ − 2τ1
4

) sin
(ωnτ

2

)]
sin

ωnτ1

2
. (12)

Property 3 (Zeros of the response function. Self cancellation condition for a single impact)
If the duration of the impact is equal to an integer number of eigenperiods,

τ = kPn, k, n = 1, 2, ..., (13)

then the response function in Eq. (10) after time t > τ1 + τ is becoming identically zero.

This statement is resulting from the term sin
ωnτ

2
which is presented in both Eqs. (11) and (12).

sin
ωnτ

2
= sin

kωn Pn
2

= sin
kωn2π

2ωn
= sin(πk) = 0. (14)

Thus, if the time duration τ for the single impact is proportional to an integer number of eigenperiods, then
after the time t > τ + τ1 vibrations will be canceled. This is valid, of course, for the double impact—simply
after each impact vibrations will be canceled. This self cancellation is observed for the time duration τ at least
larger or equal to the first eigenperiod: τ ≥ T1 with regard to Eq. (13).

Remark 1 If the duration of the impact is shorter then the first eigenperiod P1 and the second impact is applied
at the time τ1 proportional to the kth eigenperiod,

τ1 = αPk, k = 1, 2, ..., α ∈ �, (15)

then it is possible to find such a time τ1, when the second impact of the same duration τ should be applied, such
that the sum of the response functions is becoming identically zero. The exact definition of α now depends
on the situation: either two impacts in the same direction Eq. (11), or two impacts in the opposite direction
Eq. (12) are considered. According to Eq. (15), this time τ1 can be larger than an arbitrary given real number.

Property 4 (Zeros of the response function. Duration of the impact is less then the first eigenperiod P1. Sum
of two impacts in the same direction)

In this case it is required from Eq. (11) that the following term should be zero:

cos
ωnτ1

2
= 0, (16)

which leads to

πα
ωn

ωk
= π

2m + 1

2
�⇒ α

ωn

ωk
= 2m + 1

2
. (17)

If the parameter α is chosen such that Eq. (17) can be resolved in natural numbers, then the second impact
in the same direction applied at the time τ1 from Eq. (15) is causing the zeros of the response function.

Property 5 (Zeros of the response function. Duration of the impact is less then the first eigen period P1. Sum
of two impacts in the opposite direction)

In this case it is required from Eq. (12) that the following term should be zero:

sin
ωnτ1

2
= 0, (18)

which leads to

πα
ωn

ωk
= πm �⇒ α

ωn

ωk
= m. (19)

If the parameter α is chosen such that Eq. (19) can be resolved in natural numbers, then the second impact
in the opposite direction applied at the time τ1 from Eq. (15) is causing the zeros of the response function.

Corollary 1 The wave cancellation conditions for the double impact problem for 1D bar can be formulated
as follows:
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1. If the second impact of the same duration τ applied in the same direction at the time τ1, satisfying
Eqs. (15) and (17), then the wave induced by the first impact is fully cancelled.

2. If the second impact of the same duration τ applied in the opposite direction at the time τ1, satisfying
Eqs. (15) and (19), then the wave induced by the first impact is fully cancelled.

3. It is obvious, that the both cancellation conditions remain valid also for impact of zero time duration, i.e.
described via the Dirac function δ(t).

Solution of Eqs. (17) and (19) depends on the structure of the eigenvalues in a certain case and will be
studied by examples.

2.3 Solution for various impact problems

Let us study in details all impact situations for 1D bar. Consider analytical solutions using the definition of the
response function in terms of time dependent functions Tn(t) for the following cases:

1. A single impact of duration τ , see right side in Eq. (4):

Tn(t) = sin(ωnt)

ωn
H(t) ∗ 〈q(x, t) · Xn(x)〉

ρA‖Xk(x)‖2
= sin(ωnt)

ωn
H(t) ∗ F(δ(x − L) · Xn(x))

[H(t) − H(t − τ)]
ρA‖Xk(x)‖2

= F
Xn(L)

ρA‖Xk(x)‖2
sin(ωnt)

ωn
H(t) ∗ [H(t) − H(t − τ)]

= F
Xn(L)

ρA‖Xk(x)‖2Φn(t, τ, 0) (20)

The eigenfrequencies ωn are defined in Eq. (8). Finally, recovering eigenfunctions Xk(x) in Eq. (87)
together with their norms in Eq. (98), we obtain:

Tn(t) = F sin (2n+1)π
2

ρAL/2
Φn(t, τ, 0)

= 2F(−1)n

ω2
n ρAL

[[
1 − cos(ωnt))

]
H(t) − [

1 − cos(ωn(t − τ))
]
H(t − τ)

]

= 8FL(−1)n

E A(2n + 1)2π2

[[
1 − cos(ωnt))

]
H(t) − [

1 − cos(ωn(t − τ))
]
H(t − τ)

]
. (21)

We note here that the amplitude does not depend on the density ρ.
2. A single impact force of zero time duration—the right side is written via the Dirac function δ(t), see

Eq. (5):

Tn(t) = sin(ωnt)

ωn
H(t) ∗ 〈q(x, t) · Xn(x)〉

ρA‖Xk(x)‖2
= sin(ωnt)

ωn
H(t) ∗ δ(t)

F

ρA‖Xk(x)‖2 〈δ(x − L) · Xn(x)〉

= 2F(−1)n

A
√
Eρ(2n + 1) π

sin(ωnt)H(t). (22)

Both scalar product and the convolution are trivially computed because of the fundamental property of
Dirac functions Fδ(x − L) and δ(t).

3. A double impact problem as the first impact with an amplitude F at time t = 0 and the second impact with
an amplitude F1 at time τ1, see the right hand side in Eq. (6):

Tn(t) = 8L(−1)nω2
n

E A(2n + 1)2π2

[
FΦn(t, τ, 0) + F1Φn(t, τ, τ1)

]
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= 8FL(−1)n

E A(2n + 1)2π2

[
[1 − cos(ωnt))] H(t) − [1 − cos(ωn(t − τ))] H(t − τ)

]

+ 8F1L(−1)n

E A(2n + 1)2π2

[
[1 − cos(ωn(t − τ1)))] H(t − τ1)

− [1 − cos(ωn(t − τ1 − τ))] H(t − τ1 − τ)
]
. (23)

Similar expressions (in square brackets) have been found by Yang et al [35] in order to formulate the
cancellation conditions for the moving pulse loads represented by Delta functions for a simply supported
beam.

The full solution for all three cases is then given in the form of Fourier series presented in Eq. (7) with the
corresponding Tn(t).

2.3.1 Special selection of time τ1 for the double impact problem satisfying the wave cancellation condition

Consider a case with the double impact with forces of equal amplitude F1 = F acting in the same direction
and the time after the second impact t > τ +τ1. That means that the force F of duration τ is applied in positive
direction, and after a period of time τ1 the same force F of duration τ is applied again. Eq. (23) is transformed
with regards to the Property 1 of the response function in Eq. (11) as follows:

Tn(t) = 8FL(−1)nω2
n

E A(2n + 1)2π2

[
Φn(t, τ, 0) + Φn(t, τ, τ1)

]

= 32FL(−1)n

E A(2n + 1)2π2

[
sin(ωn

2t − τ − τ1

2
) sin

(ωnτ

2

)]
cos

ωnτ1

2
. (24)

Consider Property 4 of the response functions for the double impact in the same direction. Eq. (17) for the
cancellation conditions with ωn in Eq. (8) is written as

α
π(2n + 1)

(2k + 1)
= π(2m + 1)

2
. (25)

Now we can determine a set of values α, satisfying Eq. (25) with n = m and corresponding time of the
second impact τ1 as follows:

1. The time τ1 is proportional to the first eigenperiod P0:

k = 0, α = 1 · (2k + 1)

2
, τ1 = 2n + 1

2
P0, n = m = 0, 1, 2... (26)

2. The time τ1 is proportional to the second eigenperiod P1:

k = 1, α = 3 · (2k + 1)

2
, τ1 = 3(2n + 1)

2
P1, n = m = 0, 1, 2... (27)

3. etc....
4. The time τ1 is proportional to the (n + 1)th eigenperiod Pn :

n, α = 2n + 1, τ1 = (2n + 1)(2k + 1)

2
Pn, n = m = 0, 1, 2... (28)

Thus, according to Eq. (26), the second counter impact should be applied at the time τ1 which is equal
to uneven number of first eigenperiods P0 divided by 2. This gives the wave cancellation condition for the
considered double impact in the same direction.

We consider this effect comparing the single and double impact problem in the following numerical
example.
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2.4 Numerical example of the double impact problem in the same direction

The numerical solution is exemplary computed for the following parameters: L = 50, E = 2.1×1011 N m−2,
A = 1 m2, ρ = 7800 kg m−3, the force P = 100,000 N is applied for a duration τ = 0.2P0 and the counter

impact is applied at time τ1 = 5

2
P0 (uneven number of the first eigen period T0 divided by 2). In this case

the first eigenperiod is P0 = 3.854 × 10−2s, τ = 7.708 × 10−3 s and the time of application of the counter
impact is τ1 = 9.636 × 10−2 s. The computation of displacement at the point x = L is shown for the single
impact in Fig. 2, and for the double impact in Fig. 3. One can see, that the counter-impact leading to the wave

cancellation is recognized after the time τ1 = 5

2
P0 when the vibrations are fully disappeared. It should be

noted, that displacements as well as velocities are zero at each point x ∈ [0, L]. Thus, the energy supplied
with the first impact is canceled with the counter impact. In both cases, the number of terms for the Fourier
series is taken as n = 100.

3 Wave cancellation conditions for the double impact problem in an arbitrary structure

The double impact problem and corresponding wave cancellation conditions, studied in Sect. 2 for 1D bar, can
be generalized for any arbitrary model formulated in linear continuummechanics. Consider an impact problem
within the linear mechanics in a general form. The linear statical problem for any type of modeled structures
(bar, beam, shell, continuum) can be described employing the corresponding linear semi-elliptic operator Lu
in the following form

Lu(x) + q(x) = 0, x ∈ �, (29)

where u(x) is a generalized degree of freedom vector. This vector, depending on the mechanical model, may
contain not only displacements components in the corresponding 1D, 2D or 3D space as for conventional
models in continuum mechanics, but also angular degree of freedoms as for models in various beam and shell
theories, pressure as for acoustics models etc. etc. In this case, q(x) is a generalized external load vector,
corresponding to those degrees of freedom. Equation (29) is describing equilibrium conditions of the structure
occupied in the domain �. Domain � is, in due course, a geometrical finite domain—a 3D object, a surface or
a curve—the last depends on the mechanical model. Both Neumann and Dirichlet boundary conditions acting
on the boundaries ∂�N and ∂�D are considered in the linear form with the corresponding linear operators BN
and BD as

BNu(x) = bN, x ∈ ∂�N, (30)
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Fig. 2 Single impact of duration τ = 7.708 × 10−3. Displacement of the bar at the point x = L versus time
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Fig. 3 Double impact of duration τ : counter impact is applied at τ1 = 9.636× 10−2. Displacement of the bar at the point x = L
versus time. The wave is fully canceled after application of the second impact

BDu(x) = bD, x ∈ ∂�D. (31)

The non-homogeneousNeumann boundary conditions Eq. (30) can be included in the external force q(x) using
generalized functions acting on the corresponding boundary ∂�N. These generalized functions depending on
the geometry of the domain � are represented in due course by the Dirac vector function δ(x − x0) acting at
the point x0 ∈ �, or on a curve or on a surface.

The linear dynamic problem for the structure with a constant density ρ is formulated in the form:

ρ
∂2u

∂t2
= Lu(x) + q(x, t), x ∈ �. (32)

The structure is in idle state at the beginning, therefore, initial conditions for the impact problem are considered
homogeneous:

∂u

∂t
|t=0 = 0, u|t=0 = 0. (33)

The external force q(x, t), representing the double impact problem acting at the point x = a ∈ � is written
similar to Eq. (6) via the Dirac vector function

q(FF1)(x, t) = Fδ(x − a)[H(t) − H(t − τ)] + F1δ(x − a)[H(t − τ1) − H(t − τ − τ1)], (34)

Following the solution of the dynamics problem in Eq. (32) via the Fourier series and convolution, we
obtain the corresponding eigenvalue problem as:

LX + λX = 0 (35)

with the corresponding homogeneous boundary conditions

BNX (x) = 0, x ∈ ∂�N, (36)

BDX (x) = 0, x ∈ ∂�D. (37)

Further on,we assume,without the loss of generality, that theDirichlet boundary condition is homogeneous.
This generalization is, however, valid for stationary boundary condition, i.e. in Eq. (31) bN should not depend
on the time t . As is known [33], the eigenvalue problem with a positive linear elliptic operator has the solution
in the form of positive eigenvalues λn, n = 1, 2, ... and orthogonal eigenfunctions Xn(x), n = 1, 2, .... We
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will consider further a case with non-zero eigenvalues—this means that the corresponding structure is fixed
properly excluding rigid body degree of freedoms.

The solution of Eq. (32) following the Fourier method is searched in the form

u(x, t) =
∑

n

T̈n(t)Xn(x). (38)

Using the linearity of the operator Lu and the corresponding eigenvalue problem (35)–(37) the dynamical
equation (32) is written as

∑

n

ρT̈n(t)Xn(x) +
∑

n

λnTn(t)Xn(x). = q(x, t). (39)

Using then the orthogonality of the eigenfunctions Xn and performing the scalar product with the eigen-
function Xn in the corresponding Hilbert space, Eq. (39) is transformed into a set of ordinary differential
equations

T̈n(t) + ω2
nTn(t) = 〈q(x, t) · Xn(x)〉

ρ‖Xn(x)‖2 , (40)

where the scalar product is defined in the corresponding Hilbert space in the domain �:

〈q(x, t) · Xn(x)〉 =
∫

�

q(x, t)Xn(x) dx . (41)

The norm ‖Xn(x)‖ is then constructed with respect to this scalar product. The eigenfrequency is denoted as

ωn =
√

λn

ρ
(42)

Each of Eqs. (40) should satisfy the initial conditions arising from the integration of the initial conditions
in Eq. (33):

Tn(0) = 0 : no initial displacements,
dTn
dt

(0) = 0 : no initial velocity. (43)

Application of the Lemma 1 in Appendix A gives us the following solution of Eq. (40) in the form of a
convolution:

Tn(t) = sinωn

ωn
∗ 〈q(x, t) · Xn(x)〉

ρ‖Xn(x)‖2 . (44)

Now all properties of the response function are necessary in order to determine the time τ1 of application
of the second counter impact leading to the wave cancellation. For an arbitrary structure this is enforced by
the second impact in which the application time is chosen to be proportional to the kth eigen period Pk fully
similar to the 1-D example, see Eq. (15):

τ1 = αPk . (45)

By specific selection of the time τ1, it is possible to construct the wave cancellation conditions for both cases:
for the impact in the same direction as well as for the impact in the opposite direction.
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3.1 Sum of two impacts in the same directions: wave cancellation conditions

The first impact force F of duration τ is applied at the point x = a. The corresponding functions T first
n (t) are

calculated using Eq. (44) and the response function in Eq. (10):

T first
n (t) = PXn(a)

ρ‖Xn(x)‖2Φn(t, τ, 0). (46)

The second impact is considered in the same direction and is applied at time τk . All terms of the Fourier series
after the time τk : τk+1, ..., τn, ... are taken into account:

T second
n (t) = PXn(a)

ρ‖Xn(x)‖2Φn(t, τ, τk). (47)

According to the first property of the response function in Eq. (11) the sum of the functions after the time
t > τ + τk is written as

Tn(t) = T first
n (t) + T second

n (t)

= 4PXn(a)

ρ‖Xn(x)‖2ω2
n

[
sin(ωn

2t − τ − τk

2
) sin

(ωnτ

2

)]
cos

ωnτk

2
. (48)

Displacements of the structure for the second impact are represented not only with a single term as in the
previous particular 1D example, but also with all terms including times τk, τk+1, .... In order to recover zeroes

of the response function it is required from Eq. (17) that α
ωn

ωk
= 2m + 1

2
. This can be fulfilled as a case of a

double counter impact with ωk = ωn and for α = 2m + 1

2
. Thus, application of the second impact at the time

equals to the uneven number of kth eigen period divided by 2: τm = 2m + 1

2
τk leads to the wave cancellation

condition and to the elimination of the displacements in the whole structure leads to the wave cancellation
condition and to the elimination of the displacements in the whole structure.

3.2 Sum of two impacts in the opposite directions: wave cancellation conditions

The first impact force F of duration τ is applied at the point x = a and is represented by Eq. (46). The second
impact is considered in the opposite direction and is represented as

T second
n (t) = −PXn(a)

ρ‖Xn(x)‖2Φn(t, τ, τk). (49)

According to the 2-st property of the response function in Eq. (12) the sum of the functions after the time
t > τ + τk is written as:

Tn(t) = T first
n (t) + T second

n (t)

= 4PXn(a)

ρ‖Xn(x)‖2ω2
n

[
cos(ωn

4t − τ − 2τk
4

) sin
(ωnτ

2

)]
sin

ωnτk

2
. (50)

In order to recover zero of the response function it is required fromEq. (19) that α
ωn

ωk
= m. This can be fulfilled

as a case of a double counter impact with ωk = ωn and for α = m. Thus, application of the second impact at
the time equals to the integer number of m of the kth eigenperiod τk : τm = mτk leads to the elimination of the
displacements.

Remark 2 (On resonance conditions) If, in the definition of the wave cancellation conditions for both same and
opposite directions, the direction of a force is changed into opposite, then the resonance condition is derived.
In the case of a double impact it leads to the doubling of an amplitude after the second impact.

Within the example from Sect. 2, a series impacts sequentially in times P1, P2, ..., Pm, ... will lead to the
resonance phenomena as doubling of an amplitude during each impact. Conditions for the eigenfrequencies
similar to Eq. (25) have been found by Lu et al. [22] for the cancellation and resonance conditions caused by
the equidistant moving pulse loads in a pile-supported viaduct.



Wave cancellation conditions for the double impact 2785

Fig. 4 Beam loaded with an impact P of duration τ at the distance x0

4 Solution of the double impact problem for the simply supported Bernoulli beam

As an example of the developed strategy in Sect. 3 we are showing here the derivation of the cancellation
condition for the simply support beam exemplarily for the double impact in the opposite direction. Consider
a beam with length l, constant cross-section A and second moment of area I, made of elastic material with
elasticity modulus E and constant density ρ. The beam is simply supported, see Fig. 4. At time t = 0 the
constant impacting load F of duration τ is applied at the distance x0. The dynamic motion is described by the
vertical displacement u(x, t), which according to the Bernoulli beam hypothesis should satisfy to the following
PDE, see e.g. in [13] and other solutions in [5]:

E I
∂4u

∂x4
+ ρA

∂2u

∂t2
= q(x, t). (51)

Here the distributed force q(x, t) (physical dimension [N m−1]) is represented via the Dirac function as
q(x, t) = F(t)δ(x − x0). The function F(t), depending on the type of impact, is represented similar to
Eqs. (4, 5, 6).

The operator Lu with regards to Eq. (32) is now represented as follows:

Lu ≡ − E I

ρ

∂4u

∂x4
. (52)

The function u(x, t) for the simple support should satisfy the following boundary conditions:

– zero displacements on supports (Dirichlet boundary conditions):

u(0, t) = 0, u(l, t) = 0, ∀t > 0; (53)

– zero moments on supports (Neumann boundary conditions)

M(0, t) = 0, M(l, t) = 0 ⇒ ∂2u

∂x2
(0, t) = 0,

∂2u

∂x2
(l, t) = 0, ∀t > 0; (54)

and the following initial conditions (assuming no motion at the beginning):

u(x, 0) = 0,
∂u

∂t
|t=0 = 0 for x ∈ [0, l]. (55)

In order to obtain the solution in the form of Fourier series, following the strategy shown generally in
Sect. 3, we have to solve the corresponding eigenvalue problem for Xn(x), and then obtain the solution in the
form of convolution for Tn(t).

4.1 The corresponding eigenvalue problem and differential equation for Tn(t)

The eigenvalue problem for the corresponding operator Lu in Eq. (52) is formulated from the general statement
in Eq. (35), in which λ4 is taken as eigenvalue for further convenience,
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X (4) − λ4X = 0. (56)

The corresponding boundary conditions (generally derived also from Eqs. (36)–(37))—zero displacements
(from Eq. (53)) and zero bending moments (from Eq. (54)) at both ends of the beam—are written as follows:

X (0) = 0, X (l) = 0, X ′′(0) = 0, X ′′(l) = 0. (57)

This standard solution is available from many books on dynamics and vibration theory. The corresponding
eigenvalues and eigenfunctions are written as

λn = πn

l
, n = 1, 2, 3, ...,

Xn(x) = sin
(πn

l
x
)

, n = 1, 2, 3, ..., (58)

and the square of the norm for eigenfunctions is calculated as

‖Xn(x)‖2 =
∫ l

0
sin2

(πn

l
x
)
dx = l

2
. (59)

The differential equation (40) for the time variable Tn(t) in this case is written as:

T̈n(t) + ω2
nTn(t) =

∫ l

0
q(x, t) Xn(x)dx

ρA‖Xn(x)‖2 , (60)

where the corresponding eigen frequencies ωn for the beam are defined as:

ω2
n = E Iλ4n

ρA
�⇒ ωn =

√
E I

ρA

(πn

l

)2
. (61)

4.2 Numerical example: wave cancellation condition for the double impact problem in the opposite direction

The double impact for the beam problem is formulated as a composition of two impacts with the same duration
τ applied at the same position x = x1. The first impact F1 is applied at time t = 0, the second impact F2 is
applied at time t = τ1. In this case, the external force q(FF1)(x, t) in Eq. (34) is formulated for the point at the
mid-line of a beam a = x1:

q(FF1)(x, t) = F1δ(x − x1)(H(t) − H(t − τ)) + F2δ(x − x1)(H(t − τ1) − H(t − τ1 − τ)). (62)

Now, using definition of the response function 2 we can write the solution for the time variable Tn(t) after
all transformations in the following form:

Tn(t) = T f ∗ F(x, t)

= 2

ρl A

[
F1Xn(x1)Φ(t, τ, 0) + F2Xn(x1)Φ(t, τ, τ1)

]
. (63)

Let us study numerically the case with the double impact in opposite direction with the force F = F1 = −F2.
The full solution of the problem is given by the following Fourier series:

u(x, t) =
∞∑

n=1

2F

l Aρω2
n

[
((cos(ωn(t)) − 1)H(t)

−(cos(ωn(t − τ)) − 1)H(t − τ)
]
sin

(πn

l
x0

)
sin

(πn

l
x
)
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Fig. 5 Vertical displacement u at the point x = x0 of applied force F . Single impact

−
∞∑

n=1

2F

l Aρω2
n

[
((cos(ωn(t − τ1) − 1)H(t − τ1)

−(cos(ωn(t − τ − τ1)) − 1)H(t − τ − τ1)
]
sin

(πn

l
x0

)
sin

(πn

l
x
)

. (64)

The condition for zeros of the response function Property 5 in Eq. (19) and also the wave cancellation
condition for the double impact in opposite direction in Sect. 3.2 with regards to the eigen frequencies ωn in
Eq. (61) leads to the following condition:

α
n2

k2
= m, (65)

which can be resolve in integer numbers as n = k, α = k. Thus, the time of application of the second impact
in the opposite direction satisfying the wave cancellation condition is then proportional to integer number of
the first period P1.

The following data for the numerical example computation are taken: elasticity modulus E = 2.1 ×
1011 N m2, density ρ = 7800 kg m−3, length L = 100 m, applied force F = 10,000 N, moment of inertia

I = 1

12
m4, area A = 1 m2, position of the applied impacting force x0 = 10 m. The duration of the impact

τ = 0.2 · P1, time of the application of the second impact τ1 = 3 · P1. The fist period P1 is computed via the
the first eigenfrequency

2π

P1
= ω1 =

√
E I

ρ

(π

l

)2
. (66)

Results of computations for the single impact are shown in Fig. 5 and for the double impact illustrating the
wave cancellation in Fig. 6. The vibration is fully canceled after the third period as expected.

5 Double impact on the cantilever beam: analysis for both same and opposite directions

As an example with arbitrary eigenvalues we consider another boundary conditions for the beam modeled
considered in Sect. 4: the double impact at the free end on the cantilever beam with length l. This simple case
representing the arbitrary structure and is not allowing to construct special cases such as for 1D bar and simply
supported beam, because, solutions of the characteristic equation for eigenvalues have no closed form and
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Fig. 6 Vertical displacement u at the point x = x0 of applied force F . Double impact and wave cancellation after the third period

should be found numerically. The operator Lu remains as in Sect. 4, see Eq. (52). Further necessary operations
are as follows (can be found also from the monographs, see e.g. [13]):

1. Equation for definition of the eigenvalues λn—the characteristic equation:

sinh(λnl) cos(λnl) = −1. (67)

The solution can be obtained numerically—in our case λ1l = 1.875, λ2l = 4.694 . . .
2. Corresponding eigenfunctions Xn(x):

Xn(x) = (cos(λnl) + cosh(λnl))(cos(λnx) − cosh(λnx))

+(sin(λnl) − sinh(λnl))(sin(λnx) − sinh(λnx)). (68)

3. Computation of the norm ‖Xn(x)‖.
The lengthy expression can be computed in the closed form in any mathematical software (MATLAB etc.)
and is not given here.

The cantilever beam with the same material parameters as in the previous example: elasticity modulus
E = 2.1× 1011 N m2, density ρ = 7800 kg m3, length L = 100 m, applied force P = 10,000 N, moment of

inertia I = 1

12
m4, area A = 1 m2 is subjected to the first impact at the end x0 = 100 m. The duration of the

impact τ = 0.2P1 = 2.39 s.
Two cases for the illustration of double impact results in both same and opposite directions, discussed in

Sects. 3.1 and 3.2, are considered. In addition, the influence of the number of terms in the Fourier series is
studied.

5.1 Wave cancellation conditions: double impact in the opposite direction

The single impact is forcing the cantilever beam to vibrate. The displacement at the end of the beam is shown in
Fig. 7—the second impact is not applied here. Then the time of the first application time for the second impact
is chosen as τ1 = 4P1 = 4×11.93 = 47.72 s, where the fist period P1 is computed via the first eigenfrequency.
Other necessary terms for the full Fourier series are τ2 = 3P2 = 3 × 1.90 s, τ3 = 3 × P3 = 3 × 0.68 s, ....
The result is shown in Fig. 8. In order to study the influence of the high frequency terms, the second impact is
computed with only one term (τ1) and with two terms (τ1, τ2) of the Fourier series and shown for the region
near τ1 in Fig. 9. It can be seen that the contribution of the terms higher than 2 is rather negligible.
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Fig. 7 Vertical displacement u at the point x = l of applied force P . Single impact
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Fig. 8 Vertical displacement u at the point x = l of applied force P . The double opposite impact. Full Fourie series
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Fig. 9 Vertical displacement u at the point x = l of applied force P . The double opposite impact leading to the wave cancellation.
Influence of the number of terms in Fourier series



2790 A. Konyukhov

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  10  20  30  40  50  60  70  80

D
ef

le
ct

io
n

Time

Same Double Imact: full series

Fig. 10 Vertical displacement u at the point x = l of applied force P . Double impact in the same direction leading to the wave
cancellation. Full Fourier series
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Fig. 11 Vertical displacement u at the point x = l of applied force P . Wave cancellation. Influence of the number of terms in
Fourier series

5.1.1 Wave cancellation conditions: double impact in the same direction

Now, the opposite impact is applied at uneven divided by 2 number of the first eigenperiod τ1 = 3.5T1 =
41.76 s, see displacement at the end of the beam in Fig. 10. Again for the comparison the second impact is
computed with only one term (τ1) and with two terms (τ1, τ2) of the Fourier series and shown for the region
nearby τ1 in Fig. 11. It can be seen that the contribution of terms higher than 2 is rather negligible.

The displacements are fully canceled after the time t = τ1+τ for both cases with the same and the opposite
double impacts, i.e. during the duration time of the second impact τ after the application time τ1.

Remark 3 (Structure of the second counter impact) It should be noted that in the case of an arbitrary structure
the wave cancellation conditions for the double impact in both cases require the second impact structure in
terms of response functions Φn(t, τ, τn) (see Eqs. (47) and (49)) activated consequently in sequence of times
τ1, τ2, .... Only simple structure of eigenvalues in previous Sects. 2.3.1 and 4.2 allows to define a single value
τ1 for all terms. However, as shown in numerical examples Figs. 9 and 11 the wave is dominantly canceled
even within the first term, and almost fully cancelled if only terms are taken into account.
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6 Double impact on the membrane: numerical example for the opposite direction

As an example with 2D inner geometry, we consider a rectangular membrane in a plane with size a × b, with
thickness h, made of material with constant density ρ. The membrane is under uniform pretension stress N
(physical dimension [N m−1]). At the time t = 0 the constant impacting load F of duration τ is applied at
the point (x0, y0). The dynamic motion is described by a vertical displacement function w(x, y, t), which is
satisfying the following equation, see e.g. in [13]:

ρh
∂2w

∂t2
− N�w = q(x, y, t), with Laplacian �() ≡ ∂2()

∂x2
+ ∂2()

∂ y2
. (69)

The distributed force q(x, y, t) with physical dimension [N m−2] is represented in this case via the Dirac
function on the plane δ(x − x0)δ(y − y0) (namely a = (x0, y0) and F = P , F1 = −P in Eq. (34) for the
arbitrary structure) as follows:

q(P, −P)(x, y, t) = Pδ(x − x0)δ(y − y0)[H(t) − H(t − τ)]
−Pδ(x − x0)δ(y − y0)[H(t − τ1) − H(t − τ − τ1)]. (70)

The membrane is fixed at all boundary lines:

w(0, y, t) = 0, w(a, y, t) = 0, w(x, 0, t) = 0, w(x, b, t) = 0. (71)

The operator Lw with regards to Eq. (32) is represented so far as follows:

Lw ≡ N

h
�w = N

h

[
∂2w

∂x2
+ ∂2w

∂ y2

]

. (72)

The eigenvalue problem for this operator Lw is formulated from the general statement in Eq. (35), in which
λ2n,m is taken as eigenvalue for further convenience,

[
∂2X

∂x2
+ ∂2X

∂ y2

]

+ λ2X = 0. (73)

Eigenfunction X should satisfy the following boundary conditions (generally derived also from Eq. (37)):
zero displacements (from Eq. (71)) as Dirichlet boundary conditions.

The solution of this problem (can be also found in literature for the vibration theory, see e.g. in [13]) is
represented as follows:

λ2n,m =
(πn

a

)2 +
(πm

b

)2
, n,m = 1, 2, 3, ..., (74)

Xn,m(x, y) = sin
(πn

a
x
)
sin

(πm

b
y
)

, n,m = 1, 2, 3, ..., (75)

and the square of the norm for eigenfunctions is calculated as

‖Xn,m(x)‖2 =
∫ a

0

∫ b

0
sin2

(πn

a
x
)
sin2

(πm

b
y
)
x = ab

4
. (76)

Then the solutions T first
nm for the first impact of duration τ are found similar to Eq. (46),

T first
n,m (t) = PXnm(x0, y0)

ρh‖Xn,m(x)‖2Φn,m(t, τ, 0), (77)

leading to the following Fourier series (all Eqs. (10), (75), (76) are employed):

wfirst(x, y, t) =
∞∑

n=1

∞∑

m=1

PXnm(x0, y0)

ρh‖Xn,m(x)‖2�n,m(t, τ, 0)Xn,m(x, y)
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=
∞∑

n=1

∞∑

m=1

4Pab sin
(πn

a
x0

)
sin

(πm

b
y0

)

Nπ2(n2b2 + m2a2)
sin

(πn

a
x
)
sin

(πm

b
y
)

×

×
(
[1 − cos(ωnm(t))] H(t) − [1 − cos(ωnm(t − τ))] H(t − τ)

)
, (78)

with eigenfrequencies

ωn,m = π

√
N

ρh

[(n

a

)2 +
(m

b

)2
]

, n,m = 1, 2, 3, ... (79)

The second counter impact is generated at the time τ11 according to the definition of the corresponding
eigenperiods Pnm in Eq. (9):

Pnm = 2π

ωnm
= 2ab ·

√
ρ

N (n2b2 + m2a2)
. (80)

The corresponding functions T second
nm (opposite direction) are defined similar to Eq. (47):

T second
n,m (t) = −PXnm(x0, y0)

ρh‖Xn,m(x)‖2 Φn,m(t, τ, τnm) (81)

in which the response functions are calculated at the time τnm consequently, and the whole series is activated
at time τ11. For the double impact in the opposite direction, it is required that the condition in Eq. (19) from the
Property 5 for the response function is fulfilled, see also the rule described in Sect. 3.2 for the arbitrary structure.
The counter impact satisfying the wave cancellation condition should be applied at the integer number of eigen
periods. In this case, this proportionality is fulfilled if we chose τnm = kPnm for the selected integer number
k = 1, 2, 3... and apply the second impact at the time τnm = kP11.

The following Fourier series for the second impact is written as:

wsecond(x, y, t) =
∞∑

n=1

∞∑

m=1

−PXnm(x0, y0)

ρh‖Xn,m(x)‖2 Φn,m(t, τ, τnm)Xn,m(x, y)H(t − τ11)

=
∞∑

n=1

∞∑

m=1

−4Pab sin
(πn

a
x0

)
sin

(πm

b
y0

)

Nπ2(n2b2 + m2a2)
sin

(πn

a
x
)
sin

(πm

b
y
)
H(t − τ11) ·

×
(
[1−cos(ωnm(t−τnm)] H(t−τnm)−[1− cos(ωnm(t−τnm−τ))] H(t−τnm−τ)

)
.

(82)

6.1 Numerical example: counter impact in the opposite direction

As a numerical example, we will show an impact in the opposite direction only without the loss of generality.
The thin membrane of size a = 1 m, b = 2 m and thickness h = 0.01 m is subjected to pretension stress with
N = 1000 N m−1, density is ρ = 7800 kg m−3. According to these values the first eigen period is calculated
via Eq. (80) as P11 = 4.996 × 10−1 s. The membrane is impacted at point x0 = 0.25 m, y0 = 0.35 m with
the force F = 10 N of the duration τ = 0.2P11 = 9.991 × 10−2 s. Results for the single impact is shown in
Fig. 12 (red line). The second impact is applied at the time equals to four periods τ11 = 4 × T11 = 1.998 s
and further τnm = 4Tnm . Twenty terms for both directions n = 20, m = 20 are taken in the double Fourier
series for w(x, y, t) = wfirst(x, y, t) + wsecond(x, y, t) in Eqs. (78)–(82). The result for the double impact is
shown in Fig. 12 as green line—green and red lines are overlapping at 0 ≤ t ≤ τ11. In addition in this Figure,
computational results only for the second impact, see Eq. (82) is shown as blue crossed line.

It can be seen that the first wave generated by the first impact is fully canceled by the second counter impact
and the membrane is standing still after the time t = τ + τ11 (results are computed at the impact point (x0, y0).

Remark 4 (Double impact on the Kirchhoff plate) Another very similar example for the double impact problem
possessing analytical solutions can be constructed for the simply supported plate with respect to the Kirchhoff
plate theory theory, see Appendix A.4.
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Fig. 12 Vertical displacement of the membrane w at the point x0, y0 of applied force P . The double opposite impact. The
membrane is standing still after the counter impact at time t = τ11 + τ = 2.098 s

7 Conclusion

The current contribution studied the wave cancellation conditions for the double impact system in an arbitrary
structure. The first impact of a final duration τ is applied at a certain point and is causing the first wave, the
second counter impact is applied in a certain time τ1 such that the vibrations are fully cancelled. First, this
phenomenon is studied in detail in the closed form for the double impact in 1D bar. It is possible to find the
time of application for the counter impact depending on the kth eigenvalue of the structure as well as the time
of its duration such that the vibration is disappearing. A response function is introduced in order to calculate
all parameters of the double impact leading to the wave cancellation conditions. The result is generalized for
any arbitrary homogeneous linear non-dissipative mechanical structure described by a semi-elliptic operator
Lu. It is shown by using the properties of the response function, that for a general structure the counter impact
can be generated in both the same and the opposite direction to the first impact. Wave cancellation conditions
are formulated as specification of the second impact of duration τ , applied after an integer number k of the first

eigenperiod P1 for the same impact direction, or applied after uneven number divided by two
2k + 1

2
of the fist

eigenperiod P1. The vibrations are fully disappearing within the application time τ of the second impact (i.e.
fully canceled after the time t = τ + τ1). Numerically it has been illustrated for the set of problems possessing
analytical solutions in Fourier series: simply supported and clamped beams, a membrane. The solution for the
simply supported Kirchhoff is also presented. The amplitude for the counter impact for any arbitrary structure
depends on higher order periods Pn , though the contributions of the higher order terms is rather negligible.

Summarizing the development we can see the three major fields of potential applications of the general
result:

1. As a set of perfect verification examples in computational contact mechanics [19] in order to test numerical
time integration schemes especially with energy conservation properties [7,28]. It is well known, that
these schemes are verified on the example with a-priory conserved energy and are required the long time
integration in order to test the energy conservation properties, see [3]. Providing a set of examples with
both wave and energy cancellation properties will allow to decrease the time integration for verification.

2. The result formulated in Sect. 3 as wave cancellation conditions for an arbitrary structure in differential
forms can be straightforwardly transferred into any convenient numerical methods in solid mechanics:
finite element method, isogeometric method etc.

3. The structure of the opposite impact causing the cancellation is fully recovered by the first one, therefore
these result can be directly employed during engineering design process for various impacting devices
(hammering etc.) to prevent the recoil.
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A Appendix

A.1 Fourier series method for the solution of the homogeneous PDE

The homogeneous equation for the PDE in Eq. (1) is written as (right side is zero q(x, t) = 0)

∂2u

∂t2
= c2

∂2u

∂x2
, (83)

where the parameter c =
√

E

ρ
is the velocity of the wave distribution.

The split of time variable t from the structural variable x is the basis of the standard Fourier series leading to
the eigenvalue problem. This split taken as u(x, t) = X (x)T (t) leads to the split of Eq. (83) into a system of
two ordinary differential equations

T̈

T

1

c2
= X ′′(x)

X
= −λ2. (84)

The equation with the structural variable x from the system (84) together with the boundary conditions gives
us the statement of the eigenvalue problem:

– find the set of eigenfunctions Xn(x) and eigenvalues λn satisfying the following equation:

X ′′(x) + λ2X = 0; (85)

– and the corresponding boundary conditions (arising from Eq. (2))

X (0) = 0 : fixed end,
d X

d x
(L) = 0 : free end. (86)

The well known solution of the eigenvalue problem (85)–(86) is an infinite countable set of the following
eigenfunctions Xn(x) and eigenvalues λn:

Xn(x) = sin(λnx) = sin

( [(2n + 1)π] x
2L

)

,

λn = [(2n + 1)π] x
2L

. (87)

This set of eigenfunctions is forming an orthogonal basis in the Hilbert space {H : y = f (x), 0 ≤ x ≤ L}
equipped with the following scalar product:

〈 f (x) · g(x)〉 =
∫ L

0
f (x)g(x) dx . (88)

Thus, the orthogonality of the eigenfunctions Xn(x) is the fulfillment of the following conditions:

〈Xn(x) · Xk(x)〉 =
∫ L

0
Xn(x) · Xk(x) dx = δkn‖Xk(x)‖2, (89)

where δkn is the Kronecker delta and ‖Xk(x)‖ is the norm of the eigenfunction.
The full solution of the homogeneous PDE (83) is given, therefore, in the form of a Fourier series as

u(x, t) =
∞∑

n=0

Tn(t)Xn(x) =
∞∑

n=0

Tn(t) sin

(
(2n + 1)π

2L
x

)

, (90)

where all time dependent functions Tn(t) should satisfy the corresponding initial conditions.

http://creativecommons.org/licenses/by/4.0/
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A.2 Lemma 1: solution of non-homogeneous ODE via the convolution with a fundamental function

Lemma 1 The solution of the non-homogeneous ODE

T̈ (t) + ω2T (t) = f (t) (91)

is derived in the form of a convolution with the fundamental solution T f (t) as

T (t) = T f (t) ∗ f (t) =
∫ ∞

−∞
T f (τ ) f (t − τ)dτ. (92)

The fundamental solution T f (t) is a solution in the form of generalized functions:

T̈ f (t) + ω2T f (t) = δ(t). (93)

This solution is found as the solution of the following initial value problem for the ODE:

T̈h(t) + ω2Th(t) = 0; (94)

Th(0) = 0; dTh
dt

= 1, (95)

and is written as

T f (t) = Th(t)H(t) = sin(ωt)

ω
H(t), (96)

where
sin(ωt)

ω
is the solution of the initial value problem in Eqs. (94)–(95) and H(t) is the Heaviside function.

A.3 Fourier series method for the solution of the non-homogeneous PDE

The solution of the non-homogeneous PDE (1) can be found in the form Eq. (90), satisfying the boundary
conditions (2) (because of the choice of eigenfunctions). The standard transformation of the PDE, namely
a scalar product (Eq. 88) with eigenfunctions Xn(x) in the corresponding Hilbert space leads to due the
orthogonality property in Eq. (89) to the set of ordinary differential equations (ODE) for time dependent
functions Tn(t):

T̈n(t) + c2λ2nTn(t) = 〈q(x, t) · Xn(x)〉
ρA‖Xk(x)‖2 . (97)

For the problem in Eq. (90), the norm of the eigenfunctions is computed as

‖Xk(x)‖2 =
∫ L

0

(

sin

(
(2k + 1)π

2L
x

))2

dx = L

2
. (98)

Each of Eqs. (97) should satisfy the initial conditions arising from the integration of initial conditions in Eq. (3)
for the original PDE (scalar product in the corresponding Hilbert space):

Tn(0) = 0; dTn
dt

(0) = 0. (99)

The solution of the non-homogeneous ODE (97) can be obtained in the form of a convolution with the
fundamental solution employing Lemma 1 in A.2, see more about methods in [13,33,34]:

Tn(t) = sin(ωnt)

ωn
H(t) ∗ 〈q(x, t) · Xn(x)〉

ρA‖Xk(x)‖2 H(t)

(100)

with ωn = cλn.
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A.4 Solution of the double impact problem for the simply supported Kirchhoff plate

Consider a rectangular plate with size a × b and thickness h, made of elastic material with elasticity modulus
E , Poisson’s ratio ν and constant density ρ. The kinematic of deformation is satisfying the Kirchhoff theory.
The plate is simply supported. At time t = 0 the constant impacting load P of duration τ is applied at the point
x0, y0. The dynamic motion is described by the vertical displacement function w(x, y, t), which, according to
the Kirchhoff–Love plate hypothesis, is satisfying the following equation:

D��w + ρh
∂2w

∂t2
= q(x, y, t). (101)

The plate stiffness is defined as

D = Eh3

12(1 − ν2)
. (102)

The distributed force q(x, t) is represented via the Dirac function as q = P(t)δ(x − x0)δ(y − y0). The double
Laplace differential operator is defined as

��w(x, y, t) ≡ ∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+ ∂4w

∂y4
. (103)

The function w(x, y, t) for the simply supported plate should satisfy the following boundary conditions:

– The displacements are zero at all boundary lines:

w(0, y, t) = 0, w(a, y, t) = 0, w(x, 0, t) = 0, w(x, b, t) = 0. (104)

– The corresponding bending moments are zero at all boundary lines:

My(0, y, t) = 0, My(a, y, t) = 0, Mx (x, 0, t) = 0, Mx (x, b, t) = 0; (105)

which are transformed according to the Kirchhoff plate theory to the following equations:

∂2w(0, y, t)

∂x2
= 0,

∂2w(a, y, t)

∂x2
= 0,

∂2w(x, 0, t)

∂y2
= 0,

∂2w(x, b, t)

∂y2
= 0. (106)

It is well known that in this simplest case the eigenfunctions of the corresponding eigenvalue problem

X IV (x)

X (x)
+ 2

X
′′
(x)Y

′′
(y)

X (x)Y (y)
+ Y IV (y)

Y (y)
= λ4 (107)

are fully coinciding to those for the membrane in Eq. (75) with eigenvalues

λ4n,m =
(πn

a

)4 + 2
(πn

a

)2 (πm

b

)2 +
(πm

b

)4
, n,m = 1, 2, 3, ... (108)

The first impact is represented by the following Fourier series

wfirst(x, y, t) =
∞∑

n=1

∞∑

m=1

PXnm(x0, y0)

ρh‖Xn,m(x)‖2�n,m(t, τ, 0)Xn,m(x, y)

=
∞∑

n=1

∞∑

m=1

4Pa3b3 sin
(πn

a
x0

)
sin

(πm

b
y0

)

Dπ4(n2b2 + m2a2)2
sin

(πn

a
x
)
sin

(πm

b
y
)

·

×
(
[1 − cos(ωnm(t))] H(t) − [1 − cos(ωnm(t − τ))] H(t − τ)

)
, (109)

with eigenfrequencies

ω2
n,m = π4 D

ρh

[(n

a

)2 +
(m

b

)2
]2

, n,m = 1, 2, 3, ... (110)
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The second impact is represented by the following Fourier series:

wsecond(x, y, t) =
∞∑

n=1

∞∑

m=1

±PXnm(x0, y0)

ρh‖Xn,m(x)‖2 Φn,m(t, τ, τnm)Xn,m(x, y)H(t − τ11)

=
∞∑

n=1

∞∑

m=1

±4P1a3b3 sin
(πn

a
x0

)
sin

(πm

b
y0

)

Dπ4(n2b2 + m2a2)2
sin

(πn

a
x
)
sin

(πm

b
y
)
H(t − τ11) ·

×
(
[1 − cos(ωnm(t − τnm)] H(t − τnm)

− [1 − cos(ωnm(t − τnm − τ))] H(t − τnm − τ)
)
. (111)

The cancellation conditions are as follows:

– For the double impact in the opposite direction, i.e. P1 = −P in Eq. (111):

The second impact starts at τ1 = kP11 and all τnm = kPnm = k
2π

ωnm
for any integer k = 1, 2, 3....

– For the double impact in the same direction, i.e. P1 = P in Eq. (111):

The second impact starts at τ1 = 2k + 1

2
P11 and all τnm = 2k + 1

2
Pnm = 2k + 1

2

2π

ωnm
for any integer

k = 1, 2, 3....
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