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Abstract We present a study on the local stress distribution in a composite for a single-fiber pulled-out model.
We consider an interphase between a fiber of finite length and the matrix, and we take into account varying
bonding conditions in the axial direction between the fiber and the interphase and between the interphase and
the matrix. Bonding is modeled by a modification of the classical spring-layer model, in which the quality
of bonding between two constituents is quantified by a proportionality constant that describes the ratio of
the displacements to the acting shear stresses in an interface. The problem is studied for linear elastic and
for viscoelastic problems by the means of the elastic–viscoelastic correspondence principle. In numerical
examples, we illustrate the development of the normal stresses in the constituents and of the interfacial shear
stresses for different bonding conditions as well as for viscoelastic creep in the matrix.

1 Introduction

Pull-out tests of fibers from composites are important methods to determine the composite properties. Different
mechanical models have been developed in order to predict the stress distribution in the composite in such
tests. Examples for early works are the articles by Cox [12] and Rosen [41]. The single-fiber pull-out test has
beenmodeled in different works such as Fu et al. [18] and Kim et al. [33]. This single-fiber shear-lag might also
be useful as a representative volume element for an array of parallel fibers of equal geometric and mechanical
properties (see, e.g., Lenci and Menditto [35], Meng and Wang [37], and Upadhyaya and Kumar [45]).

The bonding conditions between two constituents have a crucial role in the functionality of composites, and
an understanding of the development of the mechanical properties with ongoing damage processes guarantees
an efficient use of this class of materials. Interfacial bonding between constituents is formed by different
mechanisms such as molecular entanglement which is then followed by inter-diffusion, electrostatic attraction,
chemical reaction, or mechanical keying [15]. In many cases the fibers in polymer matrices are surface-treated
or coated by an interphase to improve the adhesion between the constituents mechanically of chemically (see,
e.g., Wu et al. [46]), and Karger-Kocsis et al. [32] review the recent developments in fiber/matrix interphase
engineering for polymer composites. In mechanical modeling, a single interphase layer or a multitude of
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interphase layers might simulate a graded or degraded part of the matrix (see, e.g., Fomenko et al. [17], and
Andrianov et al. [4]), which might, for example, be the result of exposure to environmental conditions such
as air or moisture. Yao et al. [47] present a modified shear-lag model that considers a graded interphase with
varying Young’s modulus in the radial direction. Different developments in the analytic modeling of fiber
pull-out problems are treated in the recent book by Andrianov et al. [2]. Andrianov et al. [2] study different
two-dimensional problems of axially loaded, coated and uncoated fibers, and they discuss that these results
can be generalized in order to be applied for three-dimensional problems.

Imperfect bonding might be the result from numerous factors such as cracks, corrosion, or degradation
of the material [20]. Different approaches have been developed in order to model imperfect bonding between
two constituents. A popular model is denoted as the spring-layer model, which has been proposed in the
work by Goland and Reisner [23]. Examples of works that apply the spring-layer model are the articles by
Geymonat et al. [21], Krasucki and Lenci [34], Nazarenko et al. [39], and Golub and Doroshenko [24]. The
works by Danishevskyy et al. [13] and Andrianov et al. [6] consider a nonlinear spring-layer modeled in their
modeling of imperfect bonding. The spring-layer model shows analogies to the thermal resistance models
[3,7]. A model that describes piece-wise varying bonding conditions in the circumferential orientation along
the fiber surface has been used in [36] in the context of the calculation of the effective shear stiffness of periodic
fibrous composites. A popular alternative for modeling imperfect bonding is to introduce an artificial layer
between two constituents. The thickness of such a modeling layer is considerably smaller than the diameter
of the fiber, and the geometric and mechanical properties of such an artificial layer define the bonding quality.
This idea has been applied in different works such as Hashin [26], Benveniste and Miloh [9] and Sevostianov
et al. [42]. Andrianov et al. [5] compare the spring-layer model to the artificial layer approach in order to
estimate the quality of artificial layer method. The latter approach may then be applied to problems where
boundary conditions may not be taken into account explicitly. When the pull-out forces are large enough, the
fibers will slide or even tear. Hutchinson and Jensen [31] study axially loaded fibers, and they consider friction
between the fibers and the matrix. Partial and full interfacial debonding of fibers in pull-out tests has been
modeled in different works, for example in a series of articles by Hsueh [27,28] and by Chang et al. [10].

Inmany industrial applications, thematrix constituent ismade of polymers,which often reveal a viscoelastic
behavior for the considered time interval of loading. At the same time, the time-dependent behavior of the
fibers is often taken to be negligibly small. Based on observations from fiber pull-out tests, the modeling work
by Hsueh [29] takes into account a viscous interphase layer between the fibers.

Time-dependent mechanical behavior of the material is oftenmodeled in terms of a combination of springs,
which represent an elastic behavior, and dashpots, which represent a viscous behavior. The elastic–viscoelastic
correspondence principle is based on the idea that the treatment of the linear elastic problem and the Laplace
transformed viscoelastic problem shows certain analogies (see, e.g., the classical book by Flügge [16]). This
principle has been applied in different works, for example by Hashin [25] and by Reza and Shishesaz [40],
on composites. Andrianov et al. [8] applied this principle in order to study planar load transfer problems for
fibers that are pulled out of a viscoelastic matrix.

The present work generalizes previous works in the field of fiber pull-out modeling, and bonding between
the fiber and interphase layer, and between an interphase layer and the matrix is taken to be imperfect. The
quality of bonding is modeled to vary in the axial direction. While the bonding quality in the contact interfaces
between two constituents is often taken to be constant, this work assumes that the bonding strength may be
relatively low near the surface of the composite, where the material is subjected to different environmental
conditions, and the bonding strength may increase along the axial fiber direction with the distance from the
surface. In the different contact surfaces, the bonding quality may differ, i.e., the bonding may still be intact in
one interface, for example between the fiber and the interphase, but imperfect in another interface, for example
between the interphase and the matrix. In addition to the time-independent elastic treatment, this article also
studies the local stress distribution in the material for a viscoelastic behavior of the matrix. The interplay of
the viscoelastic behavior and imperfect bonding is then studied in some numerical results. Special cases of our
herein presented model are then compared to known results from the literature.

This article is organized as follows: Sect. 2 describes the fiber pull-out problem, where axially varying
bonding conditions between the fiber and its coating and between the coating and the matrix are taken into
account. Section 3 studies the distribution of the stresses in the composite, and it provides some numerical
examples that illustrate the impact of the bonding conditions on these stress distributions. Viscoelastic behavior
of constituents is then studied in Sect. 4, and some numerical examples study the development of the stress
distribution with creep and relaxation. The final Sect. 5 presents some conclusions.
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2 Pulled-out fibers

Figure 1 shows an elastic fiber Ω(0) in the center of a cylinder, which is also denoted as the double shear-lag
model [30]. The fiber is subjected to a force F (0) in the axial direction,which tends to pull the fiber out. This fiber
has the length L , the Young’smodulus E (0), the shear modulusμ(0), the radius r (0), and the cross-sectional area

A(0) = π
[
r (0)

]2
. This fiber is coated by amaterialΩ(1) with theYoung’smodulus E (1), the shearmodulusμ(1),

the thickness r (1)−r (0), and thereforewith the cross-sectional area A(1) = π{[r (1)
]2−[

r (0)
]2}. This constituent

Ω(1) may represent an interphase, such as a coupling agent, or it may be used as a thin (r (1) − r (0) � r (0))

r(0)

z

r(2)

r(1)

L

F (0)

Ω(0)

Ω(1)

Ω(2)

interface ∂Ω(0,1)

r(0)
r(1)

r(2)

z

r

interface ∂Ω(1.2)

Ω(1)Ω(0) Ω(2)

Fig. 1 Cylinder model of the composite, which consists of a fiber Ω(0) in the center, the interphase Ω(1), and the matrix Ω(2).
The bonding between the constituents is taken to be imperfect and varying with the axial coordinate z. The force F (0) must be
balanced in order to avoid displacement of the cylinder as a rigid whole. This force is in balance with the force Σ

(2)
zz (L)A(2) that

results from the average normal stresses Σ
(2)
zz (z) at the axial location z = L over the cross-sectional area of the matrix
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modeling layer. This coated fiber is embedded in a matrix Ω(2) with the Young’s modulus E (2), the shear

modulusμ(2), the thickness r (2) −r (1), and therefore with the cross-sectional area A(2) = π{[r (2)
]2−[

r (1)
]2}.

The shear stress τ
(i)
r z (r, z) in the constituent Ω(i), i = 0, 1, 2, is related to the axial displacements u(i)

z (r, z)
through the shear modulus μ(i), and the axial normal stress σ

(i)
zz (r (i), z) is related to the axial displacements

u(i)
z (r (i), z) through the Young’s modulus E (i):

τ (i)
r z (r, z) = μ(i) ∂u

(i)
z (r, z)

∂r
, i = 0, 1, 2, (1a)

σ (i)
zz (r, z) = E (i) ∂u

(i)
z (r, z)

∂z
, i = 0, 1, 2. (1b)

The bonding between the constituents may be imperfect. We assume that bonding may vary with the axial
location z, for example because bondingmight be affected by environmental conditions such as air or moisture.

Consider bonding between the fiber Ω(i−1) and its neighboring phase Ω(i) to be imperfect and to be
described by the spring-layer model. In this spring-layer model, in the interface ∂Ω(i−1,i) between Ω(i−1)

and Ω(i) the shear stresses τ
(i−1)
r z (r (i−1), z) and τ

(i)
r z (r (i−1), z) are equal, while the differences in the axial

displacements u(i−1)
r z (r (i−1), z) and u(i)

r z (r (i−1), z) are proportional to the shear stresses:

τ (i−1)
r z (r (i−1), z) = τ (i)

r z (r (i−1), z), (2a)

u(i)
z (r (i−1), z) − u(i−1)

z (r (i−1), z) = γ (i−1,i)(z) τ (i−1)
r z (r (i−1), z). (2b)

The parameter γ (i−1,i)(z) in Eq. (2b) is the bonding factor, which quantifies the bonding quality. Let us now
differentiate Eq. (2b) with respect to z by the application of the product rule:

∂u(i)
z (r (i−1), z)

∂z
− ∂u(i−1)

z (r (i−1), z)

∂z
= ∂γ (i−1,i)(z)

∂z
τ (i−1)
r z (r (i−1), z)

+γ (i−1,i)(z)
∂τ

(i−1)
r z (r (i−1), z)

∂z
. (3)

Note that in Eqs. (2) and (3) r (−1) = 0 would refer to the axis of the fiber, in which τ
(−1)
r z = 0. Using the

relation between the axial displacement and the normal axial stress in (1b), we can express the normal stress
σ

(1)
zz (r (0), z) and σ

(2)
zz (r (1), z) as

σ (1)
zz (r (0), z) = E (1)

E (0)
σ (0)
zz (r (0), z) + E (1) ∂γ (0,1)(z)

∂z
τ (0)
r z (r (0), z) + E (1)γ (0,1)(z)

∂τ
(0)
r z (r (0), z)

∂z
, (4a)

σ (2)
zz (r (1), z) = E (2)

E (1)
σ (1)
z (r (1), z) + E (2) ∂γ (1,2)(z)

∂z
τ (1)
r z (r (1), z) + E (2)γ (1,2)(z)

∂τ
(1)
r z (r (1), z)

∂z
. (4b)

Note that special cases of the herein presented model lead to known models that have been studied in other
research works. If γ (0,1)(z) = γ (1,2)(z) = 0 so that bonding is the interface is in perfect contact with both
the fiber and the matrix, then Eqs. (2) reduce to τ

(0)
r z (r (0), z) = τ

(1)
r z (r (0), z) and u(0)

z (r (0), z) = u(1)
z (r (0), z)

for i = 1 and to τ
(1)
r z (r (1), z) = τ

(2)
r z (r (1), z) and u(1)

z (r (1), z) = u(2)
z (r (1), z) for i = 2 (see, e.g., [30]). In

a fiber–matrix composite in the absence of an interphase layer, different works such as the article by Lenci
and Menditto [35] apply the spring-layer model for a constant bonding factor, which would correspond to our
γ (0,1) or γ (1,2) in a z-independent and constant specification.

We assume that the diameter of the fiber is small in comparison with the diameter of the cylinder model,
and the stiffness of the fiber is much larger than the stiffness of the other constituents, so that in Eq. (4a) we

may write Σ
(0)
zz (z) = σ

(0)
zz (r (0), z) = F (0)

A(0) , where Σ
(0)
zz (z) is the average normal stress in the fiber which just

depends on the axial coordinate z.
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The outer surface of the cylinder is taken to be free from shear stresses:

τ (2)
r z (r (2), z) = 0. (5)

The boundary condition (5) may result from different considerations. As a first example, consider the case that
the cylinder model in Fig. 1 represents a single-fiber model, and this cylinder is not in contact with any other
material at the outer surface in the radial direction. Then, condition (5) results from the general assumption
of stress freedom at the model’s outer surface [18,30,37]. As a second example, consider an array of parallel
fibers of equal geometric and mechanical properties, which are equally loaded by a pull-out force. Then, such
a cylinder model in Fig. 1 can be treated as a representative volume element [35,37,45].

In our modeling we assume that in the location z = L in the axial direction there is no contact between the
fiber and the matrix and between the interphase and the matrix.

3 Stress distribution in the composite

In order to find the relation between F (0) and the stress distribution, we will first derive a relation between the
average normal stresses of a constituent and the interfacial shear stresses at the boundaries of this component.
In the second step, the relation between the pull-out force F (0) and the average normal stresses is determined.
In the third part of this section, we then obtain a system of coupled ordinary differential equations in terms of
the average normal stresses, and the solution of this system gives a detailed distribution of the different stresses
in the cylinder model.

3.1 Relation between interfacial shear stresses and average normal stresses

The forces that result from the average normal stresses in the different constituents are in balance with the
pull-out force F (0). In order to determine the average normal stresses in the fibers, we need to find a relation
between the shear stresses in the interfaces and the average normal stresses. For the shear stresses τ

(i)
zz in the

interphase Ω(1) and in the matrix Ω(2) of the unit cell, we take ansatzes in the forms (see, e.g., [18,30])

τ (i)
r z (r, z) = a(i)(z)

r
+ b(i)(z)r, i = 1, 2, (6)

where a(i) = a(i)(z) and b(i) = b(i)(z) are parameters, which depend on the axial coordinate z. These
parameters have the forms

a(i)(z) = τ (i)
r z (r (i−1), z)B(i)

1 + τ (i)
r z (r (i), z)B(i)

2 , (7a)

b(i)(z) = τ (i)
r z (r (i−1), z)B(i)

3 + τ (i)
r z (r (i), z)B(i)

4 , (7b)

where B(i)
1 , B(i)

2 , B(i)
3 , and B(i)

4 are four constants that result from the geometry of the cylinder model,

B(i)
1 =

[
r (i)

]2
r (i−1)

[
r (i)

]2 − [
r (i−1)

]2 , B(i)
2 = − r (i)

[
r (i−1)

]2

[
r (i)

]2 − [
r (i−1)

]2 , (8a)

B(i)
3 = − r (i−1)

[
r (i)

]2 − [
r (i−1)

]2 , B(i)
4 = r (i)

[
r (i)

]2 − [
r (i−1)

]2 . (8b)
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The average normal stresses Σ
(i)
zz (z) in the component Ω(i) and the shear stresses τ

(i)
r z (r (i−1), z) and

τ
(i)
r z (r (i), z) in the interfaces ∂Ω(m−1,m) and ∂Ω(m,m+1) to the neighboring components are related via [38]

∂Σ
(i)
zz (z)

∂z
=

2
[
r (i−1)τ

(i)
r z (r (i−1), z) − r (i)τ

(i)
r z (r (i), z)

]

[
r (i)

]2 − [
r (i−1)

]2 . (9)

For i = 0 in (9,) we obtain the following relations between the interfacial shear stress and the average normal
stress for the fiber,

τ (0)
r z (r (0), z) = −r (0)

2

∂Σ
(0)
zz (z)

∂z
. (10)

For i = 2 in (9), we obtain the following relations between the interfacial shear stress and the average normal
stress for the matrix:

τ (1)
r z (r (1), z) =

[
r (2)

]2 − [
r (1)

]2

2r (1)

∂Σ
(2)
zz (z)

∂z
. (11)

Equations (10) and (11) relate the shear stresses in the interfaces ∂Ω(0,1) and ∂Ω(1,2) to the average normal
stresses in the fiber and in the matrix. This allows to rewrite the parameters a(i) and b(i) in terms of the
geometric parameters and the average normal stresses.

For i = 1 the parameters in (7) become

a(1)(z) = C (1)
1

∂Σ
(0)
zz (z)

∂z
+ C (1)

2
∂Σ

(2)
zz (z)

∂z
, (12a)

b(1)(z) = C (1)
3

∂Σ
(0)
zz (z)

∂z
+ C (1)

4
∂Σ

(2)
zz (z)

∂z
, (12b)

where we have applied (10) and (11), as well as the abbreviation

C (1)
1 = − r (0)B(1)

1

2
,C (1)

2 = − 1

2

B(1)
2

B(1)
3

,

C (1)
3 = − r (0)B(1)

3

2
,C (1)

4 = −1

2

B(1)
4

B(1)
3

,

in order to collect the geometric parameters.
For i = 2 the parameters a(i) and b(i) in (7) become

a(2)(z) = C (2)
1

∂Σ
(2)
zz (z)

∂z
, (13a)

b(2)(z) = C (2)
3

∂Σ
(2)
zz (z)

∂z
, (13b)

where we have applied (11) as well as the abbreviations

C (2)
1 = − 1

2

B(2)
1

B(1)
3

, C (2)
3 = − 1

2

B(2)
3

B(1)
3

for the geometric parameters.
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3.2 Balance of pull-out force and the forces that result from average normal stresses

Under the condition (5), the applied external force F (0) and the forces Σ
(i)
zz (z)A(i), which result from the

averaging stresses Σ
(i)
zz (z) in the different components Ω(i), are in equilibrium for any axial location z,

F (0) = A(0)Σ(0)
zz (z) + A(1)Σ(1)

zz (z) + A(2)Σ(2)
zz (z). (14)

Let us assume that for z = 0 the fiber force is in balance with the axial fiber force, and at z = L the fiber
force is in balance with the force that results from the average normal stresses in the matrix. This results in the
following boundary conditions for the average normal stresses in the fiber, in the coating, and in the matrix:

Σ(0)
zz (0) = F0

A(0)
, Σ(0)

zz (L) = 0, (15a)

Σ(1)
zz (0) = 0, Σ(1)

zz (L) = 0, (15b)

Σ(2)
zz (0) = 0, Σ(2)

zz (L) = F0
A(2)

. (15c)

The average normal stresses Σ
(i)
zz (z) in the component Ω(i) can be determined from an axial normal

stresses distribution σ
(i)
zz (r, z) on the cross-sectional area A(i). The force Σ

(i)
zz (z)A(i), which results from the

average normal stress Σ
(i)
zz (z) in the component Ω(i) with the cross-sectional area A(i), is equal to the force

∫ r (i)

r (i−1) σ
(i)
zz (r, z)2πrdr , which results from the distribution of the normal stresses σ

(i)
zz (r, z) over the same

cross-sectional area A(i):

Σ(i)
zz (z) = 1

A(i)

r (i)∫

r (i−1)

σ (i)
zz (r, z)2πrdr. (16)

In order to proceed, we need to find expressions for both the average normal stresses Σ
(1)
zz (z) and Σ

(2)
zz (z) in

terms of Σ
(0)
zz (z).

With the help of (1) and (7) and after calculating the integral in (16), we obtain the following expression
for the average normal stresses:

Σ(i)
z (z) = σ (i)

z (r (i−1), z) + H (i)
1

∂a(i)(z)

∂z
+ H (i)

2
∂b(i)(z)

∂z
, (17)

where we have collected the geometric and the material parameters of the componentΩ(i) in the two constants

H (i)
1 = 2π

A(i)

E (i)

μ(i)

[[
r (i)

]2

2
ln

(
r (i)

r (i−1)

) [
r (i−1)

]2 − [
r (i)

]2

4

]
, (18a)

H (i)
2 = 2π

A(i)

E (i)

μ(i)

1

8

([
r (i)

]2 −
[
r (i−1)

]2)2

. (18b)

In the following parts, we derive the expressions for the average normal stresses of the interphase and the
matrix.
Average normal stress Σ

(1)
zz (z) in the interphase After substitution of i = 1 into (17), we obtain the average

normal stress for the interphase Ω(1) in the form

Σ(1)
zz (z) = D(1)

1 Σ(0)
zz (z) + D(1)

2 (z)
∂Σ

(0)
zz (z)

∂z
+ D(1)

3 (z)
∂2Σ

(0)
zz (z)

∂z2
+ D(1)

4
∂2Σ

(2)
zz (z)

∂z2
, (19)
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where we have applied the abbreviations

D(1)
1 = E (1)

E (0)
, (20a)

D(1)
2 (z) = − E (1) r

(0)

2

∂γ (0,1)(z)

∂z
, (20b)

D(1)
3 (z) = − E (1) r

(0)

2
γ (0,1)(z) + C (1)

1 H (1)
1 + C (1)

3 H (1)
2 , (20c)

D(1)
4 = C (1)

2 H (1)
1 + C (1)

4 H (1)
2 . (20d)

Note that D(1)
2 (z) and D(1)

3 (z) depend on γ (0,1)(z), and therefore, they may be functions of z if axially varying
bonding conditions are taken into account.

Average normal stress Σ
(2)
zz (z) in the matrix: After substitution of i = 2 into (17), we obtain the average

normal stress for the interphase Ω(2) in the form

Σ(2)
z (z) = D(2)

1 Σ(0)
z (z) + D(2)

2 (z)
∂Σ

(0)
z (z)

∂z
+ D(2)

3 (z)
∂2Σ

(0)
z (z)

∂z2

D(2)
4 (z)

∂Σ
(2)
z (z)

∂z
+ D(2)

5 (z)
∂2Σ

(2)
z (z)

∂z2
, (21)

where

D(2)
1 = E (2)

E (0)
, (22a)

D(2)
2 (z) = − E (2) r

(0)

2

∂γ (0,1)(z)

∂z
, (22b)

D(2)
3 (z) = − E (2) r

(0)

2
γ (0,1)(z) + E (2)

μ(1)
ln

(
r (1)

r (0)

)

C (1)
1 + E (2)

μ(1)

[
r (1)

]2 − [
r (0)

]2

2
C (1)
3 , (22c)

D(2)
4 (z) =

[
r (2)

]2 − [
r (1)

]2

2r (1)
E (2) ∂γ (1,2)(z)

∂z
, (22d)

D(2)
5 (z) =

[
r (2)

]2 − [
r (1)

]2

2r (1)
E (2)γ (1,2)(z) + E (2)

μ(1)
ln

(
r (1)

r (0)

)

C (1)
2 + E (2)

μ(1)

[
r (1)

]2 − [
r (0)

]2

2
C (1)
4 + H (2)

1 C (2)
1 + H (2)

2 C (2)
3 . (22e)

Here, D(2)
2 (z) and D(2)

3 (z) may be functions of z due to their dependence on the bonding parameter γ (0,1)(z),

and D(2)
4 (z) and D(2)

5 (z) may be functions of z due to their dependence on the bonding parameter γ (1,2)(z).

3.3 Coupled system of ordinary differential equations in terms of the average normal stresses

The second derivatives of (14) with respect to z and the expressions for the average normal stresses in (19) and
(21) for the interphase and for the matrix form a system of three ordinary differential equations of the second
order in terms of average normal stresses in the three constituents,
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∂2Σ
(0)
zz

∂z2
= − α5β2 − α7β1

α4α7 − α5α6
, (23a)

∂2Σ
(1)
zz

∂z2
= [α1α5 − α3α4]β2 + [α3α6 − α1α7]β1

α2 [α4α7 − α5α6]
, (23b)

∂2Σ
(2)
zz

∂z2
= α4β2 − α6β1

α4α7 − α5α6
, (23c)

where we have used the abbreviations

α1 = A(0), α2 = A(1), α3 = A(2),

α4 = D(1)
3 , α5 = D(1)

4 , α6 = D(2)
3 ,

α7 = D(2)
5 , (24)

and

β1 = Σ(1)
zz (z) − D(1)

1 Σ(0)
zz (z) − D(1)

2
∂Σ

(0)
zz (z)

∂z
,

β2 = Σ(2)
z (z) − D(2)

1 Σ(0)
z (z) − D(2)

2
∂Σ

(0)
z (z)

∂z
− D(2)

4
∂Σ

(2)
z (z)

∂z
. (25)

Together with the set of three two-point boundary conditions at z = 0 and z = L for the average normal
stresses Σ

(0)
zz (z), Σ(1)

zz (z), and Σ
(2)
zz (z) in (15), the system of Eqs. (23) provides a relation between the applied

force F (0) and the stress distribution in the composite. It might be difficult to find an analytic solution to
this problem, so that numerical approaches may be used in order to approximate the solution. For example,
“bvp4c” inMATLAB is a finite difference code that implements the three-stage Lobatto IIIa formula [22].

3.4 Comparison to known results

Special cases of our here derived fiber pull-out problem have been studied in different articles. Consider a fiber
Ω(0) in perfect bonding (γ (0,2) = 0) with the matrix Ω(2) in the absence of an interphase. Figure 2 compares
the present results from this article to the results by Kim et al. [33] for two fiber lengths L = 50r (0), and
L = 100r (0). We take the ratios r (2)/r (0) = 10 for the radii and E (0)/E (2) = 100 for the Young’s moduli,
and the values ν(0) = ν(2) = 1/3 for the Poisson’s ratios. Figure 2a depicts the normalized average normal
stresses in the fibers, and Fig. 2b depicts the normalized interfacial shear stresses between the fiber and the
matrix. The results are closer together when the fiber length increases. The present results show higher shear
stresses at the ends of the fibers.

3.5 Numerical examples

In order to illustrate the impact of the bonding on the stress distribution of the cylindermodel, we consider some
numerical examples, in which we take the material to be elastic with time-independent mechanical properties.

Consider a steel fiber Ω(0) (Tenga et al. [44]: Young’s modulus of E (0) = 200GPa, shear modulus of
G(0) = 76.92GPa, Poisson’s ratio of ν(0) = 1

3 ) with the length L = 10−2 m in a bulk polystyrene matrix

Ω(2) (approximated from Cheng et al. [11]: E (2) = 2.1GPa, ν = 0.33, G(2) = E (2)

2[1+ν] ≈ 1.58GPa). The

fiber is loaded by a force F (0) = 0.1N. The radii of the fiber and the cylinder model are r (0) = 10−4 m and
r (2) = 10−3 m.
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Fig. 2 Comparison of the results from this article to the results byKimet al. [33] for twofiber lengths L = 50r (0), and L = 100r (0).
We take the ratios r (2)/r (0) = 10 for the radii and E (0)/E (2) = 100 for the Young’s moduli, and the values ν(0) = ν(2) = 1/3
for the Poisson’s ratios. Figure 2a depicts the normalized average normal stresses in the fibers. Figure 2b depicts the normalized
interfacial shear stresses between the fiber and the matrix
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Fig. 3 Stress distribution in a fiber–matrix composite for the constant bonding parameter (26): a The normalized average normal
stresses in the fiber with the axial location. b The normalized shear stresses at the interface between the fiber and the matrix

Constant bonding between the fiber and the matrix: Consider a fiber Ω(0) and the matrix Ω(2) in the absence
of any interphase Ω(1). Let us assume that bonding between the fiber Ω(0) and the matrix Ω(2) is described
by the constant bonding parameter

γ (0,2)(z) = g1 (26)

in the units of m
Pa . Figure 3 shows the stress distribution in the composite for g1 = 0 (perfect bonding),

g1 = 10−12 m
Pa , and g1 = 10−9 m

Pa . Figure 3a depicts the normalized average normal stresses Σ
(0)
zz (z)/Σ(0)

zz (0)

in the fiber with the axial location. For large values of g1, the stress distribution approximates a diagonal
line. Figure 3b depicts the distribution of the normalized shear stresses τ (0)(r (0), z)/Σ(0)

zz (0) at the interface
between the fiber and the matrix. These shear stresses have a minimum near z = L/2 and larger value at the
ends of the fiber. For large values of g1, the shear stress distribution approximates a horizontal line. In analytic
solutions, the shear stresses τ (0)(r (0), z)will have singularities at z = 0, which will lead to debonding, because
the infinite stress will definitely lead to a partial local damage of the interface. This singularity can be removed
by introducing a thin interphase between the fiber and the matrix [35].

Axially varying bonding between the fiber and the matrix Let us assume that bonding may be weak near
z = 0 and stronger at the other fiber end near z = L . Such varying bonding may be caused, for example, by
diffusion of moisture into the interface or material degradation starting from the surface at z = 0. Bonding
between the fiber and the matrix is considered in the form

γ (0,2)(z) = g1e
−g2z, (27)
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Fig. 4 Stress distribution in a fiber–matrix composite for the axially varying bonding parameter (27) for g1 = 10−9 m
Pa and

different values of g2: a The normalized average normal stresses in the fiber with the axial location. b The normalized shear
stresses at the interface between the fiber and the matrix
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Fig. 5 Stress distribution in a fiber–interphase–matrix composite for different values of the proportionality constant β in (28):
a The normalized average normal stresses in the fiber with the axial location. b The normalized shear stresses at the interface
between the fiber and the matrix

where g1 is a parameter in the units of m
Pa , and g2 is parameter in the units of m−1 that quantifies the change

of the bonding with the axial location. Figure 4 shows the stress distribution in a fiber–matrix composite for
the axially varying bonding parameter (27) for g1 = 10−9 m

Pa in combination with g2 = 0 (constant bonding),

g2 = 100 1
m, and g2 = 1000 1

m. Figure 4a shows the normalized average normal stresses in the fiber with

the axial location, and Fig. 4b shows the normalized shear stresses at the interface between the fiber and the
matrix.

The results show that increasing g2 increases the average normal stress of the fiber near z = 0, while the
interfacial shear stresses become larger near z = L .

Interphase between the fiber and the matrix Consider an interphase Ω(1) with the outer radius r (1) = 1.1 ×
10−4m between the fiber Ω(0) and the matrix Ω(2), where bonding between these material is taken to be
perfect, γ (0,1) = γ (1,2) = 0. This interphase may be a coupling agent or a modeling material that shall
simulate bonding between the fiber and the matrix. Let us assume that

E (1) = βE (2), μ(1) = βμ(2), (28)

where β is a proportionality constant that relates the material parameters of the interphase Ω(1) to those of the
matrix Ω(2). Figure 5 shows stress distribution in a fiber–interphase–matrix composite for different values of
the proportionality constant β in (28).
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If we compare the results from Fig. 5 to the results of Fig. 3 for a constant and imperfect bonding, then we
can see that the distribution of the average normal and shear stresses have some similarities. If we compare
the stress distribution for imperfect bonding by the spring-layer model and by a modeling interphase, then we
can determine some geometric and mechanical properties for the interphase that simulates imperfect bonding,
for example for application where imperfect bonding cannot be explicitly modeled by boundary conditions in
the interface between two constituents (see, e.g., Andrianov et al. [5]).

A soft interphase between the loaded fiber and the matrix reduces the high values of shear stresses at the
end of the fibers (also see, e.g., Lenci and Menditto [35] and Andrianov et al. [2]).

4 Viscoelastic behavior

In fiber-reinforced composites, some constituents may consist of polymers, which reveal a time-dependent
mechanical behavior. Then, even for a constant pull-out force F (0) the distribution of the stresses will vary
with time.

Let us now assume that a constituent of the composite shows a viscoelastic behavior. In the modeling of
viscoelastic materials, the elastic behavior of the material can be described by spring elements, and the viscous
behavior in terms of dashpot elements.

The stress tensor σ (i) and the strain tensor ε(i) of constituent Ω(i) may be decomposed into hydrostatic
parts, namely σ̄ (i) = diag(σ̄ (i), σ̄ (i), σ̄ (i)) and ε̄(i) = diag(ε̄(i), ε̄(i), ε̄(i)), where σ̄ (i) = 1

3 [σ11 + σ22 + σ33]
and ε̄(i) = 1

3 [ε11 + ε22 + ε33], and into deviatoric parts τ (i) and ε(i),

σ (i) = σ̄ (i) + τ (i), ε(i) = ε̄(i) + ε(i). (29)

Then, the elements σ̄ (i) and ε̄(i) of the hydrostatic tensors and the elements τ
(i)
i j and εi j of the deviatoric tensors

can be related via

jmax∑

j=0

p̄(i)
j

∂ j σ̄ (i)

∂t j
=

kmax∑

k=0

q̄(i)
k

∂k ε̄(i)

∂tk
, p̄(i)

0 = 1, (30a)

jmax∑

j=0

p(i)
j

∂ jτ
(i)
lm

∂t j
=

kmax∑

k=0

q(i)
k

∂kε
(i)
lm

∂tk
, q(i)

0 = 1. (30b)

If jmax = kmax = 0, then the material is elastic and p̄(i)
0 = 3K (i) and p(i)

0 = 2μ(i), where K (i) and μ(i) are
the bulk modulus and the shear modulus of constituent Ω(i).

Let us introduce the differential operators

P̄ =
jmax∑

j=0

p̄(i)
j

∂ j

∂t j
, Q̄ =

kmax∑

k=0

q̄(i)
k

∂k

∂tk
, (31a)

P =
jmax∑

j=0

p(i)
j

∂ j

∂t j
, Q =

kmax∑

k=0

q(i)
k

∂k

∂tk
. (31b)

The relation between the applied loading and the deformation of the composite at time t depends on the
past loading and deformation history. Let us take the material to be to undeformed and to be unloaded at time
t < 0, and at t > 0 suddenly subjected to an axial fiber load F (0)

0 , which remains constant,

F (0)(t) = H(t)F (0)
0 , (32)

where H(t) is the Heaviside step function.
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4.1 Laplace transform of the viscoelastic problem

A direct treatment of the viscoelastic problem in the time domain is often complicated. In order to simplify the
treatment, we transfer the problem from time t domain into an s domain by the Laplace transform. Consider a
function f (t) of time t . Then, the Laplace transform f̂ (s) of the original time t-dependent function f (t) into
the domain s is obtained via

f̂ (s) = L ( f (t)) =
∫ ∞

0
f (t)e−stdt. (33)

The Laplace transforms of the derivatives of f (t) with respect to time t then become

∫ ∞

0

dN f (t)

dt N
e−stdt = sN f̂ (s) −

N∑

n=1

sn−1 dN−n f (t)

dt N−n

∣∣
∣∣
t=0

. (34)

Let us now assume that the function f (t) has a singularity for t = 0, so that f (t) as well as its derivatives with
respect to t are equal to zero for t < 0. Then, if we take t = 0− as the lower integration limit in (34), the right
side reduces to sN f̂ (s) (see [16]).

In this s domain, the step force (32) becomes

L
(
F (0)(t)

)
= F (0)

0 /s. (35)

Then, for the load application at t = 0+, the Laplace transform of the differential operators in (31) becomes

ˆ̄P(s) =
jmax∑

j=0

p̄(i)
j s j , ˆ̄Q(s) =

kmax∑

k=0

q̄(i)
k sk, (36a)

P̂(s) =
jmax∑

j=0

p(i)
j s j , Q̂(s) =

kmax∑

k=0

q(i)
k sk . (36b)

Let ˆ̄σ (i) and τ̂
(i)
i j be the Laplace transforms of the stress components σ̄ (i) and τ

(i)
i j , and ˆ̄ε(i) and ε̂

(i)
i j be the

Laplace transforms of the strain components ε̄(i) and ε
(i)
i j . Then, with the help of (36) the Laplace transforms

of (30) become

ˆ̄P(s) ˆ̄σ (i) = ˆ̄Q(s) ˆ̄ε(i), (37a)

P̂(s)τ̂ (i)
lm = Q̂(s)ε̂(i)

lm . (37b)

It might be difficult to find the inverse Laplace transform, and different theorems and methods have been
found in order to find or to approximate the inverse. For example, the Gaver–Stehfest algorithm (see Gaver
[19] and Stehfest [43]) is a one-dimensional algorithm which does not use complex numbers (see, e.g., [8]).

The initial-value theorem and the final-value theorem, for example, allow to identify some properties of a
function f (t) for the time of load application t = 0 and for t → ∞ (see, e.g., Doetsch [14]),

lim
t→0

f (t) = lim
t→∞ s f̂ (s), (38a)

lim
t→∞ f (t) = lim

t→0
s f̂ (s). (38b)

In combination with (34), further properties of f (t) for t = 0 and t → ∞ can be identified.
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4.2 The elastic–viscoelastic correspondence principle

The elastic–viscoelastic correspondence principle is based on the idea that the treatment of a linear elastic
problemand theLaplace transformed linear viscoelastic problem shows certain analogies (see, e.g., the classical
book by Flügge [16]). Let us make the following substitutions for the bulk modulus K (i) and the shear modulus
μ(i) (see [16])

K (i) → 1

3

ˆ̄Q(s)
ˆ̄P(s)

, μ(i) → 1

2

Q̂(s)

P̂(s)
. (39)

In our modeling of the pulled-out fiber problem, the mechanical behavior of the constituents is described

in terms of the shear modulus and the Young’s modulus E (i) = 9K (i)μ(i)

3K (i)+μ(i) , for which the substitution

E (i) → 3Q̂(s) ˆ̄Q(s)

2P̂(s) ˆ̄Q(s) + ˆ̄P(s)Q̂(s)
(40)

is applied.

4.3 Numerical examples

Consider a steel fiber Ω(0) (same properties as in Sect. 3.5) with the length L = 10−2 m in a bulk polystyrene
matrix Ω(2). While the mechanical behavior of the fiber is taken to have time-independent mechanical proper-
ties, the matrix is taken to be viscoelastic. As Cheng et al. [11] point out, for different purposes the volumetric
part of models is elastic with time-independent behavior, while the deviatoric part is taken to be elastic. The
viscoelastic behavior is modeled in terms of a three-parameter standard solid (Fig. 6), in which a spring with
the elastic parameters E (2)

I , μ
(2)
I , and ν

(2)
I is in series to a parallel arrangement of another spring with the

elastic parameters E (2)
I I , μ

(2)
I I , and ν

(2)
I I and a dashpot with the viscosity η. In the time domain, the viscoelastic

behavior in (30) becomes

σ̄ (2) =
q̄(2)
0︷ ︸︸ ︷

3K (2) ε̄(2), (41a)

σ + η(2)

μ
(2)
I + μ

(2)
I I︸ ︷︷ ︸

p(2)
1

∂σ

∂t
= 2μ(2)

I μ
(2)
I I

μ
(2)
I + μ

(2)
I I︸ ︷︷ ︸

q(2)
0

ε + 2μ(2)
I η(2)

μ
(2)
I + μ

(2)
I I︸ ︷︷ ︸

q(2)
1

∂σ

∂t
, (41b)

E
(2)
I , μ

(2)
I , ν

(2)
I

E
(2)
II , μ

(2)
II , ν

(2)
II

η

Fig. 6 Viscoelastic behavior described by a three-parameter standard solid: a spring with the stiffness E (2)
I is in series to a

parallel arrangement of another spring with the stiffness E (2)
I I and a dashpot
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where the normalizations p̄(2)
0 = p(2)

1 = 1 have been applied, and K (2) = E (2)
I

3[1−2ν(1)] . For the stress–strain
relations in (41), the Laplace transforms (42) become

ˆ̄P(s) = 1, ˆ̄Q(s). = q̄(2)
0 , (42a)

P̂(s) = 1 + p(2)
1 s, Q̂(s), = q(2)

0 + q(2)
1 s. (42b)
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Fig. 7 Stress distribution in a fiber–matrix composite for the constant bonding parameter (26): The left panels a, c, e show the
normalized average normal stresses in the fiber with the axial location. The right panels b, d, f show the normalized shear stresses
at the interface between the fiber and the matrix. The panels a, b are for g1 = 0 (perfect bonding). The middle panels c, d are for
g1 = 10−12 m

Pa . The bottom panels e, f are for g1 = 10−9 m
Pa . The solid lines for t = 0 show the instantaneous response directly

after load application, and the dashed lines show the response for t → ∞
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Then, the Laplace transforms of the shear modulus and the Young’s modulus (see (39) and (40)) become

μ(2) → 1

2

1 + p(2)
1 s

q(2)
0 + q(2)

1 s
, (43a)

E (2) →
9K (2)

[
q(2)
0 + q(2)

1 s
]

6K (2)
[
1 + p(2)

1 s
]

+
[
q(2)
0 + q(2)

1 s
] . (43b)

For these material parameters, let as take some reported values of bulk polystyrene by Cheng et al. [11]:
E (2)
I = 2.1GPa, E (2)

I I = 11.5GPa, and η(2) = 58.2GPa. For the Poisson’s ratios of ν
(2)
I = ν

(2)
I I = 0.33, we

obtain the shear moduli μ(2)
I = E (2)

I
2[1+ν] = 0.79GPa and μ

(2)
I I = E (2)

I I
2[1+ν] = 4.32GPa. For these values, the bulk

modulus of the matrix becomes K (2) = E (2)
I

3[1−2ν(2)
I ] = 2.06GPa.

In the following examples, we assume that at time t < 0 the material is unloaded and then at t ≥ 0 the
fiber is loaded by a constant force as described in (32).

Constant bonding between the fiber and the matrix: As in the first example of Sect. 3.5, let us consider a
fiber Ω(0) and the matrix Ω(2) in the absence of any interphase Ω(1). Let us assume that bonding between the
fiber Ω(0) and the matrix Ω(2) is described by the constant bonding parameter γ (0,2) in (26). Figure 7 shows
the stress distribution in a fiber–matrix composite for the constant bonding parameter (26). The left panels
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Fig. 8 Stress distribution in a fiber–matrix composite for the axially varying bonding parameter (27) for g1 = 10−9 m
Pa and

different values of g2: The top panels show the normalized average normal stresses in the fiber with the axial location. The
bottom panels show the normalized shear stresses at the interface between the fiber and the matrix. The left panels a, c are for
g2 = 100m−1, and the right panels b, d are for g2 = 1000m−1. The solid lines for t = 0 show the instantaneous response
directly after load application, and the dashed lines show the response for t → ∞, when the creep process has approached an end
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show the normalized average normal stresses in the fiber with the axial location. Note that because the average
normal stress Σ

(0)
zz (0) at z = 0 remains constant throughout the creep process, the stresses for times t = 0

and t → ∞ have the same normalization. The right panels show the normalized shear stresses at the interface
between the fiber and the matrix. The top panels (a) and (b) are for g1 = 0 (perfect bonding). The middle
panels (c) and (d) are for g1 = 10−12 m

Pa . The right panels (e) and (f) are for g1 = 10−9 m
Pa . The solid lines for

t = 0 show the instantaneous response directly after load application, and the dashed lines show the response
for t → ∞.

The top diagrams of Fig. 7 illustrate how the average normal stresses increase throughout the fiber as

the supporting matrix undergoes creep, while at the fiber ends these stresses remain at Σ
(0)
zz (0) = F (0)

A(0) and

Σ
(0)
zz (L) = 0. The differences in the fiber’s average normal stresses increase and decrease for a declining

quality for the bonding. The bottom diagrams show that near z = 0 the interfacial shear stresses decrease at
t → ∞, while at the same time the interfacial shear stresses increase near z = L .

Axially varying bonding between the fiber and the matrix: Analogous to the second example of Sect. 3.5, let
us assume that bonding between the fiber and the matrix varies axially, and bonding is quantified by the axially
varying bonding parameter γ (0,2)(z) in (27) .

Figure 8 depicts the stress distribution in a fiber–matrix composite for g1 = 10−9 m
Pa and different values

of g2: The top panels show the normalized average normal stresses in the fiber with the axial location. The
bottom panels show the normalized shear stresses at the interface between the fiber and the matrix. The left
panels a, c are for g2 = 100m−1, and the right panels b, d are for g2 = 1000m−1. The solid lines for t = 0
show the instantaneous response directly after load application, and the dashed lines show the response for
t → ∞.

Also in this case of axially varying bonding, the average normal stresses increase throughout the fiber as
the supporting matrix undergoes creep. The interfacial shear stresses are larger at z = L in comparison with
the shear stresses at z = L , because of the increase in the bonding qualify for increasing values of z. Also in
this example near z = 0, the interfacial shear stresses decrease at t → ∞, while at the same time the interfacial
shear stresses increase near z = L .

5 Conclusions

In our article, we study pull-out of a single fiber, which is embedded in a matrix. An interphase material
between the fiber and the matrix is taken into account. The here presented results are based on the assumption
that the outer surface is shear stress free, for example because a single-fiber pull-out problem is treated with
general freedom from stresses at the outer surface of the cylinder, or because all fibers of a regular array are
pulled out simultaneously.

Bonding between the different constituents is assumed to be imperfect, and the quality of bonding varies
with the axial location. A modification of the spring-layer model has been applied in order to simulate bonding
between the different constituents. The distribution of the average normal stresses and interfacial shear stresses
has been studied for both elastic time-independent and viscoelastic problems. The herein presented results are
useful for the planning of single-fiber pull-out experiments, and they may serve as references and benchmark
for finite element studies. The results may also find different civil engineering applications (see, e.g., the work
by Ai and Yue [1] on axially loaded piles in multilayered soils).

Different works have been devoted to simulate the pull-out of a single fiber from the composite; in the
cylindermodel in Fig. 1, another layermay be addedwith the same properties as the composite in amacroscopic
level. Such an idea has been employed, for example, by Kim et al. [33] and Fu et al. [18].

While in this article bonding is described by a continuous function, this idea may be modified to piece-
wise continuous functions and to boundary conditions that may change with the amount of the interfacial shear
stresses.
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