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Abstract The present paper is concernedwith bending of extensible and shear-deformable rods,wherewe treat
the case of plane deformations. Our emphasis is laid upon infinitesimal deformations superimposed upon finite
deformations. In this framework, we focus on deriving generalized reciprocity theorems that must hold with
respect to the superimposed infinitesimal deformations, when produced by different types of loadings. Besides
imposed distributed and concentrated force and moment loadings, we consider the action of eigenstrains.
Moreover, we also take into account the presence of jumps in kinematic entities, particularly concerning jumps
of axial rod positions and of cross-sectional rotations. We first derive local and global universal reciprocity
relations, which must hold for rods made of any material. The global universal relation then is specialized to
the case of hyperelastic rods. From the latter relation, we prove that reciprocity theorems known from the linear
theory, such as the theorems of Betti, Maxwell and Land, as well as Maysel’s formula, formally do hold for
infinitesimal deformations superimposed upon finite deformations. As a formulation that appears to be novel
also with respect to the purely linear theory, we present a combination of Maysel’s formula with the theory of
Land, the former dealing with eigenstrains, the latter involving jumps in kinematic entities.

1 Introduction

The present paper is concerned with bending of extensible and shear-deformable rods. For a comprehensive
presentation of the theory of rods, see the book on the mechanics of deformable solids [1] by V.V. Eliseev, to
whom our contribution is devoted in grateful memory.

Subsequently, we treat the case of plane deformations of rods, the finite strain theory of which dates back
to Reissner [2]. Our emphasis is laid upon infinitesimal deformations superimposed upon finite deformations.
For fundamentals of this type of superposition, see Knops andWilkes [3]. In the present contribution, we focus
on deriving generalized reciprocity theorems that must hold with respect to the superimposed infinitesimal
deformations, when produced by different loadings. Besides imposed distributed and concentrated force and
moment loadings, we also consider the action of eigenstrains. Moreover, we also take into account the presence
of jumps in kinematic quantities, particularly concerning jumps of axial rod positions and of cross-sectional
rotations.

Our contribution is organized as follows. In Sect. 2, we present the local relations of equilibrium for the
finite strain case, as well as the local incremental equilibrium relations that hold for superposed infinitesimal
deformations. Following and extending the procedure for rods rigid in shear presented by DaDeppo [4], the
incremental equilibrium relations are derived as time rate forms of the equilibrium relations for the finite
strain case. In Sect. 3, we derive a local virtual work relation by multiplying the local incremental equilibrium
relations with proper infinitesimal virtual deformation rates. This relation is further simplified by introducing
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the rates of generalized strain measures that were introduced by Reissner [2]. Local and global universal
reciprocity relations are eventually derived in Sect. 4. We talk about a universal relation, when it does hold for
any constitutive relation of the rod under consideration. In our derivation, we consider the virtual deformation
quantities to be produced by a set of virtual internal and external forces and moments, which forms an
equilibrium system, likewise to the original incremental problem. We are thus allowed to interchange original
and virtual quantities in the local virtual work relation derived before in Sect. 3. This yields an adjoint virtual
work relation. Subtracting the two virtual work relations provides the local universal reciprocity relation. The
global form of the latter follows by integration along the rod segment under consideration in the reference
configuration. In doing so, we also take into account the presence of concentrated external forces and external
moments, which correspond to equilibrium relations of jump of the internal forces and moments. Besides of
these static jump relations, we also consider kinematic jumps to be present in the infinitesimal superimposed
deformations, namely jumps of the position vector or of the cross-sectional rotation at a certain location.
Jumps may be present in both, the original and the virtual problem context. The static and kinematic relations
of jump enter the universal global reciprocity relation, since integration must be performed piecewise, due to
the presence of jumps in the local virtual work relations.

In Sect. 5, we specialize the universal global reciprocity relation derived in Sect. 4 to the case of hyperelastic
rods, where we involve the generalized strain measures of Reissner [2], as well as proper integrability relations.
We particularly allow the presence of incremental superimposed eigenstrains in the original problem. The
generalized reciprocity theorem so obtained includes not only distributed forces and moments as well as jumps
in forces and moments, but also eigenstrains and jumps in the kinematic relations. As special forms of this
generalized formulation, various reciprocity relations known from the purely linear theory are proved to hold
also for infinitesimal deformations superimposed upon finite deformations of shear-deformable and extensible
rods, such as the Betti and Maxwell reciprocity theorems, see DaDeppo [4] for rods rigid in shear, and see
Ziegler [5] for the linear theory. We further deal with an extension of a reciprocity theorem that involves
jumps in the kinematic entities, and which in the purely linear context dates back to Land, see Kurrer [6] for a
contemporary exposition. Concerning eigenstrains, we derive an extension of Maysel’s formula of the linear
theory of thermoelasticity, see Ziegler and Irschik [7] for the linear theory. As a topic which appears to be novel
also with respect to the purely linear theory, we derive a reciprocity formulation that connects superimposed
jumps of the virtual kinematic entities with the presence of superimposed eigenstrains in the original problem,
and which thus allows to compute eigenstrain-induced internal forces and moments, when the solution due
to the superimposed jumps in the kinematic entities is known. In Sect. 6, we finally present numerical and
analytic examples for the correctness of the latter formulation.

2 Relations of equilibrium and incremental equilibrium relations

In the course of the present paper, we assume that the deformation of the rod takes place in the (x, z)-plane
of a global Cartesian coordinate system with unit base vectors ex , ey , and ez , such that ey is perpendicular to
the plane of deformation. The curved axial coordinate of the rod in the undeformed reference configuration
is denoted as s0. The rod may have a curved axis already in the reference configuration. The axial coordinate
of the rod in the deformed configuration is called s, see Fig. 1. Studying equilibrium of a rod element of
differential axial length ds, but formulating any entities as functions of the reference coordinate s0, one obtains
the local relations of equilibrium for the deformed configuration of the rod as, see [1,2],

�R′ + �p = �0, (1)
�M ′ + �r ′ × �R + �m = �0. (2)

The derivative of some entity f with respect to s0 is denoted by a prime:

f ′ = ∂ f

∂s0
. (3)

The force vector �R represents the resultant of the inner forces acting upon a cross section of the rod in the
deformed configuration, the position vector of the axis point in this cross section being denoted as �r , see Fig. 1.
The moment vector �M is the resultant couple of the inner forces with respect to the axis point. Note that
the deformed configuration may represent a large deformation, possibly accompanied by large displacements
from the reference configuration. For the sake of clearness, we will denote this deformed configuration as
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Fig. 1 Undeformed and intermediate reference configurations

intermediate configuration in the following.Without going further into details, we assume that the intermediate
configuration is infinitesimally superstable, see Knops and Wilkes [3] for details, such that our study on the
superposition of infinitesimal deformations upon the intermediate configuration makes practical sense.

In the intermediate configuration, we introduce a local cross-sectional coordinate system with unit base
vectors e1 and e2, the origin of which is situated at the axis point, and which stems from a positive rotation
about the y axis of the global system by the angle ϕ, such that

�e1 = �ex cosϕ − �ez sin ϕ, (4)

�e3 = �ex sin ϕ + �ez cosϕ. (5)

The corresponding decomposition of the resultants of the inner forces in the local system is written as

�R = Rx �ex + Rz�ez = N �e1 + Q�e3, (6)
�M = M�ey . (7)

Following Reissner [2], the �e1-direction is taken perpendicular to the cross section in the deformed configu-
ration, such that �e3 is tangential to the latter, where the angle ϕ is interpreted as the cross-sectional rotation,
see Fig. 1. Hence, we call N and Q normal and shear force, respectively, and M is the bending moment. An
analogous decomposition for the imposed forces and couples reads:

�p = n�e1 + q�e3, (8)

�m = m�ey . (9)

We now formulate the local equilibrium conditions, Eqs. (1) and (2), in the local coordinate system. From Eqs.
(4) and (5), the derivatives of the local base vectors with respect to s0 follow as

�e′
1 = −ϕ′�e3, (10)

�e′
3 = ϕ′�e1. (11)

The axial deformation gradient vector �r ′ introduced in Eq. (2) is tangential to the axis,

�r ′ = Λ (cosχ �e1 − sin χ �e3) . (12)

The axial stretch is denoted as Λ = ds/ds0, and χ is the shear angle, see Fig. 1. Using Eqs. (6)–(12), the
following local form of the relations of equilibrium for the intermediate configuration is obtained from Eqs.
(1) and (2):

�R′ + �p = (
N ′ + ϕ′Q + n

) �e1 + (
Q′ − ϕ′N + q

) �e3 = �0, (13)

M ′ − Λ (Q cosχ + N sin χ) + m = 0. (14)
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We now consider the situation of a quasi-static loading that slowly evolves with time t . Taking into account an
infinitesimal deformation with infinitesimal displacements superimposed upon the intermediate configuration,
we are seeking for the rate form of Eqs. (13) and (14). Recall that such a superposition makes practical
sense, since we have required the intermediate configuration to be infinitesimally superstable [3]. Following
considerations by Da Deppo for rods rigid in shear [4], the rate form can be obtained from the equilibrium
conditions in Eqs. (13) and (14) by differentiation with respect to the parameter t . Subsequently, the derivative
of some entity f with respect to t , holding the place s0 fixed, is denoted by a superimposed dot:

ḟ = d f

dt
= ∂ f

∂t

∣
∣∣
∣
s0=const

. (15)

By tacitly skipping dt , one then is allowed to interpret this rate ḟ directly as the increment of f that corresponds
to the superimposed infinitesimal deformation under consideration, being expressed as a function of the place
s0 in the reference configuration. Analogous to Eqs. (10) and (11), we now have

�̇e1 = − ϕ̇�e3, (16)

�̇e3 = ϕ̇�e1. (17)

Using the latter relations, the rate forms of Eqs. (13) and (14) can be formulated as

�̇R′ + �̇p = �0, (18)

Ṁ ′ − Λ̇ (Q cosχ + N sin χ)

−Λ
(
Q̇ cosχ + Ṅ sin χ

) − Λχ̇ (−Q sin χ + N cosχ) + ṁ = 0. (19)

For subsequent use, we note the increments of the resultant internal force and its space-wise derivative as

�̇R = (
Ṅ + ϕ̇Q

) �e1 + (
Q̇ − ϕ̇N

) �e3, (20.1)

�̇R′ = (
Ṅ ′ + ϕ̇′Q + ϕ′ Q̇ − ϕ̇q

) �e1 + (
Q̇′ − ϕ̇′N − ϕ′ Ṅ + ϕ̇n

) �e3. (20.2)

The latter relation follows from Eq. (20.1) by taking into account Eqs. (10), (11), and (13). Recall that both
the equilibrium relations for the intermediate configuration, Eqs. (13) and (14), as well as the rate equilibrium
relations, Eqs. (18) and (19), are referred to the same undeformed reference configuration. Particularly, when
the intermediate configuration and the undeformed reference configuration do coincide, i.e. in the linear theory
of rods, it follows that Eqs. (13) and (14) are trivially satisfied, because then there is n = 0, q = 0, m = 0,
N = 0, Q = 0, M = 0, Λ = 1, χ = 0, ϕ = ϕ0, where ϕ0 denotes the value of the angle ϕ in the undeformed
reference configuration. The rate form of the equilibrium relations, Eqs. (18) and (19), in this special case
indeed yields the well-known equilibrium conditions of the linear theory of rods, see [1] and Ziegler [5].

3 Local virtual work relations

Since we intend to derive reciprocity relations later on, we here provide local virtual work relations fitting to
the rate equilibrium conditions stated in Eqs. (18) and (19). This is performed by a scalar multiplication of Eq.
(18) with a virtual displacement increment. In the following, virtual increments are indicated by underlined
symbols, and they are understood as functions of the axial coordinate s0 in the reference configuration again.
These underlined virtual entities are assumed to correspond to an infinitesimal test deformation superimposed
upon the same intermediate configuration introduced above, such that we are allowed to use superimposed
dots also for the virtual entities. Hence, we obtain the local virtual work relation for the forces in the form

�̇R′ · �̇r + �̇p · �̇r = �0. (21)

Now assume, for the moment being, that the entities are smooth enough at the place s0, such that the product
rule of differentiation can be applied to Eq. (21):

( �̇R · �̇r
)′ − �̇R · �̇r ′ + �̇p · �̇r = 0. (22)
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The increment of the virtual axial deformation gradient vector �r ′ follows by time-wise differentiation of Eq.
(12):

�̇r ′ =
(
Λ̇ cosχ − Λχ̇ sin χ − Λϕ̇ sin χ

)
�e1 −

(
Λ̇ sin χ + Λχ̇ cosχ + Λϕ̇ cosχ

)
�e3. (23)

Substituting Eqs. (20) and (23) into (22) yields

( �̇R · �̇r
)′ − Q

(
ϕ̇Λ̇ cosχ − Λϕ̇

(
χ̇ + ϕ̇

)
sin χ

)
− N

(
ϕ̇Λ̇ sin χ + Λϕ̇

(
χ̇ + ϕ̇

)
cosχ

)

+Λ
(
Q̇

(
χ̇ + ϕ̇

)
cosχ + Ṅ

(
χ̇ + ϕ̇

)
sin χ

)
+ (

Q̇ sin χ − Ṅ cosχ
)
Λ̇ + �̇p · �̇r = 0. (24)

Similarly, multiplying the incremental equilibrium relation for the moment, Eq. (19), with a virtual rate of the
rotation angle ϕ̇ yields

(
Ṁ ϕ̇

)′ − Ṁ ϕ̇′ − Q
(
Λ̇ϕ̇ cosχ − Λχ̇ϕ̇ sin χ

)
− N

(
Λ̇ϕ̇ sin χ + Λχ̇ϕ̇ cosχ

)

−Λ
(
Q̇ϕ̇ cosχ + Ṅ ϕ̇ sin χ

)
+ ṁϕ̇ = 0. (25)

Adding Eqs. (24) and (25), we obtain the local relation of virtual work of the incremental external and internal
forces and moments done with respect to the virtual incremental test deformations as

( �̇R · �̇r + Ṁ ϕ̇
)′ + (

Q̇ sin χ − Ṅ cosχ
)
Λ̇ − Ṁ ϕ̇′

−Q
((

ϕ̇Λ̇ + ϕ̇Λ̇
)
cosχ − Λ

(
ϕ̇χ̇ + χ̇ ϕ̇ + ϕ̇ϕ̇

)
sin χ

)

−N
(
Λ

(
ϕ̇χ̇ + χ̇ ϕ̇ + ϕ̇ϕ̇

)
cosχ +

(
ϕ̇Λ̇ + Λ̇ϕ̇

)
sin χ

)

+Λ
(
Q̇χ̇ cosχ + Ṅ χ̇ sin χ

)

+ �̇p · �̇r + ṁϕ̇ = 0. (26)

This relation can be further simplified by utilizing generalized strainmeasures that were introduced byReissner
[2]. These measures consist of a generalized extensional strain,

ε = Λ cosχ − 1, ε̇ = Λ̇ cosχ − Λχ̇ sin χ, (27)

a generalized shear strain,

γ = − Λ sin χ, γ̇ = − Λ̇ sin χ − Λχ̇ cosχ, (28)

and a generalized bending strain,

κ = ϕ′, κ̇ = ϕ̇′. (29)

Substituting the deformation rates in Eqs. (27) and (28) into (26), one obtains the reduced form

( �̇R · �̇r + Ṁ ϕ̇
)′ − Q̇γ̇ − Ṅ ε̇ − Ṁ ϕ̇′ − Q

((
ϕ̇Λ̇ + ϕ̇Λ̇

)
cosχ − Λ

(
ϕ̇χ̇ + ϕ̇χ̇ + ϕ̇ϕ̇

)
sin χ

)

−N
(
Λ

(
ϕ̇χ̇ + ϕ̇χ̇ + ϕ̇ϕ̇

)
cosχ +

(
ϕ̇Λ̇ + ϕ̇Λ̇

)
sin χ

)
+ �̇p · �̇r + ṁϕ̇ = 0. (30)
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4 Local and global universal reciprocity relations

We now consider the underlined virtual deformation quantities to correspond to a set of virtual internal and
external forces and moments. The virtual forces and moments are designated by corresponding underlined
symbols, and they are considered to produce a state of equilibrium, too, likewise to the original forces and
moments. We are thus allowed to interchange the roles of the underlined and non-underlined quantities in Eq.
(30), which yields

( �̇R · �̇r + Ṁ ϕ̇
)′ − Q̇γ̇ − Ṅ ε̇ − Ṁ ϕ̇′ − Q

((
ϕ̇Λ̇ + ϕ̇Λ̇

)
cosχ − Λ

(
ϕ̇χ̇ + ϕ̇χ̇ + ϕ̇ϕ̇

)
sin χ

)

−N
(
Λ

(
ϕ̇χ̇ + ϕ̇χ̇ + ϕ̇ϕ̇

)
cosχ +

(
ϕ̇Λ̇ + ϕ̇Λ̇

)
sin χ

)
+ �̇p · �̇r + ṁϕ̇ = 0. (31)

The relation in Eq. (31) represents the local virtual work of the underlined virtual forces and moments done
upon the non-underlined incremental deformations, which we denote as original ones in the following, while
underlined quantities will be called virtual ones. Subtracting Eq. (31) from Eq. (30) yields the following
universal local reciprocity relation:

( �̇R · �̇r + Ṁ ϕ̇
)′ − Q̇γ̇ − Ṅ ε̇ − Ṁ ϕ̇′ + �̇p · �̇r + ṁϕ̇

=
( �̇R · �̇r + Ṁ ϕ̇

)′ − Q̇γ̇ − Ṅ ε̇ − Ṁ ϕ̇′ + �̇p · �̇r + ṁϕ̇. (32)

We call this relation as universal, since it must hold for any constitutive relation of the rod under consideration.
Note that Eq. (31) also nicely reflects the fact that Reissner’s generalized strain measures, see Eqs. (27)–(29),
are work conjugate to the internal forces and moments.

We now integrate over the rod segment under consideration, over the region 0 ≤ s0 ≤ l0 in the reference
configuration. Assuming that the original incremental forces, moments, and deformations may suffer jumps
at the place s0 = a0, while the virtual entities may jump at s0 = a0, integration of the bracketed terms at both
sides of Eq. (32), the differentials of which are indicated by primes, must be performed piecewise. Eventually,
the following global universal reciprocity relation including jumps of static and/or kinematic quantities is
obtained:

∫ s0=l0

s0=0

(
�̇p · �̇r + ṁϕ̇

)
ds0 −

(
� �̇R� · �̇r + �Ṁ�ϕ̇

)∣∣
∣
s0=a0

−
( �̇R · ��̇r� + Ṁ�ϕ̇�

)∣∣
∣
s0=a0

−
∫ s0=l0

s0=0

(
Q̇γ̇ + Ṅ ε̇ + Ṁ ϕ̇′) ds0

=
∫ s0=l0

s0=0

(
�̇p · �̇r + ṁϕ̇

)
ds0 −

(
� �̇R� · �̇r + �Ṁ�ϕ̇

)∣∣∣
s0=a0

−
( �̇R · ��̇r� + Ṁ�ϕ̇�

)∣∣∣
s0=a0

−
∫ s0=l0

s0=0

(
Q̇γ̇ + Ṅ ε̇ + Ṁ ϕ̇′) ds0. (33)

Jumps are indicated by double brackets,

� f �
∣
∣
s0=a0

= lim
ε→0

(
f |s0=a0+ε − f |s0=a0−ε

)
. (34)

In deriving Eq. (33), it has been assumed with little loss of generality, but for the sake of brevity that

( �̇R · �̇r + Ṁ ϕ̇
)∣∣
∣
s0=l0

s0=0
=

( �̇R · �̇r + Ṁ ϕ̇
)∣∣
∣
s0=l0

s0=0
. (35)

This relation is trivially satisfied for classical homogeneous boundary conditions at the rod ends, e.g. at a
clamped end, kinematic quantities do vanish. Moreover, note that the amounts of the jumps in Eq. (33) usually
can be taken as known, because they correspond to the following static and kinematic relations of jump,
respectively:

� �̇R�
∣∣∣
s0=a0

+ �̇Fimp = �0, � �̇R�
∣∣∣
s0=a0

+ �̇Fimp = �0, (36)
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�Ṁ�
∣∣
s0=a0

+ Ṁimp = 0, �Ṁ�
∣∣
s0=a0

+ Ṁimp = 0, (37)

��̇r�
∣
∣∣
s0=a0

− �̇Δimp = �0, ��̇r�
∣
∣∣
s0=a0

− �̇Δimp = �0, (38)

ϕ̇|s0=a0 − θ̇imp = 0, �ϕ̇�
∣
∣∣
s0=a0

− θ̇ imp = 0. (39)

The index imp in Eqs. (36)–(39) refers to an imposed quantity.

5 Global reciprocity relations for hyperelastic rod

Following Reissner [2], the constitutive relations of an elastic rod can be formulated as functions of the
generalized strains stated in Eqs. (27)–(29), from which their rate forms follow by differentiation with respect
to time:

Q = Q
(
ε, ϕ′, γ, γe

) : Q̇ = ∂Q

∂ε
ε̇ + ∂Q

∂ϕ′ ϕ̇
′ + ∂Q

∂γ
γ̇ + ∂Q

∂γe
γ̇e, (40)

N = N
(
ε, ϕ′, γ, εe

) : Ṅ = ∂N

∂ε
ε̇ + ∂N

∂ϕ′ ϕ̇
′ + ∂N

∂γ
γ̇ + ∂N

∂εe
ε̇e, (41)

M = M
(
ε, ϕ′, γ, εe, ϕ′

e, γe
) : Ṁ = ∂M

∂ε
ε̇ + ∂M

∂ϕ′ ϕ̇
′ + ∂M

∂γ
γ̇ + ∂M

∂ϕ′
e
ϕ̇′
e. (42)

In Eqs. (40)–(42), we also have introduced generalized eigenstrains εe, γe, and ϕ′
e, as well as their rates,

these eigenstrains being taken as known in the following. For the sake of simplicity, we assume forces and
moments to depend on the respective generalized eigenstrains only, see the last terms in Eqs. (40)–(42). Now,
for hyperelastic rods, certain necessary and sufficient integrability conditions must be satisfied in order that
the existence of a potential function can be guaranteed. These conditions read:

∂Q

∂ε
= ∂N

∂γ
,

∂Q

∂ϕ′ = ∂M

∂γ
,

∂N

∂ϕ′ = ∂M

∂ε
. (43)

For rods rigid in shear, where γ = 0 and γ̇ = 0, see DaDeppo [4]. Relations analogous to Eqs. (40)–(43) also
hold for the virtual (underlined) quantities; however, we subsequently consider eigenstrains to be absent in the
virtual problem:

εe = 0, ϕ′
e

= 0, γ
e

= 0. (44)

Using Eqs. (40)–(44), one obtains

Q̇γ̇ + Ṅ ε̇ + Ṁ ϕ̇′ − Q̇γ̇ − Ṅ ε̇ − Ṁ ϕ̇′ = ∂Q

∂γe
γ̇ γ̇ + ∂N

∂εe
ε̇eε̇ + ∂M

∂ϕ′
e
ϕ̇′
eϕ̇

′. (45)

Substituting Eq. (45) into the universal global relation of reciprocity, Eq. (33), and considering Eq. (35), yields
the following generalized reciprocity relation for hyperelastic rods in the presence of rates of eigenstrain in
the original problem:

∫ s0=l0

s0=0

(
�̇p · �̇r + ṁϕ̇

)
ds0 −

(
� �̇R� · �̇r + �Ṁ�ϕ̇

)∣∣
∣
s0=a0

−
( �̇R · ��̇r� + Ṁ�ϕ̇�

)∣∣
∣
s0=a0

−
∫ s0=l0

s0=0

(
∂Q

∂γe
γ̇eγ̇ + ∂N

∂εe
ε̇eε̇ + ∂M

∂ϕ′
e
ϕ̇′
eϕ̇

′
)
ds0

=
∫ s0=l0

s0=0

(
�̇p · �̇r + ṁϕ̇

)
ds0 −

(
� �̇R� · �̇r + �Ṁ�ϕ̇

)∣∣
∣
s0=a0

−
( �̇R · ��̇r� + Ṁ�ϕ̇�

)∣∣
∣
s0=a0

. (46)

Aswill be discussed subsequently, this relation includes and extends reciprocity relations known from the linear
theory of rods to the case of infinitesimal deformations superimposed upon possibly large, but infinitesimally
superstable deformations of rods.Amain result of the present paper is that the formof these reciprocity relations
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is the same in both, the linear theory of rods (small deformations from an undeformed reference configuration)
and in the theory of small deformations from an intermediate state with a possibly large deformation with
respect to the reference state. In the latter case, the static and kinematic rates of course do depend on the
deformation of the intermediate state. To the best knowledge of the present author, the combined presence of
kinematic jumps and eigenstrains in reciprocity relations yields a novel formulation also with respect to the
linear theory of hyperelastic rods.

5.1 Betti’s reciprocal theorem

Assuming eigenstrains as well as any jumps to be absent, from Eq. (46) we obtain the celebrated reciprocity
theorem of Betti, see [5] for the linear theory, and Da Deppo [4] for infinitesimal deformations superimposed
on finite deformations:

∫ s0=l0

s0=0

(
�̇p · �̇r + ṁϕ̇

)
ds0 =

∫ s0=l0

s0=0

(
�̇p · �̇r + ṁϕ̇

)
ds0. (47)

The relation stated in Eq. (46) extends the result of DaDeppo [4] for rods rigid in shear to shear-deformable
rods.

5.2 Maxwell’s reciprocal theorem

Considering single forces in both, the original and the virtual problem, Eqs. (36) and (37), Eq. (46) delivers
Maxwell’s well-known reciprocity theorem, see [5] for the linear theory:

(
� �̇R� · �̇r + �Ṁ�ϕ̇

)∣∣
∣
s0=a0

=
(
� �̇R� · �̇r + �Ṁ�ϕ̇

)∣∣
∣
s0=a0

. (48)

5.3 Reciprocity theorem dating back to Land

We now study the presence of jumps of the static and kinematic entities in the absence of eigenstrains and
distributed forces and moments in Eq. (46). One possible case is the presence of static entities suffering jumps
in the original problem and kinematic entities that jump in the virtual one. This yields:

(
� �̇R� · �̇r + �Ṁ�ϕ̇

)∣
∣∣
s0=a0

= −
( �̇R · ��̇r� + Ṁ�ϕ̇�

)∣
∣∣
s0=a0

. (49)

In the linear theory, such a relation is known as the reciprocity theorem of Land. We refer to the book of
Kurrent [6], who deserves the merit of bringing back this theorem to the attention of a wider audience.

5.4 Extension of Maysel’s formula

Consider the case of jumps being present in the static entities of the virtual problem, and of eigenstrains being
present in the original problem in Eq. (46). One then obtains:

(
� �̇R� · �̇r + �Ṁ�ϕ̇

)∣
∣∣
s0=a0

=
∫ s0=l0

s0=0

(
∂Q

∂γe
γ̇eγ̇ + ∂N

∂εe
ε̇eε̇ + ∂M

∂ϕ′
e
ϕ̇′
eϕ̇

′
)
ds0. (50)

Practically, this means that specific kinematic entities, located at s0 = a0 and produced by eigenstrains in
the original problem, can be obtained by integration along the rod, once the solution of the virtual problem is
known due to jumps of the work-conjugated static quantities, also applied at s0 = a0. This technique is known
as Maysel’s formula in the linear theory of thermal eigenstrains, see Ziegler and Irschik [7]. See Irschik et al.
[8] for the finite strain context, and Irschik and Pichler [9] for small vibrations superimposed upon large static
deformations of piezoelastic bodies.
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Fig. 2 Undeformed and intermediate reference configurations of the example problem

5.5 An extension of Maysel’s formula motivated by the theorem of Land

We finally combine Maysel’s formula, Eq. (50), with the Land-type reciprocity theorem, Eq. (48). This means
to consider jumps of the kinematic entities in the virtual problem, and to account for the presence of eigenstrains
in the original problem. We then obtain from Eq. (46):

( �̇R · ��̇r� + Ṁ�ϕ̇�
)∣
∣∣
s0=a0

= −
∫ s0=l0

s0=0

(
∂Q

∂γe
γ̇eγ̇ + ∂N

∂εe
ε̇eε̇ + ∂M

∂ϕ′
e
ϕ̇′
eϕ̇

′
)
ds0. (51)

This allows computing internal forces and moments due to the eigenstrains, when the solution of the virtual
problem due to the jumps of the kinetic entities is known. To the best knowledge of the present author, Eq.
(51) represents a novel extension of Maysel’s procedure, not only with respect to the case of infinitesimal
deformations superimposed upon a finite strain, but also in the framework of the purely linear theory.

6 Example problem

For an exemplary confirmation of the validity of our above results, we consider the case of an initially straight
beam, the axial coordinate in the undeformed configuration being denoted as s0 = x , where 0 ≤ x ≤ l0 = l.
The rod is taken as simply supported and axially movable at its left end, in x = 0, while it is clamped and
fixed at the right end, in x = l. For the intermediate configuration, we consider an external moment M0 and
an external axial force Rx0 to be applied at x = 0, see Fig. 2.

We now assume imposed distributed forces and moments to be absent, where we first formulate relations
for the intermediate configuration. The local equilibrium relations, Eqs. (13) and (14), now read

N ′ + ϕ′Q = 0, (52)

Q′ − ϕ′N = 0, (53)

M ′ − Λ (Q cosχ + N sin χ) = 0. (54)

We need to introduce constitutive hyperelastic relations, which, for the sake of simplicity, are taken as linear
functions of Reissner’s generalized strains, Eqs. (27)–(29), see also [1,2],

N = E Aε = E A (Λ cosχ − 1) , (55)

Q = kGAγ = kGAΛ sin χ, (56)

M = E Iκ = E Iϕ′. (57)

In accordance with a frequent notation in structural mechanics, EI denotes the bending stiffness, EA is the
tensile stiffness, and kGA stands for the shear stiffness, k being the shear factor, and E denoting Young’s
modulus. The cross-sectional area is A, and I denotes the cross-sectional moment of inertia.
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The position vector of a point of the axis in the deformed configuration can be written as �r = (x + u) �ex +
w�ez , the displacement gradient vector following to �r ′ = (

1 + u′) �ex +w′�ez . The axial displacement is denoted
by u, and w is the deflection. In order to close the problem, the following kinematic relations are considered,
which follow by representing the deformation gradient vector in the form of Eq. (12) in the global coordinate
system, using Eqs. (4) and (5), and resolving for the displacement gradients:

u′ = Λ (cosχ cosϕ − sin χ sin ϕ) − 1, (58)

w′ = −Λ(cosχ sin ϕ + sin χ cosϕ) . (59)

In order to eliminate the shear angle χ from the relations in Eqs. (54), (58) and (59), we utilize Eqs. (55) and
(56), which yields

M ′ − Q

(
1 + N

(
1

E A
+ 1

kGA

))
= 0, (60)

u′ =
(

N

E A
+ 1

)
cosϕ − Q

kGA
sin ϕ − 1, (61)

w′ = −
((

N

E A
+ 1

)
sin ϕ + Q

kGA
cosϕ

)
. (62)

We thus have arrived at a system of six first-order nonlinear ordinary differential equations, Eqs. (52), (53),
(57), and (59)–(62), for determining the six unknown functions u, w, ϕ, N , Q, and M in the intermediate
configuration. This set is accompanied by the following six boundary conditions:

x = 0 : w = 0, Rx = N cosϕ + Q sin ϕ = Rx0, M = M0 (63)

x = l : u = 0, w = 0, ϕ = 0. (64)

The results enter the corresponding linear boundary-value problem for the superimposed infinitesimal defor-
mations as known parameters, which however generally are non-constant.

For the original problem, the corresponding linear equilibrium relations follow in the absence of distributed
imposed incremental forces and moments as, see Eqs. (13), (14), and (59):

Ṅ ′ + ϕ̇′Q + ϕ′ Q̇ = 0, (65)

Q̇′ − ϕ̇′N − ϕ′ Ṅ = 0, (66)

Ṁ ′ − Q̇ − (
QṄ + Q̇N

) (
1

E A
+ 1

kGA

)
= 0. (67)

Having eliminated the shear angle and its infinitesimal increment, the kinematic relations become, see also
Eqs. (61) and (62):

u̇′ = Ṅ

E A
cosϕ − Q̇

kGA
sin ϕ − ϕ̇

((
N

E A
+ 1

)
sin ϕ + Q

kGA
cosϕ

)
, (68)

ẇ′ = − Ṅ

E A
sin ϕ − Q̇

kGA
cosϕ − ϕ̇

((
N

E A
+ 1

)
cosϕ − Q

kGA
sin ϕ

)
. (69)

We particularly wish to obtain exemplary evidence for the correctness of the extended Maysel’s formula, Eq.
(51). Subsequently, for the sake of brevity, we consider the presence of a bending-type generalized incremental
eigenstrain ϕ̇′

e only. The corresponding linear constitutive bending relation is taken as

Ṁ = E I
(
ϕ̇′ − ϕ̇′

e

)
. (70)

The relations in Eqs. (65)–(70) represent a system of six first-order ordinary differential equations for the six
incremental quantities u̇, ẇ, ϕ̇, Ṅ , Q̇ and Ṁ that are superimposed upon the intermediate configuration in
the original problem, due to the generalized eigenstrain ϕ̇′

e, sometimes also denoted as an imposed curvature.
Since we consider the latter as the only loading here, the corresponding boundary conditions become, see Eqs.
(63)–(64):

x = 0 : ẇ = 0, Ṙx = Ṅ cosϕ − N ϕ̇ sin ϕ + Q̇ sin ϕ + Qϕ̇ cosϕ = 0, Ṁ = 0, (71)
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x = l : u̇ = 0, ẇ = 0, ϕ̇ = 0. (72)

In order to exemplarily confirm the validity of Eq. (51), we consider the clamped end of the rod, i.e. we let
a0 → l, at which place we wish to compute the incremental clamping moment Ṁ

∣∣
x=l due to ϕ̇′

e. This means
that we have to apply an imposed virtual negative cross-sectional rotation just left to the clamping end, in

order to make �ϕ̇�
∣
∣∣
x=l

positive. Hence, in order to set up the virtual problem, we use underlined symbols for

the infinitesimal increments in Eqs. (65)–(72), where we set ϕ̇′
e = 0 in Eq. (70), and where, considering a unit

jump �ϕ̇�
∣
∣∣
x=l

= 1, we replace the boundary conditions in Eq. (72) by

x = l : u̇ = 0, ẇ = 0, ϕ̇ = −1. (73)

Note that, despite the virtual problem (the underlined quantities) is considered to represent an infinitesimal
deformation, a unit jump of the cross-sectional rotation angle has been introduced. This is admissible due to
the linearity of the problem at hand and is customary in linear structural mechanics, see e.g. [6].

The extended Maysel’s formula, Eq. (51), now specializes to

(
Ṁ�ϕ̇�

)∣∣
∣
x=l

= Ṁ
∣∣
x=l = −

∫ x=l

x=0

(
∂M

∂ϕ′
e
ϕ̇′
eϕ̇

′
)
dx . (74)

Assuming that the constitutive behaviour is linear also for the intermediate configuration, and that, for the
moment being, bending eigenstrains would be present, we find

M = E I
(
ϕ′ − ϕ′

e

)
,

∂M

∂ϕ′
e

= −E I. (75)

This gives

Ṁ
∣∣
x=l =

∫ x=l

x=0

(
E I ϕ̇′ϕ̇′

e

)
dx =

∫ x=l

x=0

(
Ṁ ϕ̇′

e

)
dx . (76)

Assuming that the bending stiffness and the imposed curvature are both constant along the beam, E I = const.,
ϕ̇′
e = const., Eq. (74) yields the alternative form, see Eq. (73):

Ṁx=l = E I ϕ̇′
e

∫ x=l

x=0
ϕ̇′dx = E I ϕ̇′

e

(
ϕ̇

∣
∣∣
x=l

− ϕ̇

∣
∣∣
x=0

)
= −E I ϕ̇′

e

(
1 + ϕ̇

∣
∣∣
x=0

)
. (77)

This form can be easily evaluated once ϕ̇

∣
∣∣
x=0

has been obtained as solution of the virtual problem.

For a validation, numerical solutions of the three exemplary boundary-value problems (the intermediate,
the original, and the virtual problem) stated in Eqs. (52)–(73) have been obtained by means of the symbolic
computer codeMaple [10], version2017. For the nonlinear intermediate problem, the commanddsolve, together
with the options numeric and output=listprocedure, was utilized. The numerically obtained point-wise results
for the intermediate configurationwere introduced into theMaple-formulations for the linear original andvirtual
problems via the additional option known=() in the command dsolve. Default settings ofMaple [10] were used,
e.g. concerning a selection of integration procedures. It turned out that, as long as the procedures did converge,
results were obtainedwith a small computational effort, “just at fingertips”, despite the problems at hand appear
to be comparatively involved. In our numerical computations, differences between the numerical outcomes of
the original problem and of Eq. (77), the latter involving the virtual problem, remained comparatively small.
For instance, we considered a thick rod of circular cross section with diameter d = 0.2m, length l = 1m, and
Young’s modulus E = 100GPa. Bending stiffness then is E I = 2.5πMPa, tensile stiffness is E A = πMPa,
and we set kGA = 0.5πMPa. For the boundary conditions of the intermediate problem, Eq. (63), the end
moment was taken as M0 = 10π2KNm, and an axial compressive force Rx0 was applied, which was 95% of
the classical Euler buckling force for the problem at hand, not taking into account shear and extension, see
e.g. [5]. Having obtained the solutions for the intermediate problem, Eqs. (52), (53), (57), and (59)–(64), the
original problem in Eqs. (65)–(72) was solved directly for a unit incremental imposed curvature, ϕ̇′

e = 1m−1.
Afterwards, the solution of the virtual problem was computed and used to evaluate Eq. (77) for obtaining the
bending moment Ṁ

∣∣
x=l at the clamped end. The numerical algorithms implemented in Maple in our hands

delivered a difference of 0.0525% between Eq. (77) and the outcome of the original problem in Eqs. (65)–(72).
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When the diameter of the beam was decreased to d = 0.01m, this difference increased to 0.4203%. The
following explanation has been provided:

As alreadymentioned, the above Land-type extension ofMaysel’s formula in the context of an intermediate
state with a large deformation, Eq. (51), appears to represent a novel contribution to the eigenstrain theory.
Extended numerical studies, concerning initially curved beams and eigenstrain loadings that are more complex
than the constant bending-type one acting on an initially straight beam, which has been treated in the above
exemplary numerical study with respect to Eq. (77), will be published in a forthcoming paper.

Note, however, that analytic checks of the more general Eq. (76) are possible via exemplary results from the
literature on initially straight beamswith non-constant eigenstrain loadings,when the undeformed configuration
and the intermediate configuration do coincide, i.e. in the purely linear case, assuming M0 = 0 and Rx0 = 0.
Consider again the case of a simply supported—clamped beam. Assume that the imposed curvature in the
original problem is a box-type temperature difference between the upper and lower side of the beam,

ϕ̇′
e = γ (T2 − T1)

t
H (x − a) . (78)

The Heaviside function is abbreviated by H . The symbols T1 and T2 denote the temperatures on the top and
bottom surfaces, respectively, γ is the coefficient of temperature expansion, and t stands for the thickness of
the rod. This case is studied in Table 8.1: shear, moment, slope, and deflection formulas for elastic straight
beams, Example 6c of Roark’s Formulas for Stress and Strain [11]. We are interested in the corresponding
bending moment at x = a, where the Heaviside-box begins. From Table 8.1, Example 6c of [11], we learn
that

M|x=a = −3

2

E Ia

l3
γ (T2 − T1)

t

(
l2 − a2

)
. (79)

Superimposed dots are not needed in the present case. For a confirmation of Eq. (79), we analogously apply
Eq. (76) to x = a:

Mx=a =
∫ x=l

x=0

(
M ϕ̇′

e

)
dx = γ (T2 − T1)

t

∫ x=l

x=a
Mdx . (80)

Recall that the virtual bendingmomentM denotes the bendingmoment due to a unit jump in the cross-sectional
rotation that is applied at x = a:

�ϕ̇��x=a = θ0 = 1. (81)

This case is treated in Table 8.1, Example 4c of [11], from which we obtain that

M = −3E Iax

l3
θ0 = −3E Iax

l3
. (82)

Substituting Eq. (82) into Eq. (80) indeed yields Eq. (79). This result, despite it has been obtained in the
framework of the linear structural theory of beams rigid in shear, should provide further evidence for the
appropriateness of our above considerations.
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