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Abstract In this paper, a lumped parameter model of the interacting oscillation roller-subsurface system is
proposed. The main aim of the model is to predict the response acceleration of the roller drum during near-
surface compaction of non-cohesive soils. The compaction process of the soil itself is not captured, but different
degrees of compaction are considered by varying the soil stiffness. The roller is represented by the oscillation
drum and its viscoelastic connection to the roller frame. In the chosen modeling strategy, the curvature of the
soil surface below the drum is prescribed. In this way, also the vertical drum acceleration can be computed. The
discrete subsoil model consists of a vertical and a horizontal Kelvin–Voigt element. Contact between drum and
soil surface is described by means of dry friction according to Coulomb’s law. As such, the stick-slip motion
of the drum can be simulated. In the stick phase, pure rolling between drum and soil surface is assumed. The
highly nonlinear equations ofmotion of this three degrees-of-freedommodel are derived separately for the stick
and the slip phase of the motion. Selective numerical studies show that this model captures the fundamental
response characteristics of the dynamic drum–subsoil interacting system observed in the field.

1 Introduction

A roller, also often referred to as roller-compactor, is a heavy equipment used for near-surface compaction
of soil and asphalt layers in the construction of various civil structures such as roads, airfields, dams, and
track foundations. A static roller uses only its weight to compact the layer, whereas a dynamic roller enhances
the efficiency of subsurface compaction through dynamic excitation of the drum. Depending on the drum
excitation, two basic types of dynamic rollers do exist, i.e., vibratory rollers and oscillation rollers. They differ
in design, mode of operation, and how the medium to be compacted is loaded. In a vibrating drum, a single
unbalance mass, which is attached concentrically to the drum axis, generates a rapidly alternating upward–
downward motion of the drum. The subgrade is compacted by the dynamic pressure applied by the drum.
An oscillation drum is equipped with two offset eccentric masses, which rotate synchronously in the same
direction. The resulting alternating high-frequency forward–backward motion of the drum, superposed with
the translational roller motion, imposes dynamic shear forces that increase the subsurface density.

Continuous Compaction Control (CCC) ([1,11]) has become the standard technology for controlling sub-
surface compaction by vibratory rollers. This control technique is based on the dynamic response of the
interacting drum-subsurface system recorded during the roller pass, and thus, allows an instant continuous
assessment of the degree of compaction. For oscillation rollers, however, no mature CCC system has been
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developed yet. Based on the data of field tests with an oscillation roller, recently, it was discovered that the
area enclosed in the figure which is formed when plotting the vertical against the horizontal acceleration of
the drum center, is a characteristic quantity for the compaction degree of the subsurface [19]. Since, however,
experiments provide only a selective insight into the response behavior of the entire parameter space, a com-
plete picture of the drum response and its parameter interdependency can only be gained by the outcomes of
comprehensive parametric numerical studies.

The literature on mechanical modeling of roller-compactors for numerical response simulation is quite
scarce. Basically, it can be distinguished between finite element (FE)models (e.g., [3,9]) and lumped parameter
models (e.g., [2,14,23]) of the dynamic interacting roller-subsurface system. The focus of most FE models
is to predict the subsurface compaction and, depending on the degree of sophistication, allow only selective
insight into the system response, like experimental studies. In contrary, lumped parameter models are often
used to predict the response of the compaction device for predefined subsurface condition or (over)simplified
soil compaction models.

A first modeling attempt of the oscillation drum-soil system was presented in [27], where a single degree-
of-freedom (SDOF) model captures slip between drum and subsurface, considering the suspension elements
between drum and frame. This paper also explains the working principle of oscillation compaction and some
basic response phenomena such as “peak cut” of the horizontal drum acceleration. In a similar approach, Kopf
[11] studied the influence of the slip motion on the horizontal drum accelerations, using a lumped parameter
model with a SDOF. More recently, Pistrol [18] presented a three degrees-of-freedom (3DOF) model for the
drum in pure rolling motion that delivers the horizontal and also the vertical acceleration response of the drum.
Lately, in [14] the amplitude frequency characteristics of a tandem oscillation roller have been studied based
on a 5DOF model in pure rolling motion. From this brief literature survey, it can be concluded that, so far, no
reliable mechanical model that predicts both realistically and efficiently the dynamic response of an oscillation
drum is available.

To fill this gap, in the present contribution a lumped parameter model is developed that facilitates the
response simulation of an oscillation drum with the least numerical effort, and captures the observed stick-slip
motion of the drum during soil compaction. In the chosen strategy, a curved dent, which approximates the
settlement trough of the subsoil below the drum, is prescribed, supported by a discrete spring–damper soil
model [18]. This curved dent allows to simulate the vertical motion of the drum. The drum is modeled as
a circular rigid body with spring–damper elements attached to its center, which represent the viscoelastic
connection to the roller frame. In addition to the sinusoidal excitation torque induced by the unbalance masses,
a constant driving torque is imposed to the drum. As such, the effect of the translational motion of the roller
on the response can be captured. It is, however, not the aim to simulate the compaction process itself but the
soil parameters are a priori defined.

The paper is organized as follows. After a brief explanation of the basic components and the working prin-
ciple of an oscillation roller, the proposed drum–subsoil interacting model and excitation model are presented.
Based on the kinematic relations, in a substructure approach the equations of motion of this 3DOF model are
derived separately for the stick and the slip motion phase, and the numerical solution of these highly nonlinear
equations is discussed. Once the model has been established, the impact of the contact condition between drum
and soil (pure rolling vs. stick-slip motion), soil stiffness, and driving torque on the response of the oscillation
drum of a specific roller is investigated in detail. The obtained results allow to detect, to understand, and to
explain better the dynamic response of the interacting oscillation drum-soil system, and ultimately to validate
CCC techniques for oscillation rollers.

2 Mechanical model

2.1 Basic structure and mode of operation of an oscillation roller

The principal components of an oscillation roller shown in Fig. 1 are the rigid drum (at the front) equipped
with two rotating unbalances (also referred to as unbalanced masses or eccentric masses), the driving wheels,
the front and the rear frame, and the driver’s cabin including processing, display, and storing unit. Drum and
front frame are separated by suspension elements (rubber buffers) to prevent the transmission of vibrations
from the drum to the frame. A hinged connection between the front frame and the rear frame improves the
maneuverability of the roller. To protect the driver from vibrations, the cabin is detached from the rear frame
by isolation mounts.
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buffers

Fig. 1 Principal components of an oscillation roller-compactor with smooth drum

In the oscillation drum, two opposite eccentric masses, whose shafts are arranged excentrically to the
drum axis, rotate synchronously in the same direction (see Fig. 1), driven by a toothed belt. Because these
unbalance masses are offset by 180◦ relative to each other, the out-of-balance forces cancel out. The remaining
spinning couple of forces induces a torsional moment around the drum axis, which changes its sign during the
rotation of the eccentricmasses. It causes the drum to rapidlymove in an alternating forward–backwardmotion.
This rotational motion and the translational motion of the roller moving with constant speed are superposed.
The dynamic (alternating) tangential (shear) forces, imposed through friction in the contact area between
drum and surface of the compacted medium, induce mainly shear waves in the subsurface, and compaction
is achieved by “massaging” the material [8], also referred to as shear force compaction [22]. Unlike in a
vibrating drum, which may bounce during compaction [2,23], the compaction forces strain continuously the
subsoil because oscillation drum and soil remain in permanent contact. An oscillation drum performs either a
pure rolling motion or a stick-slip motion. As such, an oscillation roller continuously compacts the subsurface
both dynamically by alternating (primarily) horizontal shear loading and statically by its weight in the vertical
direction. During the forward motion, the static weight of the drum deforms the soil surface asymmetrically
as shown in Fig. 1, subsequently referred to as “settlement trough”. Since the contact zone between the drum
and subsoil is curved, the oscillation drum responds also in the vertical direction.

2.2 Representation of roller and subsoil

The main objective of the roller–soil model to be developed is to allow for a comprehensive parametric study
of the response behavior of the drum for a given subsoil condition (i.e., the compaction process in the soil is
not simulated). Consequently, in the desired computationally efficient model all parts of the roller with minor
effects on the dynamic drum response are omitted. During operation, both the horizontal and vertical vibrations
of the rear and front frames are negligible because drum and front frame are dynamically decoupled by the
deeply tuned rubber buffers. For further details, see Appendix A. Based on this observation, it is reasonable
to reduce the whole roller to the oscillation drum that is connected through spring–damper elements to the
static frame, taking into account the dead weight of the front frame. The drum is assumed to be a planar rigid
smooth circular body of radius r with mass m and mass moment of inertia I (with respect to drum center M).
Vertical and horizontal spring–damper elements attached to the drum center, both of same stiffness (kd) and
viscous damping (cd) properties, capture the effect of the rubber buffers, as shown in Fig. 2.

In the utilized modeling strategy, the shape of the soil surface below the drum, which has a significant
impact on the roller response, and the soil parameters depending on the degree of soil compaction need to
be defined a priori (see, for instance, [11,18]). The settlement trough is prescribed as an asymmetric rigid
curved track according to a logarithmic spiral. At the bottom of the settlement trough (point A in Fig. 2), in a
common approach the effect of the elastic continuous halfspace (subsoil) is captured simplified through two
discrete Kelvin–Voigt bodies ([2,23,25]), one arranged in vertical direction (subscript sv) and one in horizontal
(subscript sh) direction. The settlement trough exhibits a translational motion in both horizontal and vertical
directions; its rotation is, however, constrained. In [5] and [25], the reduction in the elastic soil halfspace to
spring–dashpot damper elements in parallel is discussed in detail, and thus, not repeated here. The expressions
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Fig. 2 Mechanical model of the interaction system oscillation roller–soil

for the soil spring coefficients ksh and ksv and the soil damping parameters csh and csv are listed in Appendix
B. In the current roller–soil model, the soil mass is not considered because its effect is negligible if Poisson’s
ratio ν of the soil is less than 1

3 [25]. This is the case in the current study where only non-cohesive soils are
considered. For larger Poisson’s ratio, a trapped soil mass is added to the vertical spring–dashpot damper
elements, as explained in [25].

The contact between drum and subsoil is described by means of dry friction according to Coulomb’s law
with constant coefficient of friction μ. As such, both the stick phase and the slip phase between drum and soil
can be simulated by the roller–soil interaction model shown in Fig. 2, which has 3DOF.

2.3 Modeling of excitation and loading

The two rotating eccentric shafts inside the drumwith each two imbalances (see Fig. 1) can be each represented
by two equal eccentric lumped masses, mu1 = mu2 = 2mu , with distance eu from the center of rotation (see
Fig. 3). The amplitude Fu of the centripetal force generated by each unbalanced shaft rotating with constant
angular velocity ν̄ is

Fu1 = Fu2 = Fu = 2mueu ν̄
2 (1)

where ν̄ is 2π times the excitation frequency f̄ . Decomposition of the centripetal force at time t into component
Fu‖ in parallel and component Fu⊥ perpendicular to the line that connects the center of rotation (denoted as
RC in Fig. 3) and the drum center M yields

Fu‖ = Fu cos (ν̄t) , Fu⊥ = Fu sin (ν̄t) (2)

Since the unbalance masses mu1 and mu2 are offset by 180◦ relative to each other and the shafts rotate in the
same direction, the components of the corresponding unbalance forces

#»

Fu‖1 = −Fu‖ #»e ‖,
#»

Fu⊥1 = −Fu⊥ #»e ⊥ (3)

#»

Fu‖2 = Fu,‖ #»e ‖,
#»

Fu⊥2 = Fu⊥ #»e ⊥ (4)

cancel out.
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Fig. 3 Drum with unbalanced shafts (left), and circular motion of one unbalance mass with constant circular frequency ν̄ (right)

Fig. 4 Excitation torque MMu(t) in an oscillation drum and corresponding location of the unbalance at discrete time instants,
based on [27]

In the above equations, #»e ‖ and #»e ⊥ denote the unit vectors depicted in Fig. 3. The counteracting normal
forces

#»

Fu⊥1 and
#»

Fu⊥2 with distance 2ew result in the sinusoidal torque MMu(t) around the drum axis with
the amplitude M (0)

Mu,

MMu(t) = M (0)
Mu sin (ν̄t) , M (0)

Mu = 4mueuewν̄2. (5)

In Fig. 4, the relation between the excitation torque MMu(t) and the location of the rotating unbalanced shafts
is visualized.

The total drum excitation applied at the drum center is composed of the unbalanced shaft moment MMu(t)
and the constant driving torque MMd imposed by the roller engine,

MM (t) = MMu(t) + MMd. (6)

Application of the constant torque MMd allows controlling the location of the drum in the settlement trough.
Since the oscillation drum motion is superposed to the translational motion of the drum with constant roller
velocity, the drum does not oscillate around the bottom of the settlement trough but on its slope in the driving
direction. In addition, the vertical load Fz , i.e., the static axle load P0 of the frame minus drum weight mg,

Fz = P0 − mg (7)

is applied to the drum center. The variable g denotes the acceleration of gravity.
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In contrast to a simpler roller model presented in [18], the model proposed here can be used to simulate
the stick-slip motion of the drum, to take into account the suspension between drum and roller, to consider the
effect of driving velocity by application of a constant driving torque, and to study the motion of the oscillation
drum in its asymmetric settlement trough.

3 Governing equations

3.1 Kinematics

Before the equations of motion are derived, the kinematic relations for the drum motion and soil–drum inter-
action need to be established.

The distance R from the origin of the logarithmic spiral (point 0) describing the settlement trough to the
contact point C at time t reads as [24]

R(t) = a exp [kϕ̄ (t)] , ϕ̄(t) = ϕ̄0 − δ(t), (8)

with the spiral parameters a and k calibrated to the actual soil surface shape. The angle ϕ̄0 = π −α represents
the inclination of the connection line between 0 and C at time t = 0, α = arctan 1

k is the angle between the
tangent and radial line at point (R0, ϕ̄0), and δ(t) defines the position of the drum in the settlement trough at
time t (see Fig. 2). It is assumed that at time t = 0, the drum is at the bottom of the rigid settlement trough, as
indicated by dashed lines in Fig. 2. This position (R0, ϕ̄0) is defined by the radius R0 = a exp (kϕ̄0) and angle
ϕ̄0. For k → 0, α → π/2, the spiral approaches a circle with radius a. Thus, with the proposed model both a
symmetric semicircular and an asymmetric spiral-shaped settlement trough can be captured.

In the stick phase of the drum, the following three independent coordinates are chosen to describe the
motion of 3DOFmodel shown in Fig. 2, i.e., the displacement components xA(t) and sA(t) of support point A,
and the position angle δ(t). In this phase, continuous rolling contact can be assumed, and the relative velocity
between drum surface and settlement trough is zero. Consequently, the arc length L AC along the settlement
trough (between support point A and the contact point C , see Fig. 2),

L AC =
√
1 + k2

k
R0
[
1 − exp (−kδ)

]
(9)

and the arc length LBC along the drum surface (between contact point C and point B on the drum, see Fig. 2),

LBC = (ϕ + δ) r (10)

are equal, L AC = LBC . In Eq. 10, ϕ(t) denotes the total rotation angle of the drum [15]. Rewriting this rolling
condition yields for the stick phase the relationship between the drum rotation angle ϕ and the position angle
δ,

ϕ =
√
1 + k2

kr
R0
[
1 − exp (−kδ)

]− δ. (11)

The first and the second time derivative read

ϕ̇ = f5δ̇, ϕ̈ = f5δ̈ + f6δ̇
2. (12)

The functions f5 and f6, which depend on the angle δ(t) and the spiral parameters R0 and k, are listed in
Appendix C.

Slip of the drum on the soil surface results in a relative motion between the drum and soil. Thus, in the slip
phase the lengths L AC (Eq. 9) and LBC (Eq. 10) are dissimilar. Differentiation of the difference L AC − LBC
with respect to time t results in the relative velocity vrel between the drum and subsoil (slip velocity),

vrel = δ̇ f5r − ϕ̇r. (13)

Since in the slip phase vrel �= 0, the angles δ(t) and ϕ(t) become independent variables. However, the tangential
friction contact according to Coulomb’s law at point C couples in this phase the variables xA and sA, which
are, therefore, no independent variables, as is seen later.
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For deriving the equations of motion, it is convenient to express the horizontal and vertical displacement
components xM and zM , respectively, of the drumcenterM at time t as a functionof the coordinates xA(t), sA(t),
and δ(t),

xM = x (roll)
M + xA, zM = z(roll)M + sA, (14)

x (roll)
M = −R0 exp(−kδ) cos(α + δ) − r sin δ + R0 cosα, (15)

z(roll)M = R0 exp(−kδ) sin(α + δ) − r cos δ − (R0 sin α − r), (16)

where x (roll)
M and z(roll)M are the corresponding displacement components of M relative to the settlement trough,

which are superposed to the displacement components of the settlement trough, xA and sA, respectively.
Differentiation of Eq. (14) with respect to time t yields the components of the drum center velocity,

ẋM = f1δ̇ + ẋ A, żM = f3δ̇ + ṡA, (17)

and repeated differentiation the acceleration components,

ẍM = f1δ̈ + f2δ̇
2 + ẍ A, z̈M = f3δ̈ + f4δ̇

2 + s̈A (18)

in terms of xA(t), sA(t), and δ(t). The functions f1, f2, f3, f4, f5, f6, which depend on the angle δ(t), the
spiral parameters a, k, α, R0 and the drum radius r , are specified in “Appendix C.”

3.2 Dynamic substructuring

To derive efficiently the equations of motion, the model of Fig. 2 is separated into the subsystem drum (I) and
the subsystem soil (II) including the settlement trough. At the contact point C , the normal component N and
the tangential component T of the interface force are applied as external forces, as shown in Figs. 5 and 6.

Subsystem I: Drum
Two equations are obtained by the application of conservation of momentum [26] to the subsystem drum in
horizontal (x) and vertical (z) directions, compared with Fig. 5,

T cos δ − N sin δ − cd ẋM − kdxM = mẍM , (19)

(mg + Fz) − T sin δ − N cos δ − cd żM − kdzM = mz̈M . (20)

Solving this coupled system of equations for N and T yields

N = [
(mg + Fz) − (mz̈M + cd żM + kdzM )

]
cos δ − (mẍM + cd ẋM + kdxM ) sin δ, (21)

T = [
(mg + Fz) − (mz̈M + cd żM + kdzM )

]
sin δ + (mẍM + cd ẋM + kdxM ) cos δ. (22)

A third equation is obtained by the application of conservation of angular momentum [26] with respect to
the drum center M ,

I ϕ̈ = MM (t) − Tr, (23)

where ϕ denotes the total rotation angle [15] of the drum (see Fig. 5).

Subsystem II: Subsoil
Conservation of momentum in horizontal (x) and vertical (z) directions to the soil subsystem shown in Fig. 6
leads to

N sin δ − T cos δ = kshxA + csh ẋ A, (24)

N cos δ + T sin δ = ksvsA + csvṡA. (25)

This set of equations is solved for N ,

N = (kshxA + csh ẋ A) sin δ + (ksvsA + csvṡA) cos δ. (26)
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Fig. 6 Subsystem II: subsoil including settlement trough

Coupling of the subsystems
The compatibility conditions at contact point C between both subsystems depend on the motion phase (stick
or slip) of the drum.

In the stick phase, where kinematic relations Eqs. 11 and 12 are applicable, the sliding friction force Tf
between drum and soil according to Coulomb’s law of dry friction [21]

Tf = −μNsign (vrel) (27)

is not exceeded at any time,

|T | ≤ |Tf | = μN (vrel = 0). (28)

It is assumed that the coefficient of kinetic frictionμk is approximately equal to the coefficient of static friction
μs [20], and thus, μ = μk ≈ μs .
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If |T | = μN and if there is a relative motion between drum and subsoil with relative velocity vrel according
to Eq. 13, the motion switches from the stick phase to the slip phase. In the slip phase, where vrel �= 0, the
tangential contact force T corresponds to Coulomb’s force of friction Tf , depending on the sign of vrel,

T = |Tf | > 0 (vrel ≤ 0−), T = − |Tf | < 0 (vrel ≥ 0+). (29)

3.3 Equations of motion

Stick phase
Adding up Eqs. (19) and (24), and replacing xM and its first and second derivatives by the independent
coordinates δ and xA and their derivatives through Eqs. (14), (17), and (18), leads to the first equation of
motion in terms of δ and xA,

f1mδ̈ + mẍA + h1 = 0,

h1 = f2mδ̇2 + f1cd δ̇ + (csh + cd) ẋ A + (ksh + kd) xA + kdx
(roll)
M .

(30)

Similarly, Eqs. (20) and (25) are added up, and zM and its derivatives are expressed by δ and sA through
Eqs. (14), (17) and (18), respectively, yielding the second equation of motion,

f3mδ̈ + ms̈A + h2 = mg + Fz,

h2 = f4mδ̇2 + f3cd δ̇ + (csv + cd) ṡA + (ksv + kd) sA + kdz
(roll)
M .

(31)

To obtain the third equation of motion in terms of the independent coordinates δ, xA and sA, in Eq. (23),
T is substituted with Eq. (22) and ϕ̈ with Eq. (12). Then, xM and zM and their time derivatives are replaced
by the relations of Eqs. (14), (17), and (18), resulting after some algebra in

(
f5

I

mr
+ f̃1

)
mδ̈ + mẍA cos δ − ms̈A sin δ + h3 = MM (t)

r
− (mg + Fz) sin δ,

h3 =
(
f6

I

mr
+ f̃2

)
mδ̇2 + cd

[
f̃1δ̇ + ẋ A cos δ − ṡA sin δ

]

+ kd
[ (

x (roll)
M + xA

)
cos δ −

(
z(roll)M + sA

)
sin δ

]
,

(32)

with

f̃1 = f1 cos δ − f3 sin δ, f̃2 = f2 cos δ − f4 sin δ. (33)

Equations (30), (31), and (32) represent three coupled second-order nonlinear ordinary differential equations
(ODEs), which describe the motion of the 3DOF roller–soil interaction model in the stick phase and for pure
rolling. For efficient numerical solution, this coupled set of equations is written in the state space, as described
in Appendix D.

It should be noted that for an immovable semicircular settlement trough (i.e., k = 0, ksh → ∞ and
ksv → ∞), Eq. (32) approaches the solution presented in [26] (example A7.2, pp 461-462). On the other hand,
if the settlement trough becomes horizontal (i.e., R → ∞), Eq. (32) reduces to the equation of motion of a
model proposed in [11].

Slip phase
To derive the first equation of motion of the 3DOF model in the slip phase, in Eqs. (19) and (20) the tangential
force component T is replaced by the expression of Eq. (27), representing the friction force Tf . These equations
are combined by eliminating the normal force component N . Then, xM and zM and their time derivatives are
expressed by means of the coordinates δ, xA, sA and their time derivatives according to Eqs. (14), (17), and
(18), leading to

(
f1 fμ1 − f3 fμ2

)
mδ̈ + fμ1mẍA − fμ2ms̈A + h(sl)

1 = − fμ2(mg + Fz),

h(sl)
1 = ( f2 fμ1 − f4 fμ2

)
mδ̇2 + cd[

(
f1 fμ1 − f3 fμ2

)
δ̇ + fμ1 ẋ A − fμ2ṡA]

+ kd
[
fμ1
(
x (roll)
M + xA

)
− fμ2

(
z(roll)M + sA

) ]
(34)
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with

fμ1 = cos δ − sign (vrel) μ sin δ, fμ2 = sin δ + sign (vrel) μ cos δ (35)

The second equation of motion is based on Eq. (23) derived by conservation of angular momentum, where
T is likewise replaced by Tf according to Eq. (27), and N is substituted with Eq. (21). In the resulting relation,
xM and zM and their time derivatives are substituted as before, with the outcome

sign (vrel) μm( f̃3δ̈ + ẍ A sin δ + s̈A cos δ) + I

r
ϕ̈ + h2

(sl) = MM (t)

r
,

h2
(sl) = −sign (vrel) μ

{
(mg + Fz) cos δ − f̃4mδ̇2 − f̃3cd δ̇ − cd (sin δ ẋ A + cos δṡA)

− kd
[ (

x (roll)
M + xA

)
sin δ +

(
z(roll)M + sA

)
cos δ

]}
,

(36)

where

f̃3 = f1 sin δ + f3 cos δ, f̃4 = f2 sin δ + f4 cos δ. (37)

The third equation of motion results from coupling of the two subsystems. To this end, Eqs. (21) and (26)
are combined through N . Considering Eq. (37), also this equation of motion is written in terms of the kinematic
variables δ, xA, sA, and their time derivatives,

m f̃3δ̈ + mẍA sin δ + ms̈A cos δ + h3
(sl) = (mg + Fz) cos δ,

h3
(sl) = cd f̃3δ̇ + (csh + cd) ẋ A sin δ + (csv + cd) ṡA cos δ + m f̃4δ̇

2

+ (ksh + kd) xA sin δ + (ksv + kd) sA cos δ + kd
(
x (roll)
M sin δ + z(roll)M cos δ

)
.

(38)

Equations (34), (36) and (38) of the 3DOF system express the motion in the slip phase in terms of the
four coordinates xA, sA, δ and ϕ. Thus, a fourth equation, which captures coupling between xA and sA due to
tangential friction contact at point C, needs to be established. To this end, Eqs. (24) and (25), where T has
been replaced by Tf (Eq. (27)), are combined by eliminating the normal force component N , which leads after
some algebra to

fμ1 (csh ẋ A + kshxA) = fμ2 (csvṡA + ksvsA) . (39)

The set of nonlinear ODEs (34), (36), (38) and (39) describes the motion of the interacting roller–soil
model in the slip phase. The state space representation of these equations for efficient numerical solution is
introduced in Appendix D.

3.4 Procedure of solution

The response is obtained numerically by switching between the set of the first-order ODEs for the stick phase
(Eq. (52)) and the set of ODEs for the slip phase (Eq. (55)), basically as described in [13]. In the stick phase, the
outcomes of Eq. (52) (i.e., xA, sA, δ, ẋ A, ṡA, δ̇) are inserted into the original equations of motion 30, 31 and 32,
which are solved for the accelerations ẍ A, s̈A, and δ̈. Accelerations ẍ A, s̈A, δ̈, ϕ̈ of the slip phase are obtained
by rearranging Eqs. (34), (36), (38) and (53), where the outcomes of Eq. (55) (i.e., xA, sA, δ, ϕ, ẋ A, ṡA, δ̇, and
ϕ̇) have been inserted. In both phases of the stick-slip motion, the desired acceleration components ẍM and z̈M
of the drum center M are obtained by the evaluation of Eq. (18). This analysis continues until the steady-state
response is reached.
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4 Computed drum response

4.1 Overview

The subsequent studies are based on the machine properties of an HAMMHD+ 90 VO tandem roller [6] listed
in Table 1 because for this device acceleration response data of the drum center M recorded in field tests are
available [18]. It is assumed that all considered non-cohesive soil conditions exhibit a Poisson’s ratio ν of 0.3
and a density ρ of 1900kg/m3. The shear modulus G of the soil is varied in steps of 5MN/m2 between 5 and
70MN/m2. The soil parameters and the corresponding discrete soil stiffness coefficients ksh and ksv (Eq. (42)),
and damping parameters csh and csv (Eq. (45)) are listed in Table 2. Note that csh and csv do not change with
increasing soil stiffness because Poisson’s ratio ν and soil density ρ are assumed to be constant, compare
with Eq. 45. In the base case, a semicircular shaped settlement trough with radius R = 0.606m is assumed,
which is slightly larger than the drum radius r = 0.60m. The corresponding spiral parameters representing a
semicircle are k = 0 and a = R.

In the following, the steady-state acceleration components of the drum center M, ẍM and z̈M , and thereof
derived characteristic response quantities are presented and discussed because they serve as basis of a novel
CCC methodology [18], as discussed in the introduction.

4.2 Pure rolling (stick) motion of the drum

At first, the influence of the geometry of the settlement trough on the predicted accelerations of a drum in pure
rolling motion is investigated. That is, it is assumed that the tangential contact force T does not exceed the
sliding friction Tf at any time. To this end, a semicircular settlement through (k = 0, a = R = 0.603m) as
well as an asymmetric settlement trough with the shape of a logarithmic spiral (k = 0.002, a = 0.601m) are
considered. In this study, no driving torque is applied, i.e., MMd = 0. As an example, Fig. 7 shows for soil

Table 1 Roller parameters [6,7,18]

Parameter Symbol Value Dimension

Radius of the drum r 0.6 m
Width of the drum b 1.68 m
Mass of the drum m 1851 kg
Mass moment of inertia of the drum I 411.78 kg m2

Static axle load P0 45,224 N
Static axle load (without drum) Fz 27,066 N
Excitation frequency f̄ 39 Hz
Amplitude of the oscillation moment M (0)

Mu 54,947 Nm
Suspension drum/frame—stiffness kd 4 × 106 N/m
Suspension drum/frame—damping cd 3 × 103 Ns/m

Table 2 Soil parameters (based on [18])

G (MN/m2) ρ (kg/m3) ν a0 (m) ksh (MN/m) ksv (MN/m) csh (kNs/m) csv (kNs/m)

5 1900 0.30 0.217 11.4 16.3 141 263
10 1900 0.30 0.153 19.7 29.5 141 263
15 1900 0.30 0.125 27.3 42.1 141 263
20 1900 0.30 0.108 34.5 54.3 141 263
25 1900 0.30 0.097 41.4 66.3 141 263
30 1900 0.30 0.088 48.2 78.1 141 263
35 1900 0.30 0.082 54.8 89.8 141 263
40 1900 0.30 0.077 61.2 101 141 263
45 1900 0.30 0.072 67.6 113 141 263
50 1900 0.30 0.069 73.9 124 141 263
55 1900 0.30 0.065 80.1 136 141 263
60 1900 0.30 0.063 86.2 147 141 263
65 1900 0.30 0.060 92.3 158 141 263
70 1900 0.30 0.058 98.3 169 141 263
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(a) (b)

Fig. 7 Time history of the horizontal (a) and vertical (b) accelerations in the drum center; soft soil G = 5 MN/m2; MMd = 0;
pure rolling motion; symmetric versus asymmetric settlement trough

stiffness G = 5MN/m2 the steady-state acceleration components ẍM and z̈M with respect to time t during two
excitation periods for both settlement troughs. In Fig. 8a, the time history of the corresponding position angle δ
is displayed, and in Fig. 8b z̈M is plotted against ẍM . The vertical acceleration (z̈M ) is a result of the upward and
downward motions of the drum in the settlement trough during each period of excitation. Due to the nonlinear
motion, the period of z̈M is half of the excitation period, i.e., two excitation periods correspond to four periods
of vertical acceleration z̈M . If the settlement trough is of semicircular shape (solid lines in black), both the
horizontal and vertical acceleration components of M are symmetric with respect to the horizontal axis. The
plot z̈M versus ẍM , represented in Fig. 8b by a solid black line, has the shape of “recumbent eight,” and is
symmetric with respect to the vertical and horizontal axes. An asymmetric settlement trough results in a slightly
asymmetric pattern of the position angle δ (see Fig. 8a, red line with circular markers), i.e., the amplitudes in
the positive domain are larger than those in the negative domain. Consequently, also the peak values of the
vertical acceleration z̈M in the positive domain become slightly larger (see Fig. 7b). The horizontal acceleration
ẍM , which has the same period as the excitation period, remains virtually unaffected from the shape of the
settlement trough (see Fig. 7a). Thus, the plot ẍM − z̈M shown by red lines with circular markers becomes
slightly asymmetric, as seen in Fig. 8b. Since these and further results not presented here have revealed that
the asymmetry of the settlement trough has only a very small effect on the response, subsequently, the drum
acceleration is examined based on a semicircular settlement trough (i.e., k = 0).

Next, the influence of the radius R of a semicircular settlement trough on the drum center acceleration
is investigated for all considered soil shear moduli G, for MMd = 0. Fig. 9 shows the peak acceleration
components, ẍMmax (a) and z̈Mmax (b), respectively, as a function of G for four selected radii R ranging from
0.603 to 0.65m. As observed, the horizontal peak acceleration ẍMmax increases continuously from about 25–

(a) (b)

Fig. 8 Time history of position angle δ (a) and plot ẍM versus z̈M (b); soft soil G = 5 MN/m2; MMd = 0; pure rolling motion;
symmetric versus asymmetric settlement trough
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(a) (b)

Fig. 9 Peak of the horizontal (a) and vertical (b) accelerations in the drum center as a function of soil shear modulus G for
selected radii R of a semicircular settlement trough; MMd = 0; pure rolling motion

(b)(a)

Fig. 10 Phase lag between excitation torque MMu(t) (dashed line) and drum rotation ϕ-time histories for four selected soil shear
moduli G (a), and phase lag for the entire range of G (b); MMd = 0; pure rolling motion

28m/s2 (G = 5MN/m2) to about 56m/s2 atG = 40MN/m2, where themaximum is attained, and then slightly
descends to 50m/s2 atG = 70MN/m2, almost unaffected by the radius R (Fig. 9a).Vertical accelerations z̈Mmax
also increase with increasing stiffness G; however, they reach their maximum at lower stiffness of G=15–
20MN/m2, and then, decrease with increasing soil stiffness with a steep gradient (see Fig. 9b). In contrast
to ẍMmax, the magnitudes of z̈Mmax are sensitive to the radius R of the settlement trough, i.e., the closer R
is to the drum radius r , the larger becomes z̈Mmax. In general, the vertical peak acceleration components are
smaller than the corresponding horizontal ones. As observed, the ratio z̈Mmax to ẍMmax decreases from 0.21 at
R = 0.603 m to about 0.01 at R = 0.65 m. If R = 0.606 m, z̈Mmax is about 10% of ẍMmax. The following
studies are based on a settlement trough radius of R = 0.606 m, i.e., R is one percent larger than the drum
radius r .

Figure 10 illustrates that also the phase lag between the harmonic excitation torque MMu(t) and the drum
rotation ϕ(= R−r

r δ) strongly depends on the soil stiffness G. Fig. 10a shows one period of the harmonic
excitation torque MMu(t) (dashed line) and the corresponding drum rotation ϕ for four values of the soil
stiffness G, as specified in the legend. In this representation, the effect of G on both the phase lag and the
amplitude of ϕ becomes apparent. The maximum of the phase lag occurs at G = 50 MN/m2 (Fig. 10b). At the
lowest considered soil stiffness, G = 5 MN/m2, the phase lag is −0.84π . For G → 0 (lifted drum), the phase
lag converges toward −π . That is, an oscillation drum without soil contact rotates purly forward–backward
with a phase lag −π between MMu(t) and ϕ.

The steady-state acceleration components ẍM and z̈M (see Figs. 11a, b, respectively) of the drum center
M demonstrate the effect of the soil stiffness on the peak response and phase lag, exemplarily shown for four
selected shear moduli G and two excitation periods. While the maximum of ẍM is about the same for G = 25,
50 and 70MN/m2, the peak value of z̈M related to G = 25 MN/m2 is about 3.3 (8.4) times larger than for
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(a) (b)

Fig. 11 Steady-state horizontal (a) and vertical (b) accelerations in the drum center for four selected soil shear moduli G;
MMd = 0; pure rolling motion

Fig. 12 Phase lag between ẍM and z̈M as a function of shear modulus G; MMd = 0; pure rolling motion

G = 50 (70) MN/m2. Another observation is that the period of z̈M is only half of the period of ẍM , which
corresponds to the excitation period. Additionally, in Fig. 12 the phase lag between ẍM and z̈M is depicted.
As observed, the predicted phase lag is about 0.11 rad for the lowest shear modulus, the maximum of 0.64
is obtained at G = 25 MN/m2, and with increasing soil stiffness it subsequently decreases. For stiff soils
with G ≥ 60 MN/m2, the phase is negative. Note that a positive phase lag indicates that z̈M lags behind
ẍM . Plotting the vertical component z̈M against its horizontal counterpart ẍM results in another meaningful
response representation, shown in Fig. 13a. The result is a so-called Lissajous curve [10], whose shape is either
similar to the lemniscate of Gerono [12] (resembles an eight curve [12], for G = 5, 50 and 70MN/m2), or
similar to a general besace (for G = 25 MN/m2). In the latter case (G = 25 MN/m2), the node of the resulting
figure is shifted considerably along the vertical axis in the positive domain. This is a result of the phase lag
between ẍM and z̈M , which has its maximum at G = 25 MN/m2 (see Fig. 12). All figures are symmetric with
respect to the vertical axis because the driving torque is zero, MMd = 0.

The response in the frequency domain for four selected subsoils (Figs. 14, 15) reveals that the frequency
content ( f ) of the vertical accelerations z̈M is two times the excitation frequency f̄ if MMd = 0 (Fig. 14b). In
Figs. 14 and 15, the frequency f is normalized with respect to the excitation frequency f̄ . In contrast, ẍM is
governed by f̄ , see Fig. 14a. Since the dominating frequency content of z̈M and ẍM differs by a factor of two,
the z̈M − ẍM plot results in the Lissajous curves shown in the previous figure.

When additionally a constant driving torque of MMd = 0.05M (0)
Mu is applied to the drum, the spectrum

of vertical accelerations z̈M contains now two frequencies, one at f = 2 f̄ (as for MMd = 0) and one at
f = f̄ (see Fig. 15b). The spectral amplitudes of z̈M are largest for f/ f̄ = 1, except for the softest subsoil
(G = 5 MN/m2). The ratio of the amplitude at f = 2 f̄ to the amplitude at operating frequency f̄ decreases
from 1.11 (G = 5 MN/m2) to 0.24 (G = 70 MN/m2). The amplitudes at f/ f̄ = 2 are virtually the same as for
MMd = 0 (compare Fig. 14b with Fig. 15b). The frequency spectrum of ẍM is, however, virtually not affected
by the driving torque MMd (compare Fig. 14a with Fig. 15a). Thus, the application of the driving torque MMd,
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(a)

(b)

Fig. 13 Plot z̈M over ẍM ; MMd = 0 (a) versus MMd = 0.05M (0)
Mu (b); pure rolling motion

(a) (b)

Fig. 14 Frequency spectrum of the horizontal (a) and vertical (b) acceleration in the drum center for four selected shear moduli
G; pure rolling motion; MMd = 0

which captures the effect of the translational drum motion with the roller driving speed, changes the shape of
the z̈M − ẍM plot, as seen in Fig. 13b. The Lissajous curves become asymmetric and distorted, depending on
the soil stiffness and the ratio of the amplitude at f = 2 f̄ to the amplitude at operating frequency f̄ . For large
soil stiffness, the asymmetric Lissajous similar curves degenerate into curves without node.

Another important response quantity is the area inside the z̈M over ẍM figure. Recent experimental studies
have revealed that this area increases with increasing shear modulus G, and thus, has been proposed as
performance indicator of the actual soil compaction [18]. In Fig. 16, this area is plotted against shear modulus
G, for simulations both without driving torque (black line with “+” markers) and with driving torque (red
line with circular markers). It is seen that for zero driving torque, the maximum area is obtained at a quite
low stiffness between G = 20 MN/m2 and G = 25 MN/m2. As such, this area would be an appropriate
performance indicator only for soil compaction up to soil stiffness of about G = 25 MN/m2. However, in the
more realistic modeling scenario, the driving torque MMd = 0.05M (0)

Mu shifts the maximum of the area to stiffer
subsoils with G = 40 MN/m2. Thus, the applicability of the area as compaction control value is extended to
a larger soil range.

4.3 Stick-slip motion of the drum

The following studies on the stick-slip motion are based on a coefficient of friction of μ = 0.5 between drum
and soil.

Figures 17 and 18 show for two excitation periods the steady-state time histories of ẍM and z̈M for four
soil stiffness parameters G specified in the legend, and an excitation torque of MMd = 0 (Fig. 17) and
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(a) (b)

Fig. 15 Frequency spectrum of the horizontal (a) and vertical (b) acceleration in the drum center for four selected shear moduli
G; pure rolling motion; MMd = 0.05M (0)

Mu

Fig. 16 Area inside the z̈M − ẍM figure as a function of the soil shear modulus G; pure rolling motion; MMd = 0 and MMd =
0.05M (0)

Mu, respectively

MMd = 0.05M (0)
Mu (Fig. 18), respectively. These results illustrate the grave effect of slip between drum and

soil surface on the response. In general, in stick-slip motion the amplitudes of ẍM and z̈M are significantly
smaller compared to pure rolling of the drum, compare Fig. 17 with Fig. 11. In the slip phase, both the positive
and negative peaks of the horizontal drum center acceleration are cut (see Fig. 17a). A kink in ẍM indicates
the transition from the stick to the slip phase and vice versa. During the slip phase, both the horizontal
and vertical acceleration components in the drum center decrease. Figure 17a also shows that the slope of
ẍM in the slip phase is larger the lower the soil stiffness. In contrast to ẍM , the component z̈M decreases
significantly with increasing soil shear modulus (see Fig. 17b). The horizontal response without excitation
torque (i.e., MMd = 0) is almost symmetric with respect to the time axis, while for an excitation torque of
MMd = 0.05M (0)

Mu the slip phase in the negative horizontal acceleration range is only about the half of the
one in the positive range (compare Fig. 17a with Fig. 18a). Also, the negative response amplitude is larger
than the positive one. Another observation is that horizontal steady-state stick-slip acceleration ẍM is only
slightly affected by the soil stiffness parameter, and concerns the duration of the slip phase, which increases
slightly with increasing soil stiffness. In contrast, both signature and amplitude of the vertical component z̈M
depend strongly on the subsoil properties (see Fig. 18b). The acceleration components z̈M look differently in
the positive and negative ranges, both for MMd = 0 and MMd = 0.05M (0)

Mu. For MMd = 0, the lowest shear
modulus G = 5 MN/m2 yields the largest vertical acceleration amplitude (see Fig. 17b). Applying a driving
torque of MMd = 0.05M (0)

Mu yields the positive amplitudes of z̈M between 2 (for G = 5 MN/m2) and 7.6
(for G = 70 MN/m2) times larger than for MMd = 0 (see Fig. 18b). In the negative range, no characteristic
response pattern is observed, i.e., the pattern depends strongly on the soil shear modulus G.

Figures 19 and 20 represent ẍM (a) and z̈M (b) in the frequency domain both for MMd = 0 (Fig. 19)
and MMd = 0.05M (0)

Mu (Fig. 20). First, the spectral response without driving torque (MMd = 0) is discussed.
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(b)(a)

Fig. 17 Steady-state horizontal (a) and vertical (b) accelerations in the drum center for four selected soil shear moduli G;
MMd = 0; stick-slip motion (μ = 0.5)

(a) (b)

Fig. 18 Steady-state horizontal (a) and vertical (b) accelerations in the drum center for four selected soil shear moduli MMd =
0.05M (0)

Mu (right); stick-slip motion (μ = 0.5)

Fig. 19a, representing the horizontal drum accelerations ẍM , contains only odd harmonics because in the
slip phase the response is cut symmetrically. The overtones at uneven multiples of the excitation frequency
( f/ f̄ = 3, 5, 7, . . .) indicate that the drum motion includes slip phases, compare with the spectrum for pure
rolling motion shown in Fig. 14a. The largest amplitude belongs to the operating frequency f̄ (i.e., f/ f̄ = 1).
The spectrum of z̈M for MMd = 0 (Fig. 19b) contains only even harmonics ( f/ f̄ = 2, 4, 6, . . .), with the
largest amplitude at f =2 f̄ . With increasing soil stiffness the higher harmonics in the response become more
pronounced, both for ẍM and z̈M . While with increasing G the amplitudes in the frequency spectrum of ẍM
increase, the amplitudes in the frequency spectrum of z̈M decrease.

When applying a driving torque of MMd = 0.05M (0)
Mu to the drum, the spectra for ẍM and z̈M contain both

odd and even harmonics (see Fig. 20). They are both dominated by the operating frequency f̄ , except for the
stiffest subsoil G = 70 MN/m2. The additional uneven harmonics in the spectrum of z̈M ( f/ f̄ = 1, 3, 5, . . .)
result from the response asymmetry due to driving torque MMd, whereas the new even harmonics ( f / f̄ = 4,
6, 8, etc.) originate from the slip phase of the motion (see Fig. 20b). In the same spectrum, the ratio of the
amplitude at f = 2 f̄ to the amplitude at operating frequency f̄ decreases from 0.65 (G = 5 MN/m2) to 0.38
(G = 25 MN/m2) and then increases up to about 1.03 (G = 70 MN/m2).

Comparing the z̈M − ẍM plot for stick-slipmotion and zero driving torque (Fig. 21a) with the corresponding
plot for pure rolling motion (Fig. 13a) shows that the slip phase causes a “peak cut” and distortion of the
Lissajous similar curves; however, the symmetry with respect to the vertical axis is preserved. The resulting
shape is similar to a bow tie (see Fig. 21a). The effect of a driving torque of MMd = 0.05M (0)

Mu on the z̈M − ẍM
plot is visualized in Fig. 21b. The resulting curves are twisted, and the symmetry gets lost. Moreover, with
increasing soil stiffness the node in the curve moves to the right, and disappears completely for G = 50 and
70 MN/m2. This behavior has already been observed in pure rolling motion, as shown in Fig. 13b.
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(a) (b)

Fig. 19 Frequency spectrum of the horizontal (a) and vertical (b) accelerations in the drum center for four selected shear moduli
G; stick-slip motion (μ = 0.5); MMd = 0

(a) (b)

Fig. 20 Frequency spectrum of the horizontal (a) and vertical (b) accelerations in the drum center for four selected shear moduli
G; stick-slip motion (μ = 0.5); MMd = 0.05M (0)

Mu

(a) (b)

Fig. 21 Vertical (z̈M ) over horizontal (ẍM ) acceleration in the drum center; stick-slip motion; MMd = 0 (left) and MMd =
0.05M (0)

Mu (right)
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Fig. 22 Area inside the z̈M−ẍM figure as a function of the soil shearmodulusG; stick slipmotion;MMd = 0 andMMd = 0.05M (0)
Mu,

respectively

(a) (b)

Fig. 23 Frequency spectrum of the horizontal (a) and vertical (b) accelerations in the drum center; computed (G = 25MN/m2;
μ = 0.5; MMd = 0.05M (0)

Mu) and recorded (in field tests, dense gravel, based on [18]) accelerations

Since in the stick-slip motion the amplitudes of the drum accelerations are smaller than those for the pure
rolling motion, the area inside the z̈M - ẍM curves decreases. In Fig. 22, this area is depicted as a function
of the underlying soil shear stiffness G. For the case that the drum oscillates at the bottom of the settlement
trough (MMd = 0), this area shown by a black line with “+” markers decreases continuously with increasing
soil stiffness (see Fig. 22). This result is in contradiction to outcomes of field tests presented in [18]. A driving
torque of MMd = 0.05M (0)

Mu increases the area in the whole considered soil parameter range compared to
MMd = 0, as seen in this figure. The red line with circular markers representing this area exhibits a minimum
at G = 20 MN/m2 and a maximum at G = 45 MN/m2. For pure rolling motion, the maximum occurs at
slightly smaller soil stiffness of G = 40 MN/m2 (see Fig. 16). However, the minimum only appears in the
stick-slip motion.

To support the proposed analytical model, the frequency content of the computed results and of selected
drum accelerations recorded during in situ field tests [18] is examined. Figure 23 shows frequency spectra
of ẍM (a) and z̈M (b) for a dense gravel, i.e., G = 25 MN/m2. As observed, up to the third harmonic the
computed and the recorded responses are in good agreement. In the horizontal accelerations, the overtone at
the second multiple of the excitation frequency is overestimated by the analytical model (see Fig. 23a). In the
frequency range f / f̄ > 3, the normalized amplitudes of the computed accelerations are larger than the ones
of the measured response. This is due to the fact that in the measured response, the transition from the stick to
slip phases is smoother than that in the analytical model; consequently, the "peak cut" of the horizontal drum
accelerations is less pronounced. One reason is the coefficient of friction between the drum and subsoil, which
is assumed to be constant in the analytical model. In the present paper, a constant value of μ = 0.5 has been
assumed, in reality, however, this parameter varies within a certain range. Nevertheless, the analytical model
is capable of predicting the overall response behavior observed in the field.
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5 Conclusions

For an oscillation roller interacting with the subsurface during soil compaction, a lumped parameter model has
been proposed. The governing highly nonlinear equations of this model with three degrees-of-freedom have
been derived separately for the stick and the slip phases of the stick-slip motion of the drum.

The presented results demonstrate that the proposed model predicts the main outcomes found in previous
in situ tests. The maximum amplitude in the frequency spectrum of the horizontal drum acceleration ẍM occurs
at the operating frequency f̄ . The overtones at odd multiples of the excitation frequency ( f/ f̄ = 3, 5, 7, . . .)
result from the slip motion phase. In the frequency spectrum of vertical drum accelerations z̈M , the harmonics
at even multiples of the excitation frequency ( f/ f̄ = 4, 6, 8, . . .) indicate slip between the drum and soil.
Without driving torque, the maximum amplitude in the frequency spectrum of z̈M occurs at a frequency equal
to 2 f̄ . If the drum operates on the slope of the settlement trough (above its bottom) by the application of
a constant driving torque, for most subsoil conditions the dominating frequency corresponds to excitation
frequency f̄ .

It has been confirmed that the function z̈M against ẍM shapes a Lissajous similar curve (“recumbent eight”),
and the area enclosed in the z̈M − ẍM plot depends on the soil stiffness (and thus, on the compaction degree)
if the drum conducts a pure rolling motion. Application of a constant driving torque, which simulates the
effect of the translation motion of the roller speed, yields a distorted and rotated “recumbent eight,” as it is
observed from accelerations recorded in field tests. In the stick-slip drummotion, the z̈M − ẍM figure becomes
cut (shape of a twisted bow tie) because the maximum horizontal accelerations are confined in the slip phase.
The found results indicate that relations between the compaction degree of soil layers and the area inside the
ẍM − z̈M plot can be established also for stick-slip motion of the drum, thus, supporting a recently proposed
performance indicator for continuous compaction control for oscillation rollers.

The results of this study are based on the parameters of one specific oscillation roller. Thus, additional
simulations using the device parameters of different rollers are required to verify the findings. In a compre-
hensive parametric study, the excitation frequency and the properties of the rubber buffers should be varied
as well. Furthermore, sensitivity studies on the effect of the coefficient friction on the drum acceleration, and
consequently, on the area enclosed in the function z̈M against ẍM need to be conducted.
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Appendix A: Dynamic decoupling of drum and roller frame

For the considered HAMM HD+ 90 VO tandem roller [6], the dynamic decoupling of drum and roller frame,
realized by rubber buffers (suspension) mounted between drum and front frame, is analyzed using a simplified
model. The suspension is idealized as aKelvin–Voigtmodel consisting of a spring and dashpot damper (stiffness
kd and damping parameter cd, respectively), as shown in Fig. 24. The frame (including the cabin) is modeled
as a lumped mass, yielding in combination with the Kelvin–Voigt suspension model an SDOF system. The
lumped mass mf (= 2760kg) identified from the static axle load P0, represents the effective mass of the roller
with respect to the front axle. The absolute displacement transmissibility Tp of this SDOF system is assessed
according to the subsequent well-known equation [4]:

Tp =
√√√
√√

1 + (2ζ ν̄
ω

)2

[
1 − ( ν̄

ω

)2]2 + (2ζ ν̄
ω

)2
, ζ = cd

2mfω
, ω =

√
kd
mf

. (40)

For the roller parameters listed in Table 1, the natural circular frequency ω is 38.1 rad/s, the damping ratio ζ is
= 0.014, and the excitation frequency ν̄ of base excitation zM is 245 rad/s. Since the ratio ν̄/ω = 6.4 is much
larger than

√
2, the absolute displacement transmissibility Tp is much less than 1. In particular, evaluation of

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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this equation yields Tp = 0.025. That is, the amplitude of the frame displacement zf is only about 2.5% of
the amplitude of the displacement zM imposed at the frame base (according to the model in Fig. 24). Thus,
it is confirmed that drum and front frame are dynamically decoupled by the deeply tuned rubber buffers (as
desired by the manufacturer and proofed during roller operation on-site).

Appendix B: Coefficients of the discrete soil model

In the current study, where only non-cohesive soils are considered (ν ≤ 1
3 ), according to Wolf [25] the elastic

continuous soil halfspace can be reduced to two spring–dashpot damper elements in parallel, as shown in Fig. 2.
The corresponding dynamic soil spring coefficients, ksh and ksv, do not depend on the excitation frequency
(because ν ≤ 1

3 ), and thus, represent the “frequency-independent coefficients of an ordinary spring (the static
stiffness),” as discussed in [25]. Also, the soil damping coefficients, csh and csv, do not depend on the excitation
frequency, and thus, represent “frequency-independent coefficients of an ordinary dashpot” [25]. According to
Wolf [25], both the dynamic stiffness coefficient and the damping coefficient of the translational cone models
are “very accurate in the intermediate- and higher-frequency ranges, whereas in the lower-frequency range
(ā0 < 2) and for ν ≤ 1

3 [. . .] the spring–damper soil model overestimates (radiation) damping to a certain
extent, especially in the vertical motion.” Note that ā0 denotes a non-dimensional frequency parameter [25],

ā0 = ν̄r0
Cs

(41)

with the excitation frequency ν̄, the equivalent radius r0, and the shear wave velocity Cs . In the present case,
where an HAMM HD+ 90 VO tandem roller with an operating frequency of 39 Hz is considered, the non-
dimensional frequency a0 varies between 0.18 (G = 70 MN/m2) and 1.29 (G = 5 MN/m2), and thus, a0 < 2.
The problem is, hence, in the “lower-frequency range,” as defined by Wolf [25].
Consequently, the spring coefficients ksh and ksv representing the subsoil stiffness can be determined as follows
([17,25]),

ksh = Ga0
2 − ν

[

6.8

(
b0
a0

)0.65

+ 0.8

(
b0
a0

)
+ 1.6

]

, ksv = Ga0
1 − ν

[

3.1

(
b0
a0

)0.75

+ 1.6

]

, (42)

where G and ν are the shear modulus and the Poisson’s ratio of the halfspace, respectively, b0 denotes the half
drum width, a0 is the half contact length between drum and soil surface. Contact length 2a0 is four times the
contact length according to Hertzian theory [20] for non-adhesive elastic contact [18],

2a0 = 4

[

2

√
2r P0 (1 − ν)

πGb0

]

. (43)

In this equation, r represents the drum radius, and P0 denotes the static (vertical) axle load of the roller.
The damping coefficients csh and csv representing subsoil damping are two times the coefficients proposed by
Wolf [25],

csh = 2c(Wol f )
sh = 2ρ

√
G

ρ
4a0b0, csv = 2c(Wol f )

sv =
√
2 (1 − ν)

1 − 2ν
csh (44)

t = 0

“t”

kd

Fig. 24 SDOF model of the front frame supported by the drum suspension
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as discussed in [11]. Variable ρ is the soil density. Substituting for a0 the expression of Eq. (43) yields

csh = 32

√
2ρrb0P0 (1 − ν)

π
, csv = 64 (1 − ν)

√
ρrb0P0

(1 − 2ν) π
. (45)

Appendix C: Abbreviations

The functions f1, f2, f3, f4, f5, f6, which depend on the spiral parameters a, k, α, R0, drum radius r , and
angle δ(t), read as

f1 = R0 exp (−kδ) [k cos (α + δ) + sin (α + δ)] − r cos δ, (46)

f2 = R0 exp (−kδ)
[(
1 − k2

)
cos (α + δ) − 2k sin (α + δ)

]+ r sin δ, (47)

f3 = −R0 exp (−kδ) [k sin (α + δ) − cos (α + δ)] + r sin δ, (48)

f4 = −R0 exp (−kδ)
[(
1 − k2

)
sin (α + δ) + 2k cos (α + δ)

]+ r cos δ, (49)

f5 =
√
1 + k2 exp (−kδ)

R0

r
− 1, f6 = −k

√
1 + k2 exp (−kδ)

R0

r
. (50)

Appendix D: State space representation of the equations of motion

Stick phase
The equations of motion for the stick phase, Eqs. (30), (31) and (32), are rewritten in the state space such that

q1 = δ, q2 = xA, q3 = sA, q4 = δ̇, q5 = ẋ A, q6 = ṡA. (51)

The resulting system of first-order ODEs,
⎡

⎢
⎢⎢
⎢⎢
⎢
⎣

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 m f1 m 0
0 0 0 m f3 0 m

0 0 0
(
f5

I
mr + f̃1

)
m m cos q1 −m sin q1

⎤

⎥
⎥⎥
⎥⎥
⎥
⎦

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

q̇1
q̇2
q̇3
q̇4
q̇5
q̇6

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

q4
q5
q6

−h1
(
qi (t), qi (t)2

)

mg + Fz − h2
(
qi (t), qi (t)2

)

MM (t)
r − (mg + Fz) sin q1 − h3

(
qi (t), qi (t)2

)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

(52)

is analyzed numerically by the ode45 solver of MATLAB [16].

Slip phase
To rewrite the equations of motion for the slip phase, Eqs. (34), (36) and (38), and coupling condition, Eq. (39),
in the state space, at first the latter equation needs to be differentiated with respect to time and multiplied by
m/csh,

fμ1mẍA − fμ2
csv
csh

ms̈A + h4
(sl) = 0,

h(sl)
4 = m

csh

{
fμ1
[
ksh ẋ A − (csvṡA + ksvsA) δ̇

]− fμ2
[
ksvṡA + (csh ẋ A + kshxA) δ̇

] }
.

(53)
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The transformations

q(sl)
1 = δ, q(sl)

2 = xA, q(sl)
3 = sA, q(sl)

4 = ϕ,

q(sl)
5 = q̇(sl)

1 = δ̇, q(sl)
6 = q̇(sl)

2 = ẋ A, q(sl)
7 = q̇(sl)

3 = ṡA, q(sl)
8 = q̇(sl)

4 = ϕ̇
(54)

lead to the first-order ODEs for the slip phase,

⎡

⎢⎢
⎢⎢
⎢⎢
⎢⎢⎢
⎣

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 m

(
f1 fμ1 − f3 fμ2

)
m fμ1 −m fμ2 0

0 0 0 0 m f̃3 m sin qsl1 m cos qsl1 0
0 0 0 0 0 m fμ1 − csv

csh
m fμ2 0

0 0 0 0 sign (vrel) μm f̃3 sign (vrel) μm sin qsl1 sign (vrel) μm cos qsl1
I
r

⎤

⎥⎥
⎥⎥
⎥⎥
⎥⎥⎥
⎦

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q̇(sl)
1

q̇(sl)
2

q̇(sl)
3

q̇(sl)
4

q̇(sl)
5

q̇(sl)
6

q̇(sl)
7

q̇(sl)
8

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

q(sl)
5

q(sl)
6

q(sl)
7

q(sl)
8

− fμ2 (mg + Fz) − h(sl)
1

(
qi (sl),

(
qi (sl)

)2)

(mg + Fz) cos qsl1 − h(sl)
3

(
qi (sl),

(
qi (sl)

)2)

−h(sl)
4

(
qi (sl),

(
qi (sl)

)2)

MM (t)
r − h(sl)

2

(
qi (sl),

(
qi (sl)

)2)

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(55)

which are solved numerically by the ode45 solver of MATLAB [16].
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